
Spring 2025

Neural Architecture Search
EECE695D: Efficient ML Systems

Recap
• Suppose that we have:

• a neural network architecture, denoted by

• an optimization algorithm, denoted by

• KD. Given a small NN architecture, optimize it well?

(denotes the loss after training)

arch

opt

min
opt

loss(arch, opt)

loss(⋅ , ⋅)

Overview
• Consider optimizing another variable:

• Find a NN architecture that can be trained well

• Put a constraint / regularizer on the

• FLOPs

• Memory constraint

min
arch

loss(arch, opt)

size(arch)

Motivation
• Old solution. Let 👨🦳 optimize

• Number of layers

• Number of channels
(in each layer)

• Activation function

• Operator type

• (….)

• NAS. Let 🤖 optimize!

Howard et al., “Searching for MobileNetv3,” ICCV 2019

Motivation

paperswithcode.com

AmoebaNet

NASNet

PNASNet

2017. NAS started outperforming
 human-designed solutions,
 in terms of ImageNet accuracy

http://paperswithcode.com

Cai et al., “Once-for-all: Train one network and specialize it for efficient deployment,” ICLR 2020

2020. Automated search
 focused on efficiency

Basic idea

Idea
• Ultimately, NAS is about solving

• : Search space (e.g., all possible neural nets)

• : Test loss after training

• Problem.

• Search space is too big

• Search space is discrete

• Evaluating loss takes much compute

min
a∈𝒜

ℓ(a)

𝒜

ℓ(⋅)

ℓ(⋅)

Idea

• Dumb Approach. A computational nightmare

• Construct as a set of all possible neural nets

• Pick a model

• Train it until convergence

• Evaluate

• Repeat, until we evaluate all models

min
a∈𝒜

ℓ(a)

𝒜

a ∈ 𝒜

ℓ(a)

Elements

• Trick. Simplify the problem in three senses:

• Search space. Use human / experience-based priors

• Search strategy. Discrete search algorithms or relaxation

• Evaluation strategy. Use cheaper proxies

min
a∈𝒜

ℓ(a)

Elsken et al., “Neural Architecture Search: A Survey,” JMLR 2019

Search space

Search space

• Defines which architecture can be represented

• Idea. Narrow down with human priors

• Look at many different levels:

• Elementary Ops

• Blocks

• Cells

min
a∈𝒜

ℓ(a)

Elementary Ops
• Already much effort to improve the efficiency

• Recap

Linear
• a.k.a. Dense layer / Fully-connected layer

• Matrix multiplication

• Params.

• Compute.

ci ⋅ co

ci ⋅ co

Convolution
• Parameter sharing for efficiency

• Params.

(reduced by)

• Compute.

(reduced by)

khkwcico

hiwihowo/khkw

khkwcicohowo

hiwi/kiko

efficientml.ai

Grouped convolution
• Certain input channels only affect

certain output channels

• Params.

(reduced by)

• Compute.

(reduced by)

khkwcico/g

g

khkwcicohowo/g

g

efficientml.ai

Depthwise convolution
• Group for every channel

• Linear increase in cost in terms of
the #channels (quadratic)

• Params.

(reduced by over conv2d)

• Compute.

(reduced by over conv2d)

⇔

khkwc

c

khkwhowoc

c

efficientml.ai

1x1 convolution
• Only mixes information between channels

• Complementary to depthwise

• Params.

• Compute.

c2

hiwic2

efficientml.ai

Handmade blocks
• Many works have already combined several ops into blocks

• Focused on efficiency

• Will be a motivation of how we build search space

MobileNet: Depthwise + 1x1
• Depthwise Conv 1x1 Conv

(intra-channel) (inter-channel)

• c.f. transformers

• By replacing Conv Depthwise + 1x1:

• Params.

• Compute.

→

→

k2c2 → k2c + c2

hwk2c2 → hw(k2c + c2)

https://www.researchgate.net/figure/Depthwise-separable-convolutions_fig1_358585116
Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv 2017

https://www.researchgate.net/figure/Depthwise-separable-convolutions_fig1_358585116

ResNet: Bottlenecks
• Decrease #channels do 3x3 increase back

• By replacing Conv Bottleneck:
(with channel reduction factor)

• Params.

• Compute.

→ →

→
r

k2c2 → (2/r + k2/r2)c2

hwk2c2 → hw(2c2/r + k2c2/r2)

efficientml.ai
He et al., “Deep residual learning for image recognition,” CVPR 2016

ResNeXT: Grouped bottlenecks
• Combine bottleneck with grouped convolution

• Equivalent to a multi-path block

efficientml.ai
Xie et al., “Aggregated Residual Transformations for Deep Neural Networks,” CVPR 2017

MobileNetv2: Inverted Bottleneck
• Increase #channels Depthwise convolution Decrease #Channels

• Works better than simple depthwise + 1x1
without channel inflation

• Drawback. Much activation memory

→ →

efficientml.ai
Sandler et al., “MobileNetv2: Inverted residuals and linear bottlenecks,” CVPR 2018

ShuffleNet: Inverted Bottleneck
• Replace 1x1 conv with 1x1 grouped convolution

• Then, do channel shuffling

efficientml.ai
Zhang et al., “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” CVPR 2018

Building the search space
• For image-processing units, typically use cell-based representation

• We describe the approach in NASNet

• A net consists of repeated cells + reduction cells (downsampling)

• Inspired by successful models

• Reduced search space

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018

Building the search space
• A cell consist of multiple blocks

• Placed in parallel, or in series

• Example. NASNet searched on CIFAR-10, set to have five blocks

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018

block

Building the search space
• A block consist of five discrete choices

• Select inputs, process, aggregate

• Processing ops are pre-handpicked ()⇒

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018

Extending the search space
• Note that we made several arbitrary choices:

• Number of cell repetitions

• Kernel size

• Degrees of downsampling

• Input resolution

• (…)

• These were also searched in later works

• e.g., MNASNet, RegNet, ProxylessNAS, OFANet

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018

Extending the search space
• Some works proposed more complicated structures than repeated cells

• Example. Hierarchical NAS

Liu et al., “Hierarchical representations for efficient architecture search” ICLR 2018

Extending the search space
• Example. Tree-like branching structures

Cai et al., “Path-level network transformations for efficient architecture search” ICML 2018

Search strategy

Searching

• Problem. Searching over discrete space

• Grid / random search

• Reinforcement learning

• Evolutionary method

• Progressive search

• Differentiable options discussed in the next section

min
a∈𝒜

ℓ(a)

⇐

Grid Search
• Simply list all possible choices

• Exponential growth in scale

• Can be used for extremely simplified
search space

• e.g., EfficientNet

Liu et al., “Hierarchical representations for efficient architecture search” ICLR 2018

Random Search
• More effective utilization of trials

• With grid search, effective
number of samples is 3

• Very simple, but effective

Guo et al. “Single Path One-Shot NAS with Uniform Sampling” ECCV 2020

Reinforcement learning
• Train a policy which generates hyperparameters sequentially

• Update policy parameters, based on reward

• Example. Zoph and Le (2017) uses an RNN controller

Zoph and Le, “NAS with RL,” ICLR 2017

Reinforcement learning
• Training. Evaluate policy gradient with respect to the REINFORCE loss

 (later works used PPO, Q Learning, MTCS, …)

• Given the model parameter , RNN generates HPs with distribution

• Want-to-do. Maximize the expected reward

• is the validation accuracy of the model configured by

θ

pθ(a1:T)

J(θ) = 𝔼pθ
[R]

R a1:T

Zoph and Le, “NAS with RL,” ICLR 2017

Reinforcement Learning
• Update RNN controllers using the gradient:

• If was high, strong positive feedback to generate similar HPs

• If was low, weak positive feedback (thus called “reinforce,” not penalize)

∇θJ(θ) = ∇θ ∫ (
T

∏
t=1

pθ(at |a1:t−1) ⋅ R) da1:T

= ∫ (
T

∑
t=1

∇θ pθ(at |a1:t−1)
pθ(at |a1:t−1)

⋅ pθ(a1:T) ⋅ R) da1:T

=
T

∑
t=1

𝔼[∇θlog pθ(at |a1:t−1) ⋅ R]

R

R

Williams, “Simple statistical gradient-following algorithms for connectionist RL” Machine Learning, 1992

Evolutionary method
• Do the following:

• Start from a set of solutions

• Repeat:

• Pick a solution

• Randomly mutate it

• If good, add it to population
(optionally, remove one)

Evolutionary method
• Example. AmoebaNet

• Uses tournament selection

• Sample models from the population

• Pick highest acc. model as parent

• Mutate parent to get a child

• Train child and evaluate

• Add child to the population

S

Real et al., “Regularized Evolution for Image Classifier Architecture Search” AAAI 2019

Progressive search
• These ideas are often combined with

progressive search

• Example. Progressive NAS

• Search for 1-Block cells

• Select top-k cells

• Add one block to top-K cells

• (repeat)

Liu et al., “Progressive NAS” ECCV 2018

Evaluation strategy

Evaluation strategy

• Idea. Use a cheaper proxy

• Smaller duration (less epochs)

• Smaller data (less #data, less resolution)

• Smaller model (less #channels, less repeated blocks)

• Re-use trained weights

• Joint training

min
a∈𝒜

ℓ(a)

Shorter training
• Problem. Simply selecting the best solution may not be good enough

• Poor correlation with final accuracy

Zela et al., “Towards automated deep learning: Efficient joint neural architecture and hyperparameter search,” ICML workshop 2018

Shorter training
• Solution. Train a loss predictor

• Example. Baker et al. (2018) observes that models have similar loss curves

Baker et al., “Accelerating NAS using performance prediction,” ICLR 2018

Shorter training
• Baker et al. (2018) used -SVR to predict the full curve from the early 25%ν

Baker et al., “Accelerating NAS using performance prediction,” ICLR 2018

Training re-use
• Idea. Reuse the weights trained from prior runs

• Related. Net2Net (2016) transfers weights to other tasks for adaptation

Chen et al., “Net2Net: Accelerating learning via knowledge transfer,” ICLR 2016

Training re-use
• Expanding width. Distribute weights by half

• Expanding depth. Identity function

Chen et al., “Net2Net: Accelerating learning via knowledge transfer,” ICLR 2016

Training re-use
• App. to NAS. EfficientNAS views NAS as finding a subgraph of a giant net

• Update weights with SGD

• Select subgraph with RNN

Pham et al., “Efficient NAS via parameter sharing,” arXiv 2018

Joint training
• We can use differentiable relaxation for optimizing the connectivity as well

• Example. DARTS uses GD for finding the subgraph as well

• Intermediate features are connected with a mixture of modules

Liu et al., “DARTS: Differentiable architecture search,” ICLR 2019

Liu et al., “DARTS: Differentiable architecture search,” ICLR 2019

Further reading
• Zero-shot NAS

• Mellor et al., “NAS without training” ICML 2021

• Abdelfattah et al., “Zero-cost proxies for lightweight NAS” ICLR 2021

• Efficiency-aware NAS

• ProxylessNAS: Use “latency” as a reward as well

• MobileNAS: Construct search space with efficient modules

• MCUNet: Maximize FLOPs for better memory-accuracy tradeoff

• ChamNet: Train proxies for efficiency metrics

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018

Next Class
• Efficient Training & Tuning

That’s it for today 🙌

