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Recap

e Suppose that we have:
e a neural network architecture, denoted by  arch

e an optimization algorithm, denoted by opt

 KD. Given a small NN architecture, optimize it well?

min loss(arch, opt)
opt



Overview

e Consider optimizing another variable:

e Find a NN architecture that can be trained well

min loss(arch, opt)
arch

e Put a constraint / regularizer on the size(arch)
e FLOPs

e Memory constraint



 Old solution. Let = optimize
e Number of layers

e Number of channels
(in each layer)

e Activation function
e Operator type

e (....)

e NAS. Let & optimize!

Motivation

Input Operator exp size | #out | SE | NL | s
2242 % 3 conv2d - 16 - | HS | 2
1122 x 16 bneck, 3x3 16 16 - | RE | 1
1122 x 16 bneck, 3x3 64 24 - | RE | 2
562 x 24 bneck, 3x3 72 24 - | RE | 1
562 x 24 bneck, 5x5 72 40 v | RE |2
282 x 40 bneck, 5x5 120 40 v. | RE |1
282 x 40 bneck, 5x5 120 40 v. | RE |1
282 x 40 bneck, 3x3 240 80 - | HS | 2
142 x 80 bneck, 3x3 200 80 - | HS | 1
142 x 80 bneck, 3x3 184 80 - HS | 1
142 x 80 bneck, 3x3 184 80 - HS | 1
142 x 80 bneck, 3x3 480 112 | v | HS |1
142 x 112 bneck, 3x3 672 112 v. | HS |1
142 x 112 bneck, 5x5 672 160 | v | HS | 2
72 x 160 bneck, 5x5 960 160 v. | HS |1
72 % 160 bneck, 5x5 960 160 v. | HS |1
7% x 160 conv2d, 1x1 - 960 - HS | 1
72 x 960 pool, 7x7 - - - - |1
1?2 x 960 | conv2d 1x1, NBN - 1280 - HS | 1
1% x 1280 | conv2d 1x1, NBN - k - - |1

Table 1. Specification for MobileNetV3-Large. SE denotes
whether there 1s a Squeeze-And-Excite in that block. NL denotes
the type of nonlinearity used. Here, HS denotes h-swish and RE
denotes ReLU. NBN denotes no batch normalization. s denotes
stride.

Howard et al,, “Searching for MobileNetv3,” ICCV 2019
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Cai et al., “Once-for-all: Train one network and specialize it for efficient deployment,” ICLR 2020



Basic idea




ldea

e Ultimately, NAS is about solving

min Z(a)
acef
o - Search space (e.g., all possible neural nets)

e (). Testloss after training
* Problem.
e Search space Is too big

e Search space Is discrete

e Evaluating loss £( - ) takes much compute



ldea

min Z(a)
acd

e Dumb Approach. A computational nightmare
e Construct & as a set of all possible neural nets

e Pick amodela € &f

e Train it until convergence

e Evaluate £(a)

 Repeat, until we evaluate all models



Elements

min Z(a)
acd

e Trick. Simplify the problem In three senses:

e Search space. Use human / experience-based priors

e Search strategy. Discrete search algorithms or relaxation

e Evaluation strategy. Use cheaper proxies

architecture
Ac A

Performance

Search Space . .
Search Strategy Estimation
A Strategy

performance
estimate of A

Elsken et al., “Neural Architecture Search: A Survey,” JMLR 2019



Search space



Search space

min Z(a)
acd

e Defines which architecture can be represented

e |dea. Narrow down with human priors

e ook at many different levels:
e Elementary Ops

e Blocks

e Cells



Elementary Ops

e Already much effort to improve the efficiency

e Recap



L Inear

e a.k.a. Dense layer / Fully-connected layer

e Matrix multiplication

C; C,
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e Params. C;:C, IR i i
c. |
Py
e Compute. ¢;-c, e




Convolution

e Parameter sharing for efficiency

e« Params. k. k cic,

LN

|

. T

(reduced by hwh w [k k)

B
L

icohowo

« Compute. kk c

(reduced by hw:/kk )

¢
channel dimension

efficientml.ai



Grouped convolution

e Certain input channels only affect
certain output channels

e Params. Lk cc /g

(reduced by g)

« Compute. kL, cchw,/g

(reduced by g)

efficientml.ai



Depthwise convolution

e Group for every channel C,
e Linear increase In cost in terms of _|
the #channels (& quadratic)
« Params. Lk c

(reduced by ¢ over conv2d)

« Compute. kk hwc

(reduced by c over conv2d)

il
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efficientml.ai
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Handmade blocks

e Many works have already combined several ops into blocks
e Focused on efficiency

e Will be a motivation of how we build search space



MobileNet: Depthwise + 1x]1

e Depthwise Conv — 1x1 Conv

Depthwise Convolution

e c.f transformers m’

Pointwise Convolution

\\ kxk Conv A | \\ 1x1 Conv X\\

-~~ ]
-o !
QQQQQ i
‘‘‘‘‘‘‘‘‘
....... :
---------- s>
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e By replacing Conv — Depthwise + 1x:

e Params. k*c? — k’c + c? A\ A\

e Compute. hwk’c®> » hw(k’c + ¢?) o | U-

https://www.researchgate.net/figure/Depthwise-separable-convolutions figl 358585116
Howard et al, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv 2017



https://www.researchgate.net/figure/Depthwise-separable-convolutions_fig1_358585116

ResNet: Bottlenecks

e Decrease #channels — do 3x3 — increase back 2048-d out

512, 1x1, 2048

512, 3x3, 512
2048, 1x1, 512

2048-d In

e By replacing Conv — Bottleneck:

e Params. k’c? > 2/r + k?/r?)c?

e Compute. hwk’c? — hw(2c?/r + k’c?/r?)

efficientml.ai
He et al., “Deep residual learning for image recognition,” CVPR 2016



ResNeXT: Grouped bottlenecks

e Combine bottleneck with grouped convolution

e Equivalent to a multi-path block

ﬁ

256, 1x1,128 256, 1x1,4 | | 256,1x1,4 | . .| 256,1x1,4 256,1x1,4 | | 256,1x1,4 |, .12, | 256,1x1,4
l 2 v paths v v paths v
128, 3x3,128 4 3x3,4 4 3x3,4 seee 4,3x3,4 4 3x3,4 4 3x3,4 eeeo 4 3x3,4
group = 32 I e A r— t/ ¥ v v
i — | °°“°ie"a o — | 4,1x1, 256 4,1x1,256 4,1x1, 256
128, 1x1, 256 128, 1x1, 256
256-d out 256-d out 256-d out

efficientml.ai
Xie et al., "Aggregated Residual Transformations for Deep Neural Networks,” CVPR 2017



MobileNetv2: Inverted Bottleneck

Increase #channels — Depthwise convolution — Decrease #Channels

e Works better than simple depthwise + 1xI

without channel inflation

e Drawback. Much activation memory
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efficientml.ai
Sandler et al., “MobileNetv2: Inverted residuals and linear bottlenecks,” CVPR 2018



ShuffleNet: Inverted Bottleneck

e Replace 1x1 conv with 1x1 grouped convolution

 Then, do channel shuftling

e

1x1 GConv
= Channel > = Channel > = Channel >
BN RelLU
....................... . Input
:| Channel Shuffle | &.._
-'o‘ .......... $- ----------- L . GConv1
3x3 DWConv " Feature - ||
\;\\\‘\ ] [ [ Channel
¢BN Cony 4 : A A N N I N A Shuffle
1x1 GConv
\ / BN Output
Add
¢ ReLU

efficientml.ai
/hang et al., “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” CVPR 2018



Building the search space

e For image-processing units, typically use cell-based representation
e \We describe the approach in NASNet

A net consists of repeated cells + reduction cells
e Inspired by successful models

e Reduced search space

w
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M o - —
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Zoph et al, “Learning transferable architectures for scalable image recognition” CVPR 2018



Building the search space

e A cell consist of multiple blocks

 Placed in parallel, or in series

e Example. NASNet searched on CIFAR-10, set to have five blocks

block

_—

add add add add
AN 0 U A TR
sep | |iden sep | | sep avg | |iden avg | | avg
3x3 | | tity 3x3 | | 5x5 3x3 | | tity 3x3 | | 3x3

add

A

A

concat

Normal Cell

sep
5x5

sep
3x3

Reduction Cell

Zoph et al, “Learning transferable architectures for scalable image recognition” CVPR 2018



Building the search space

e A block consist of five discrete choices

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

e Select Inputs, process, aggregate

» Processing ops are pre-handpicked (=)

—————————————————————————————

- Output: new hidden state " New hidden layer C

e L ! SN T_______
Gtep 5: elem-wise add or concat> ( elem-wise add )

T~

~ N [ N

Step 3: Select op to Step 4: Select op to . .

apply to hidden state i apply to hidden state j 3x3 conv identity
\_ t J U t V,
Stept: - Step2 i S T S T
Select h@den state i . Select h@den state ] . " Hidden layer A " Hidden layer B
. from previous states | | from previous states | 5 | :

(a) 5 discrete choices in each block (b) A concrete example

Zoph et al, “Learning transferable architectures for scalable image recognition” CVPR 2018



Extending the search space

e Note that we made several arbitrary choices:
e Number of cell repetitions
e Kernel size
e Degrees of downsampling
e |nput resolution
* (.)

e These were also searched in later works

e e.g., MNASNet, RegNet, ProxylessNAS, OFANet

Zoph et al, “Learning transferable architectures for scalable image recognition” CVPR 2018



Extending the search space

e Some works proposed more complicated structures than repeated cells

e Example. Hierarchical NAS

T3 = m(I'.q(f"(()(ll)(.r._)).().(2“(.1'| ))

0(11) level-1 primitive operations level-2 moti1f 1
1) X
22 = oSV (z) 0(2 " 1x1conv 3x3conv 3x3 max-pooling assemble 3x3
(1) (1) (1) ,
0:(31 ) “] O 02 O3 pooling
‘ 2
G o2

3x3 Qgi\?\o ’
1x1 3x3 -/
3x3 @) assemble Of@ L Q Q‘:;:O
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pooling %1 \ Dj}g}i
(2) (2) (2) 7
1 2 3

level-3 motif  (3)
0,

level-2 motifs

Liu et al., “Hierarchical representations for efficient architecture search” ICLR 2018



Extending the search space

e Example. Tree-like branching structures

T £ Leaf

l l

Replication Replication £
CI' x T T T 1
¥ Replication Replication

T / \\:1: C(-) C(-) Add
@) (b l | © l () cl / \ .
O y () C()
0 | = C() c() | = Split C() = Split C() =
l 7 N | 7 N | Split
0.5 0.5 Iden Iden Sep Iden Concat
C(z) m{ }nty SXE }'ty Sep Iden
A‘:d Concat Concat 3x3 tity
o 3 3
Add Add
v v
C(z) C(z)

Cai et al,, “Path-level network transformations for efficient architecture search” ICML 2018



Search strategy



Searching

min Z(a)
acd

* Problem. Searching over discrete space
e Grid / random search
 Reinforcement learning
e Evolutionary method

 Progressive search

e Differentiable options < discussed Iin the next section



Grid Search

° ) ° ) A
e SImply list all possible choices ~ 04464 06dd0d
| | I
e Exponential growth in scale = oo 00000000
= * 000000000
. o fe Q.
e Can be used for extremely simplified D o900 00000
search space > ” 000000000
P - NI I I NN W)
o oo 00000000
e e.g, EfficientNet >
| . Hyperparameter 1
— . —
= — |
T — . i % deeper { } =
— | | * T ?
- ----layer_i - !
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1]'.resoumn X - W ' T . P I-'r - i Tvre\f:olutlon
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Liu et al., “Hierarchical representations for efficient architecture search” ICLR 2018



Random Search

Grid Layout Random | ayout

e More effective utilization of trials

. . . [ 3
o With grid search, effective : 2
0 (0
number of samples is 3 3 :
S s
- . : :
 Very simple, but effective E E
S S
Important parameter Important parameter
68.8%
>
O
© 68.6%
-
O
)
©
— 08.4% o * k * * * * k k *k * * * * Kk *
A * k& k k k *k *k *k *k *
8682/ * 3 ******‘ffffff“f‘
- 2% o * & * * * & K K
S AR R AL
2 68.0%4 [ *
f>5 * Evolution
* Random
67.8%

0 2 4 6 8 10 12 14 16 18 20
Evolution iters
Guo et al. “Single Path One-Shot NAS with Uniform Sampling” ECCV 2020



Reinforcement learning

 [rain a policy which generates hyperparameters sequentially
e Update policy parameters, based on reward

e Example. Zoph and Le (2017) uses an RNN controller

N-1 skip connections

G

Number Anchor‘ Filter Filter | Stride Stride Anchor Number Filter
 lof Filters[* | Point [+| Height [+ | Width [\ | Height |2 | Width [1| Point [\ |of Filters|. | Height [

S N N N N
N AN N M O AN O A

l‘ “‘> "' ." ‘? "‘ ‘? ." ‘? “>
N B L R S S E B I B

Layer N-1 Layer N Layer N+1

Zoph and Le, “NAS with RL,” ICLR 2017



Reinforcement learning

* Training. Evaluate policy gradient with respect to the REINFORCE loss

e Given the model parameter 6, RNN generates HPs with distribution

pH(aI:T)

e Want-to-do. Maximize the expected reward

J(0) = E, [R]

e R is the validation accuracy of the model configured by a.

Zoph and Le, “NAS with RL,” ICLR 2017



Reinforcement Learning

e Update RNN controllers using the gradient:

Vol(0) = V@J (Hpe(at‘alzt—l) 'R) da;.r

=1

T
— J( Z Vgpe(at | al:t_l) ' pe(alzT) ' R) dal:T

=1 pﬁ(at ‘ al:f—l)

~ Z =[ Vglog pela | ay._y) - R]

=1

o If R was high, strong positive feedback to generate similar HPs

e If R was low, weak positive feedback

Williams, “Simple statistical gradient-following algorithms for connectionist RL” Machine Learning, 1992



Evolutionary method

Do the following:

o Start from a set of solutions

‘ Initialization |

e Repeat:

Mutation

e Pick a solution

[ Selection I

e Randomly mutate it

Crossover

e If good, add It to population

(optionally, remove one) Terinitition




Evolutionary method

e Example. AmoebalNet 1 1
5 . 5
Hidden State
 Uses tournament selection —<Sep *Javg] _Mutation —(Sep t Ve
Ix7 | | 3x3 Ix7 | | 3x3
o Sample S models from the population /\/ / /\ \/
2| [3] [4 2| [3] [4
* Pick highest acc. model as parent
T T
e Mutate parent to get a child 5 Op >
sep +>a_va Mutation s—epG-
: : -_— none
e Train child and evaluate 7x7 | | 3x3 7x7

ANVEVA AV

e Add child to the population 2| [3] [4 2| [3] [4

Real et al, “Regularized Evolution for Image Classifier Architecture Search” AAAI 2019



Progressive search

e These ideas are often combined with

progressive search

e Example. Progressive NAS
e Search for 1-Block cells

e Select top-k cells

 Add one block to top-K cells

e (repeat)

O candidates that get trained 40\

," \ , _ // \\
\ / candidates scored by predictor // \
— expand 1 more block - =
--» select top [O “us OJ 83
train/finetune A = p— f
apply/score L’ K (~102) \\\
4 N
7 N\
7 N\
r o~ \ - \ — N — \ \
' s ( s J
IO R O RO | S
3
- o (R S Y
* 5
\ / K*B,(~10 )\ /
[ f f ] SZ
D
- / 2
[predlctorJ L0 K(=107) =S
N
7/ N\
_——
[ ("D - - |

Liu et al, “Progressive NAS" ECCV 2018



Evaluation strategy



Evaluation strategy

min Z(a)
acd

* |dea. Use a cheaper proxy
e Smaller duration (less epochs)
e Smaller data (less #data, less resolution)

* Smaller model (less #channels, less repeated blocks)

e Re-use trained weights

e Joint training



Shorter training

 Problem. Simply selecting the best solution may not be good enough

 Poor correlation with final accuracy

Table 1: Spearman rank correla-
tion coefficients of the validation er-
rors between different budgets. The
correlation 1s high between every
budget and the next larger one, but
degrades quickly beyond that.

1200s 1h 3h
400s 0.87 031 0.05
1200s 0.88 0.64
1h 0.86

Zela et al., “Towards automated deep learning: Efficient joint neural architecture and hyperparameter search,” ICML workshop 2018




Shorter training

e Solution. Train a loss predictor

Accuracy

» Example. Baker et al. (2018) observes that models have similar loss curves
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Baker et al., “Accelerating NAS using performance prediction,” ICLR 2018



Shorter training

e Baker et al. (2018) used v-SVR to predict the full curve from the early 25%

Predicted Performance
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Baker et al., “Accelerating NAS using performance prediction,” ICLR 2018



Training re-use
* |dea. Reuse the weights trained from prior runs

» Related. Net2Net (2016) transfers weights to other tasks for adaptation

Traditional Workflow Net2Net Workflow

Initial Design Rebuild the Model 5 Initial Design Reuse the Model
L : g Q
Q @ g Net2Net Operator
Training :> Training Training -

gt o :
< Ny ~

m i 5 @I

Chen et al., “Net2Net: Accelerating learning via knowledge transfer,” ICLR 2016



Training re-use
 Expanding width. Distribute weights by half

e Expanding depth. |[dentity function

A Deeper Model Contains
Identity Mapping Initialized Layers

Original Model Layers that Initialized as
Identity Mapping

<] =

Chen et al., “Net2Net: Accelerating learning via knowledge transfer,” ICLR 2016



Training re-use
o App. to NAS. EfficientNAS views NAS as finding a subgraph of a giant net
e Update weights with SGD

{ 5

e Select subgraph with RNN //
‘\;

Figure 2. The graph represents the entire search space while the
red arrows define a model 1n the search space, which 1s decided

by a controller. Here, node 1 is the input to the model whereas
nodes 3 and 6 are the model’s outputs.

Pham et al., “Efficient NAS via parameter sharing,” arXiv 2018



Joint training

 We can use differentiable relaxation for optimizing the connectivity as well

e Example. DARTS uses GD for finding the subgraph as well

e |Intermediate features are connected with a mixture of modules

W Conv3x3
S Convbxbs

MaxPool

Liu et al., “DARTS: Differentiable architecture search,” ICLR 2019
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(d) Finalized the model
based on the learned
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Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation 6(*"7) parametrized by
while not converged do

(¢ = 0 if using first-order approximation)

a(H7) for each edge (1,7)

1. Update architecture o by descending V o Lyqi(w — €V Lirain(w, @), @)

2. Update weights w by descending Vo, Lirqin (W, <)

Derive the final architecture based on the learned .

Liu et al., “DARTS: Differentiable architecture search,” ICLR 2019



Further reading

o Zero-shot NAS
e Mellor et al., “NAS without training” ICML 2021
 Abdelfattah et al., “Zero-cost proxies for lightweight NAS" ICLR 2021
o Efficiency-aware NAS
e ProxylessNAS:. Use “latency” as a reward as well
e MobileNAS: Construct search space with efficient modules
e MCUNet: Maximize FLOPs for better memory-accuracy tradeoff

e ChamNet: Train proxies for efficiency metrics

Zoph et al, “Learning transferable architectures for scalable image recognition” CVPR 2018



Next Class

e Efficient Training & Tuning



That's it for today (-



