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Recap
• Suppose that we have: 

• a neural network architecture, denoted by       

• an optimization algorithm, denoted by              

• KD. Given a small NN architecture, optimize it well? 

 

(  denotes the loss after training)

arch

opt

min
opt

loss(arch, opt)

loss( ⋅ , ⋅ )



Overview
• Consider optimizing another variable: 

• Find a NN architecture that can be trained well 

 

• Put a constraint / regularizer on the  

• FLOPs 

• Memory constraint

min
arch

loss(arch, opt)

size(arch)



Motivation
• Old solution. Let 👨🦳 optimize 

• Number of layers 

• Number of channels 
(in each layer) 

• Activation function 

• Operator type 

• (….) 

• NAS. Let 🤖 optimize!

Howard et al., “Searching for MobileNetv3,” ICCV 2019



Motivation

paperswithcode.com

AmoebaNet

NASNet

PNASNet

2017. NAS started outperforming 
          human-designed solutions, 
          in terms of ImageNet accuracy

http://paperswithcode.com


Cai et al., “Once-for-all: Train one network and specialize it for efficient deployment,” ICLR 2020

2020. Automated search 
            focused on efficiency



Basic idea



Idea
• Ultimately, NAS is about solving 

 

• :           Search space (e.g., all possible neural nets) 

• :      Test loss after training 

• Problem. 

• Search space is too big 

• Search space is discrete 

• Evaluating loss  takes much compute

min
a∈𝒜

ℓ(a)

𝒜

ℓ( ⋅ )

ℓ( ⋅ )



Idea
 

• Dumb Approach. A computational nightmare 

• Construct  as a set of all possible neural nets 

• Pick a model  

• Train it until convergence 

• Evaluate  

• Repeat, until we evaluate all models

min
a∈𝒜

ℓ(a)

𝒜

a ∈ 𝒜

ℓ(a)



Elements
 

• Trick. Simplify the problem in three senses: 

• Search space.            Use human / experience-based priors 

• Search strategy.         Discrete search algorithms or relaxation 

• Evaluation strategy.   Use cheaper proxies

min
a∈𝒜

ℓ(a)

Elsken et al., “Neural Architecture Search: A Survey,” JMLR 2019



Search space



Search space
 

• Defines which architecture can be represented 

• Idea. Narrow down with human priors 

• Look at many different levels: 

• Elementary Ops 

• Blocks 

• Cells

min
a∈𝒜

ℓ(a)



Elementary Ops
• Already much effort to improve the efficiency 

• Recap



Linear
• a.k.a. Dense layer / Fully-connected layer 

• Matrix multiplication 

• Params.        

• Compute.    

ci ⋅ co

ci ⋅ co



Convolution
• Parameter sharing for efficiency 

• Params.        

(reduced by ) 

• Compute.     

(reduced by )

khkwcico

hiwihowo/khkw

khkwcicohowo

hiwi/kiko

efficientml.ai



Grouped convolution
• Certain input channels only affect 

certain output channels 

• Params.        

(reduced by ) 

• Compute.     

(reduced by )

khkwcico/g

g

khkwcicohowo/g

g

efficientml.ai



Depthwise convolution
• Group for every channel 

• Linear increase in cost in terms of 
the #channels         (  quadratic) 

• Params.        

(reduced by  over conv2d) 

• Compute.     

(reduced by  over conv2d)

⇔

khkwc

c

khkwhowoc

c

efficientml.ai



1x1 convolution
• Only mixes information between channels 

• Complementary to depthwise 

• Params.        

• Compute.    

c2

hiwic2

efficientml.ai



Handmade blocks
• Many works have already combined several ops into blocks 

• Focused on efficiency 

• Will be a motivation of how we build search space



MobileNet: Depthwise + 1x1
• Depthwise Conv  1x1 Conv 

(intra-channel)         (inter-channel) 

• c.f. transformers 

• By replacing Conv  Depthwise + 1x1: 

• Params.          

• Compute.     

→

→

k2c2 → k2c + c2

hwk2c2 → hw(k2c + c2)

https://www.researchgate.net/figure/Depthwise-separable-convolutions_fig1_358585116 
Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv 2017

https://www.researchgate.net/figure/Depthwise-separable-convolutions_fig1_358585116


ResNet: Bottlenecks
• Decrease #channels  do 3x3  increase back 

• By replacing Conv  Bottleneck: 
(with channel reduction factor ) 

• Params.          

• Compute.     

→ →

→
r

k2c2 → (2/r + k2/r2)c2

hwk2c2 → hw(2c2/r + k2c2/r2)

efficientml.ai 
He et al., “Deep residual learning for image recognition,” CVPR 2016



ResNeXT: Grouped bottlenecks
• Combine bottleneck with grouped convolution 

• Equivalent to a multi-path block

efficientml.ai 
Xie et al., “Aggregated Residual Transformations for Deep Neural Networks,” CVPR 2017



MobileNetv2: Inverted Bottleneck
• Increase #channels  Depthwise convolution  Decrease #Channels 

• Works better than simple depthwise + 1x1 
without channel inflation 

• Drawback. Much activation memory

→ →

efficientml.ai 
Sandler et al., “MobileNetv2: Inverted residuals and linear bottlenecks,” CVPR 2018



ShuffleNet: Inverted Bottleneck
• Replace 1x1 conv with 1x1 grouped convolution 

• Then, do channel shuffling

efficientml.ai 
Zhang et al., “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” CVPR 2018



Building the search space
• For image-processing units, typically use cell-based representation 

• We describe the approach in NASNet 

• A net consists of repeated cells + reduction cells (downsampling) 

• Inspired by successful models 

• Reduced search space

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018



Building the search space
• A cell consist of multiple blocks 

• Placed in parallel, or in series 

• Example. NASNet searched on CIFAR-10, set to have five blocks

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018

block



Building the search space
• A block consist of five discrete choices 

• Select inputs, process, aggregate 

• Processing ops are pre-handpicked ( )⇒

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018



Extending the search space
• Note that we made several arbitrary choices: 

• Number of cell repetitions 

• Kernel size 

• Degrees of downsampling 

• Input resolution 

• (…) 

• These were also searched in later works 

• e.g., MNASNet, RegNet, ProxylessNAS, OFANet

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018



Extending the search space
• Some works proposed more complicated structures than repeated cells 

• Example. Hierarchical NAS

Liu et al., “Hierarchical representations for efficient architecture search” ICLR 2018



Extending the search space
• Example. Tree-like branching structures

Cai et al., “Path-level network transformations for efficient architecture search” ICML 2018



Search strategy



Searching
 

• Problem. Searching over discrete space 

• Grid / random search 

• Reinforcement learning 

• Evolutionary method 

• Progressive search 

• Differentiable options       discussed in the next section

min
a∈𝒜

ℓ(a)

⇐



Grid Search
• Simply list all possible choices 

• Exponential growth in scale 

• Can be used for extremely simplified 
search space 

• e.g., EfficientNet

Liu et al., “Hierarchical representations for efficient architecture search” ICLR 2018



Random Search
• More effective utilization of trials 

• With grid search, effective 
number of samples is 3 

• Very simple, but effective

Guo et al. “Single Path One-Shot NAS with Uniform Sampling” ECCV 2020



Reinforcement learning
• Train a policy which generates hyperparameters sequentially 

• Update policy parameters, based on reward 

• Example. Zoph and Le (2017) uses an RNN controller

Zoph and Le, “NAS with RL,” ICLR 2017



Reinforcement learning
• Training. Evaluate policy gradient with respect to the REINFORCE loss 

                  (later works used PPO, Q Learning, MTCS, …) 

• Given the model parameter , RNN generates HPs with distribution 

 

• Want-to-do. Maximize the expected reward 

 

•  is the validation accuracy of the model configured by 

θ

pθ(a1:T)

J(θ) = 𝔼pθ
[R]

R a1:T

Zoph and Le, “NAS with RL,” ICLR 2017



Reinforcement Learning
• Update RNN controllers using the gradient: 

 

                               

 

• If  was high, strong positive feedback to generate similar HPs 

• If  was low, weak positive feedback  (thus called “reinforce,” not penalize)

∇θJ(θ) = ∇θ ∫ (
T

∏
t=1

pθ(at |a1:t−1) ⋅ R) da1:T

= ∫ (
T

∑
t=1

∇θ pθ(at |a1:t−1)
pθ(at |a1:t−1)

⋅ pθ(a1:T) ⋅ R) da1:T

=
T

∑
t=1

𝔼[∇θlog pθ(at |a1:t−1) ⋅ R]

R

R

Williams, “Simple statistical gradient-following algorithms for connectionist RL” Machine Learning, 1992



Evolutionary method
• Do the following: 

• Start from a set of solutions 

• Repeat: 

• Pick a solution 

• Randomly mutate it 

• If good, add it to population 
(optionally, remove one)



Evolutionary method
• Example. AmoebaNet 

• Uses tournament selection 

• Sample  models from the population 

• Pick highest acc. model as parent 

• Mutate parent to get a child 

• Train child and evaluate 

• Add child to the population

S

Real et al., “Regularized Evolution for Image Classifier Architecture Search” AAAI 2019



Progressive search
• These ideas are often combined with 

progressive search 

• Example. Progressive NAS 

• Search for 1-Block cells 

• Select top-k cells 

• Add one block to top-K cells 

• (repeat)

Liu et al., “Progressive NAS” ECCV 2018



Evaluation strategy



Evaluation strategy
 

• Idea. Use a cheaper proxy 

• Smaller duration (less epochs) 

• Smaller data (less #data, less resolution) 

• Smaller model (less #channels, less repeated blocks) 

• Re-use trained weights 

• Joint training

min
a∈𝒜

ℓ(a)



Shorter training
• Problem. Simply selecting the best solution may not be good enough 

• Poor correlation with final accuracy

Zela et al., “Towards automated deep learning: Efficient joint neural architecture and hyperparameter search,” ICML workshop 2018



Shorter training
• Solution. Train a loss predictor 

• Example. Baker et al. (2018) observes that models have similar loss curves

Baker et al., “Accelerating NAS using performance prediction,” ICLR 2018



Shorter training
• Baker et al. (2018) used -SVR to predict the full curve from the early 25%ν

Baker et al., “Accelerating NAS using performance prediction,” ICLR 2018



Training re-use
• Idea. Reuse the weights trained from prior runs 

• Related. Net2Net (2016) transfers weights to other tasks for adaptation

Chen et al., “Net2Net: Accelerating learning via knowledge transfer,” ICLR 2016



Training re-use
• Expanding width. Distribute weights by half 

• Expanding depth. Identity function

Chen et al., “Net2Net: Accelerating learning via knowledge transfer,” ICLR 2016



Training re-use
• App. to NAS. EfficientNAS views NAS as finding a subgraph of a giant net 

• Update weights with SGD 

• Select subgraph with RNN

Pham et al., “Efficient NAS via parameter sharing,” arXiv 2018



Joint training
• We can use differentiable relaxation for optimizing the connectivity as well 

• Example. DARTS uses GD for finding the subgraph as well 

• Intermediate features are connected with a mixture of modules

Liu et al., “DARTS: Differentiable architecture search,” ICLR 2019



Liu et al., “DARTS: Differentiable architecture search,” ICLR 2019



Further reading
• Zero-shot NAS 

• Mellor et al., “NAS without training” ICML 2021 

• Abdelfattah et al., “Zero-cost proxies for lightweight NAS” ICLR 2021 

• Efficiency-aware NAS 

• ProxylessNAS:    Use “latency” as a reward as well 

• MobileNAS:        Construct search space with efficient modules 

• MCUNet:             Maximize FLOPs for better memory-accuracy tradeoff 

• ChamNet:           Train proxies for efficiency metrics

Zoph et al., “Learning transferable architectures for scalable image recognition” CVPR 2018



Next Class
• Efficient Training & Tuning



That’s it for today 🙌


