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Agenda
• Linear quantization 

• Various issues 

• Granularity 

• Rescaling 

• Clipping 

• Rounding 

• QAT



Linear Quantization



Idea
• Represent each weight as a scaled-and-shifted integers 

• Advantage. Less compute, easy encoding/decoding 

• Matmuls can be done in integer, and scaled-and-shifted back 

[1.2, 2.4] [−1.1
3.3 ] = (1.2) ⋅ (1.1) ⋅ [1, 2] [−1

3 ]
4 FLOPs 1 FLOP 4 Integer Op+



Formalization
• Represent each weight as scaled-and-shifted integers 

• That is, our decoder is: 

 

• :    reconstructed weight 

• :     code                                                             (e.g., INT8 ) 

• :     scaling factor                                                                               (e.g., FP32) 

• :     zero point                                                                                        (e.g., INT)

ŵ = s ⋅ (c − z1)

ŵ

c ∈ {−128,…,127}

s

z



Formalization
 

• Visually, what this decoder does is as follows:

ŵ = s ⋅ (c − z1)

Code 
space  (e.g., -128)cmin  (e.g., +127)cmax0

Weight 
space

−sz
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⋯
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Formalization
 

• Given this decoder, we encode to the nearest neighbor 

 

• :      mapping to the nearest integer inside the range

ŵ = s ⋅ (c − z1)

c = round(w/s + z1)

round( ⋅ )



Formalization
• Now we have the encoder and decoder 

• Encoder:       

• Decoder:      

• Want-to-do. Given the weights , select the parameters  so that it solves 

 

• Of course, this is difficult; thus we use heuristic methods

f(w) = round(w/s + z1)

q(c) = s ⋅ (c − z1)

w s, z

min
s,z

L̂(g( f(w)))



Minmax Quantization
• A crude but working way: match the range! 

• That is, determine  so that 

 

• Philosophy. Range that is just enough to capture the largest weights

s, z

min
i

wi = s(cmin − z), max
i

wi = s(cmax − z)

 (e.g., -128)cmin  (e.g., +127)cmax

wmin = s(cmin − z) wmax = s(cmax − z)

weight distribution



Minmax Quantization
 

• Solving this, we get: 

 

• One can do a similar thing to quantize activations: 

• Requires some “calibration data” to compute    

• Quite brittle; often needs some clipping 

• Note. It is also popular (and often better) to simply do “grid search”

min
i

wi = s(cmin − z), max
i

wi = s(cmax − z)

s =
wmax − wmin

cmax − cmin
, z = cmin − round(wmin/s)

xmax, xmin



Minmax Quantization
• Brain teaser. Suppose that we want to choose  

• If data and model parameters are sharded over many servers, 
how much communication cost would we need? 

(will be problematic for “dynamic quantization”)

xmax, xmin



Linear Quantization: 
Matmuls



Matmuls
• Consider the matmul: 

 

• Suppose that we have good quantizers for : 

• That is, we have  

• Then, we get: 

 

                                    

Y = WX

W, X, Y

sW, zW, sX, zX, sY, wY

sY(cY − zY) = sW(cW − zW) ⋅ sX(cX − zX)

= sWsX(cWcX − zWcX − zXcW + zWzX)



Matmuls
• Rewriting, we have a formula for computing the codes of Y 

 

• We have separated out FP ops from INT ops 

• Problem. To compute , we need (FP) * (INT) operation 

• Empirically,  

 Write it as , with  being an INT 
                       (bit shift)

cY =
sWsX

sY
(cWcX − zWcX − zXcW + zWzX) + zY

cY

sWsX/sY ∈ (0,1)

⇒ 2−n × M0 M0



Matmuls
• Some INT ops can be pre-computed, reducing inference-time compute 

 

• Also, many weight distributions are nearly symmetric: 

• If we let , 

 

• Not doable for activations, usually.

cY =
sWsX

sY
(cWcX − zWcX − zXcW + zWzX) + zY

zW = 0

cY =
sWsX

sY
(cWcX − zXcW) + zY



Symmetric Quantization
• Problem. INT is not symmetric! (e.g., ) 

• Two different ways to do symmetric quantization: 

• Full-range ( ).                   ONNX, PyTorch, … 

• Restricted-Range ( ).    TensorFlow, TensorRT, …

{−128,…,127}

⇐

⇒

cmin cmax

−∥w∥∞ +∥w∥∞

0

0

cmin cmax

−∥w∥∞ +∥w∥∞

0

0



• Note. Accumulation can take place in high-bits (e.g., INT32)

Symmetric Quantization



• Integer-only ops can dramatically reduce the latency

Symmetric Quantization

Jacob et al., “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” CVPR 2018



Advanced ideas for PTQ



Agenda
• In most PTQ algorithms, we adopt more ideas: 

• Finer granularity 

• Weight rescaling 

• Activation clipping 

• Adaptive rounding



Granularity
• Motivation. Weight ranges are quite dissimilar in different dimensions

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019



Granularity
• Idea. Apply different  for different group of weights (and/or activations) 

• Example. Per-Channel Quantization

(s, z)

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019



Granularity
• Example. Per-Vector Quantization 

• Not much degradation in speed, if computation is done in the units of 
fixed-length vectors

Dai et al., “VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference,” arXiv 2021



Granularity
• Further readings 

• Use two-stage scaling factors (link) 

• Sharing micro-exponents (link)

Dai et al., “VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference,” arXiv 2021

https://arxiv.org/abs/2102.04503
https://arxiv.org/abs/2302.08007


Rescaling
• Idea. Tackle the same problem, but use the positive homogeneity of ReLU. 

• i.e., σ(cx) = cσ(x), ∀c > 0

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019



Rescaling
• Take a ReLU neural net 

• Multiply x100 to all weights in jth output channel of layer i 

• Multiply x0.01 to all weights in jth input channel of layer i+1 

• Identical function, with different weights 

• Do this many times to match the weight range

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019



Clipping
• Motivation. 

• For activation,  is determined via: 

• During training. Take an exponential 
moving average 

• After training. Use calibration batches 

• However, many outliers appear

sX

Mygasz, “8-bit inference with TensorRT,” 2021



Clipping
• Idea. Clip the activations 

• Question. Where do we clip? 

• Explicit optimization. 

• Approximates w/ Gaussian/Laplace and minimize  (e.g., ACIQ) 

• Minimize  via Newton-Raphson (e.g., OCTAV) 

• Minimize the KL-divergence b/w quantized & reference dist (link)

ℓ2

ℓ2

Mygasz, “8-bit inference with TensorRT,” 2021

https://openreview.net/forum?id=B1x33sC9KQ
https://arxiv.org/pdf/2206.06501
https://www.cse.iitd.ac.in/~rijurekha/course/tensorrt.pdf


Clipping
• Use clipping activation. 

• ReLU6                                                                                 (brainteaser: why 6?) 

• ReLU with learnable clipping range (e.g., PACT)

https://arxiv.org/abs/1805.06085


Rounding
• Motivation. Turns out that round-to-nearest (RTN) is suboptimal 

• In fact, stochastic rounding gives better options than RTN

Nagel et al., “Up or Down? Adaptive Rounding for Post-Training Quantization,” ICML 2020



Rounding
• Idea. Round up-or-down in a way that minimizes the activation distortion 

• More concretely, AdaRound solves 

 

• :                                                          weight shift for round up/down  

• :                       quantized weight 

• :           binary-forcing regularizer 

• See also: AdaQuant, FlexRound

min
V:vi∈[0,1]

∥WX − W̃X∥2
F + λ ⋅ freg(V)

V

W̃ = s ⋅ (⌊W/s⌋ + V)

freg(V) = ∑
i

1 − |2Vi − 1 |β

Nagel et al., “Up or Down? Adaptive Rounding for Post-Training Quantization,” ICML 2020

https://openreview.net/forum?id=Mf4ZSXMZP7
https://arxiv.org/abs/2306.00317


QAT



Quantization-aware training
• After quantization, fine-tune the weight 

• Recovers much of the lost accuracy

Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A whitepaper,” arXiv 2018



Quantization-aware training
• (1) Keep full-precision weight, and simulate quantization at forward 

• (2) Compute gradients in full-precision 

• (3) Update full-precision weights



Quantization-aware training

• Again, we are solving  

• Challenge. Computing gradients through discretizing operation  

• Example. Consider a linear regression 

 

• The gradient is 

 

• The red term is always zero-or-infinity!

min
w

L̂(q(w))

q( ⋅ )

min
w

(y − q(w)⊤x)2

2(q(w)⊤x − y) ⋅ x⊤ ∇wq(w)



Straight-through estimator
• Again, we use STE 

• i.e., ignore quantization during backward 

2(q(w)⊤x − y) ⋅ x⊤ ∇wq(w) ⇒ 2(q(w)⊤x − y) ⋅ x⊤ ∇w(w)



Further reading
• Some theoretical arguments suggest that using (clipped) ReLU, instead of 

identity function, is a better choice for STE 

• https://arxiv.org/abs/1903.05662

https://arxiv.org/abs/1903.05662


Other topics



Binary nets
• If all weights are binary, then we need no multiplications

Coubarieaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations,” NeurIPS 2015



Binary nets
• If all activations are binary as well, then we only need XNOR + Counting

Rastegari et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks,” ECCV 2016



LogQuant
• Use logarithmically quantized activations 

• Multiplications are simply shifting bits

Miyashita et al., “Convolutional Neural Networks using Logarithmic Data Representation,” arXiv 2016



Next Class
• Knowledge distillation



That’s it for today 🙌


