Neural Architecture Search EECE695D: Efficient ML Systems

Spring 2025

- Suppose that we have:
 - arch • a neural network architecture, denoted by
 - an optimization algorithm, denoted by opt

• KD. Given a small NN architecture, optimize it well?

min opt

Recap

- loss(arch, opt)
 - $(loss(\cdot, \cdot) denotes the loss after training)$

Overview

- Consider optimizing another variable:
 - Find a NN architecture that can be trained well
 - loss(arch, opt) min arch
 - Put a constraint / regularizer on the size(arch)
 - FLOPs
 - Memory constraint

Motivation

- Old solution. Let 🤕 optimize
 - Number of layers
 - Number of channels (in each layer)
 - Activation function
 - Operator type
 - (....)
- NAS. Let
 optimize!

Input	Operator	exp size	#out	SE	N
$224^2 \times 3$	conv2d	-	16	-	H
$112^2 \times 16$	bneck, 3x3	16	16	-	RJ
$112^2 \times 16$	bneck, 3x3	64	24	-	R
$56^2 imes 24$	bneck, 3x3	72	24	-	R
$56^2 \times 24$	bneck, 5x5	72	40	\checkmark	R
$28^2 \times 40$	bneck, 5x5	120	40	\checkmark	R
$28^2 \times 40$	bneck, 5x5	120	40	\checkmark	R
$28^2 \times 40$	bneck, 3x3	240	80	-	H
$14^2 \times 80$	bneck, 3x3	200	80	-	H
$14^2 \times 80$	bneck, 3x3	184	80	-	H
$14^2 \times 80$	bneck, 3x3	184	80	-	H
$14^2 \times 80$	bneck, 3x3	480	112	\checkmark	H
$14^2 \times 112$	bneck, 3x3	672	112	\checkmark	H
$14^2 \times 112$	bneck, 5x5	672	160	\checkmark	H
$7^2 imes 160$	bneck, 5x5	960	160	\checkmark	H
$7^2 imes 160$	bneck, 5x5	960	160	\checkmark	H
$7^2 \times 160$	conv2d, 1x1	-	960	-	H
$7^2 imes 960$	pool, 7x7	-	-	-	-
$1^2 \times 960$	conv2d 1x1, NBN	-	1280	-	H
$1^2 \times 1280$	conv2d 1x1, NBN	-	k	-	-

Table 1. Specification for MobileNetV3-Large. whether there is a Squeeze-And-Excite in that block. NL denotes the type of nonlinearity used. Here, HS denotes h-swish and RE denotes ReLU. NBN denotes no batch normalization. s denotes stride.

Motivation

Cai et al., "Once-for-all: Train one network and specialize it for efficient deployment," ICLR 2020

Basic idea

- Ultimately, NAS is about solving
- min $a \in \mathscr{A}$
- Search space (e.g., all possible neural nets) • A:
- $\ell(\cdot)$: Test loss after training
- Problem.
 - Search space is too big
 - Search space is discrete
 - Evaluating loss $\ell(\cdot)$ takes much compute

Idea

$\ell(a)$

$\ell(a)$ min $a \in \mathscr{A}$

- **Dumb Approach.** A computational nightmare
 - Construct \mathscr{A} as a set of all possible neural nets
 - Pick a model $a \in \mathscr{A}$
 - Train it until convergence
 - Evaluate $\ell(a)$
 - Repeat, until we evaluate all models

Idea

min $a \in \mathcal{A}$

• **Trick.** Simplify the problem in three senses:

- <u>Search strategy</u>.

- **Evaluation strategy.** Use cheaper proxies

Elements

 $\ell(a)$

Use human / experience-based priors

Discrete search algorithms or relaxation

Search space

Search space

min $a \in \mathcal{A}$

- Defines which architecture can be represented
- Idea. Narrow down with human priors

- Look at many different levels:
 - Elementary Ops
 - Blocks
 - Cells

$\ell(a)$

Elementary Ops

- Already much effort to improve the efficiency
 - Recap

n

- a.k.a. Dense layer / Fully-connected layer
 - Matrix multiplication

- Params. $C_i \cdot C_o$
- Compute. $C_i \cdot C_o$

Linear

Convolution

• Parameter sharing for efficiency

• **Params.** $k_h k_w c_i c_o$

(reduced by $h_i w_i h_o w_o / k_h k_w$)

• **Compute**. $k_h k_w c_i c_o h_o w_o$

(reduced by $h_i w_i / k_i k_o$)

• Certain input channels only affect certain output channels

 $k_h k_w c_i c_o / g$ • Params.

(reduced by g)

• Compute. $k_h k_w c_i c_o h_o w_o/g$

(reduced by g)

Grouped convolution

Depthwise convolution

- Group for every channel
 - Linear increase in cost in terms of the # channels (\Leftrightarrow quadratic)
- $k_h k_w c$ • Params.

(reduced by *c* over conv2d)

• Compute. $k_h k_w h_o w_o c$

(reduced by *c* over conv2d)

1x1 convolution

- Only mixes information between channels
 - Complementary to depthwise
- c^2 • Params.
- Compute. $h_i w_i c^2$

64

\sim	
	М
$ \land$	
ト	\checkmark

Handmade blocks

- Many works have already combined several ops into blocks
 - Focused on efficiency
 - Will be a motivation of how we build search space

MobileNet: Depthwise + 1x1

- Depthwise Conv \rightarrow 1x1 Conv (intra-channel) (inter-channel)
 - c.f. transformers

- By replacing Conv \rightarrow Depthwise + 1x1:
 - $k^2 c^2 \rightarrow k^2 c + c^2$ • Params.
 - Compute. $hwk^2c^2 \rightarrow hw(k^2c + c^2)$

https://www.researchgate.net/figure/Depthwise-separable-convolutions_fig1_358585116 Howard et al., "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," arXiv 2017

• Decrease #channels \rightarrow do 3x3 \rightarrow increase back

- By replacing Conv \rightarrow Bottleneck: (with channel reduction factor r)
 - $k^2c^2 \rightarrow (2/r + k^2/r^2)c^2$ • Params.
 - Compute. $hwk^2c^2 \rightarrow hw(2c^2/r + k^2c^2/r^2)$

ResNet: Bottlenecks

He et al., "Deep residual learning for image recognition," CVPR 2016

ResNeXT: Grouped bottlenecks

- Combine bottleneck with grouped convolution
 - Equivalent to a multi-path block

MobileNetv2: Inverted Bottleneck

- Increase #channels \rightarrow Depthwise convolution \rightarrow Decrease #Channels
 - Works better than simple depthwise + 1x1 without channel inflation

• **Drawback**. Much activation memory

Sandler et al., "MobileNetv2: Inverted residuals and linear bottlenecks," CVPR 2018

ShuffleNet: Inverted Bottleneck

- Replace 1x1 conv with 1x1 grouped convolution
 - Then, do channel shuffling

Zhang et al., "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices," CVPR 2018

Building the search space

- For image-processing units, typically use cell-based representation
 - We describe the approach in NASNet
- A net consists of repeated cells + reduction cells (downsampling)
 - Inspired by successful models
 - Reduced search space

Building the search space

- A cell consist of **multiple blocks**
 - Placed in parallel, or in series
 - <u>Example</u>. NASNet searched on CIFAR-10, set to have five blocks

Reduction Cell

Building the search space

- A block consist of **five discrete choices**
 - Select inputs, process, aggregate
 - Processing ops are pre-handpicked (\Rightarrow)

(a) 5 discrete choices in each block

- identity
- 1x7 then 7x1 convolution
- 3x3 average pooling
- 5x5 max pooling
- 1x1 convolution
- 3x3 depthwise-separable conv
- 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
- 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

(b) A concrete example

Extending the search space

- Note that we made several arbitrary choices:
 - Number of cell repetitions
 - Kernel size
 - Degrees of downsampling
 - Input resolution
 - (...)
- These were also searched in later works
 - e.g., MNASNet, RegNet, ProxylessNAS, OFANet

Extending the search space

- Some works proposed more complicated structures than repeated cells
 - Example. Hierarchical NAS

Liu et al., "Hierarchical representations for efficient architecture search" ICLR 2018

Extending the search space

• Example. Tree-like branching structures

Cai et al., "Path-level network transformations for efficient architecture search" ICML 2018

Search strategy

Searching

min $a \in \mathscr{A}$

- **Problem.** Searching over **discrete** space
 - Grid / random search
 - Reinforcement learning
 - Evolutionary method
 - Progressive search

• Differentiable options \leftarrow discussed in the next section

$\ell(a)$

- Simply list all possible choices
 - Exponential growth in scale
 - Can be used for extremely simplified search space
 - e.g., EfficientNet

Grid Search

2 Hyperparameter

Hyperparameter 1

Liu et al., "Hierarchical representations for efficient architecture search" ICLR 2018

- More effective utilization of trials
 - With grid search, effective number of samples is 3
 - Very simple, but effective

Important parameter

Guo et al. "Single Path One-Shot NAS with Uniform Sampling" ECCV 2020

Reinforcement learning

- Train a policy which generates hyperparameters sequentially
 - Update policy parameters, based on reward
 - Example. Zoph and Le (2017) uses an RNN controller

Reinforcement learning

- Training. Evaluate policy gradient with respect to the REINFORCE loss (later works used PPO, Q Learning, MTCS, ...)
 - Given the model parameter θ , RNN generates HPs with distribution

- <u>Want-to-do</u>. Maximize the expected reward
 - $J(\theta) = \mathbb{E}_{p_{\theta}}[R]$
 - R is the validation accuracy of the model configured by $a_{1:T}$

 $p_{\theta}(a_{1:T})$

Reinforcement Learning

• Update RNN controllers using the gradient:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int \left(\prod_{t=1}^{T} p_{\theta}(a_t | a_{1:t-1}) \cdot R \right) da_{1:T}$$
$$= \int \left(\sum_{t=1}^{T} \frac{\nabla_{\theta} p_{\theta}(a_t | a_{1:t-1})}{p_{\theta}(a_t | a_{1:t-1})} \cdot p_{\theta}(a_{1:T}) \cdot R \right) da_{1:T}$$
$$= \sum_{t=1}^{T} \mathbb{E} [\nabla_{\theta} \log p_{\theta}(a_t | a_{1:t-1}) \cdot R]$$

- If R was high, strong positive feedback to generate similar HPs

• If R was low, weak positive feedback (thus called "reinforce," not penalize)

Williams, "Simple statistical gradient-following algorithms for connectionist RL" Machine Learning, 1992

Evolutionary method

- Do the following:
 - Start from a set of solutions
 - Repeat:
 - Pick a solution
 - Randomly mutate it
 - If good, add it to population (optionally, remove one)

Evolutionary method

- <u>Example</u>. AmoebaNet
- Uses tournament selection
 - <u>Sample S models from the population</u>
 - Pick highest acc. model as parent
 - <u>Mutate</u> parent to get a child
 - Train child and evaluate
 - Add child to the population

Real et al., "Regularized Evolution for Image Classifier Architecture Search" AAAI 2019

Progressive search

- These ideas are often combined with progressive search
- <u>Example</u>. Progressive NAS
 - Search for 1–Block cells
 - Select top-k cells
 - Add one block to top-K cells
 - (repeat)

Evaluation strategy

Evaluation strategy

min $a \in \mathscr{A}$

- Idea. Use a cheaper proxy
 - Smaller duration (less epochs)
 - Smaller data (less #data, less resolution)
 - Smaller model (less #channels, less repeated blocks)

- Re-use trained weights
- Joint training

$\ell(a)$

Shorter training

- **Problem.** Simply selecting the best solution may not be good enough
 - Poor correlation with final accuracy
 - degrades quickly beyond that.

	1200s	1h	3h
400s	0.87	0.31	0.05
1200s		0.88	0.64
1h			0.86

Zela et al., "Towards automated deep learning: Efficient joint neural architecture and hyperparameter search," ICML workshop 2018

Table 1: Spearman rank correlation coefficients of the validation errors between different budgets. The correlation is high between every budget and the next larger one, but

Shorter training

- Solution. Train a loss predictor

Example. Baker et al. (2018) observes that models have similar loss curves

Shorter training

• Baker et al. (2018) used ν -SVR to predict the full curve from the early 25%

Training re-use

- Idea. Reuse the weights trained from prior runs

Traditional Workflow

<u>Related</u>. Net2Net (2016) transfers weights to other tasks for adaptation

Chen et al., "Net2Net: Accelerating learning via knowledge transfer," ICLR 2016

Training re-use

- Expanding width. Distribute weights by half
- Expanding depth. Identity function \bullet

Original Model

Layers that Initialized as Identity Mapping

A Deeper Model Contains Identity Mapping Initialized Layers

Chen et al., "Net2Net: Accelerating learning via knowledge transfer," ICLR 2016

Training re-use

- App. to NAS. EfficientNAS views NAS as finding a subgraph of a giant net
 - Update weights with SGD
 - Select subgraph with RNN

Figure 2. The graph represents the entire search space while the red arrows define a model in the search space, which is decided by a controller. Here, node 1 is the input to the model whereas nodes 3 and 6 are the model's outputs.

Joint training

- We can use differentiable relaxation for optimizing the connectivity as well
 - Example. DARTS uses GD for finding the subgraph as well
 - Intermediate features are connected with a mixture of modules

(a) Initially unknown operations on the edges.

(b) Continuous relaxation by placing a mixture of operations on each edge.

(c) Bilevel optimization to jointly train mixing probabilities and weights.

(d) Finalized the model based on the learned mixing probabilities.

Algorithm 1: DARTS – Differentiable Architecture Search

Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j)while not converged do 1. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w - \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$ $(\xi = 0 \text{ if using first-order approximation})$ 2. Update weights w by descending $\nabla_{w} \mathcal{L}_{train}(w, \alpha)$ Derive the final architecture based on the learned α .

Further reading

- Zero-shot NAS
 - Mellor et al., "NAS without training" ICML 2021
 - Abdelfattah et al., "Zero-cost proxies for lightweight NAS" ICLR 2021
- Efficiency-aware NAS
 - ProxylessNAS: Use "latency" as a reward as well
 - MobileNAS: Construct search space with efficient modules
 - MCUNet: Maximize FLOPs for better memory-accuracy tradeoff
 - ChamNet: Train proxies for efficiency metrics

• Efficient Training & Tuning

Next Class

