
Spring 2025

Quantization - 2
EECE695D: Efficient ML Systems

Agenda
• Linear quantization

• Various issues

• Granularity

• Rescaling

• Clipping

• Rounding

• QAT

Linear Quantization

Idea
• Represent each weight as a scaled-and-shifted integers

• Advantage. Less compute, easy encoding/decoding

• Matmuls can be done in integer, and scaled-and-shifted back

[1.2, 2.4] [−1.1
3.3] = (1.2) ⋅ (1.1) ⋅ [1, 2] [−1

3]
4 FLOPs 1 FLOP 4 Integer Op+

Formalization
• Represent each weight as scaled-and-shifted integers

• That is, our decoder is:

• : reconstructed weight

• : code (e.g., INT8)

• : scaling factor (e.g., FP32)

• : zero point (e.g., INT)

ŵ = s ⋅ (c − z1)

ŵ

c ∈ {−128,…,127}

s

z

Formalization

• Visually, what this decoder does is as follows:

ŵ = s ⋅ (c − z1)

Code
space (e.g., -128)cmin (e.g., +127)cmax0

Weight
space

−sz

⋯ ⋯ ⋯
z

⋯
0s(cmin − z) s(cmax − z)

⋯← s →

← 1 →

← s → ← s →

← 1 → ← 1 →

Formalization

• Given this decoder, we encode to the nearest neighbor

• : mapping to the nearest integer inside the range

ŵ = s ⋅ (c − z1)

c = round(w/s + z1)

round(⋅)

Formalization
• Now we have the encoder and decoder

• Encoder:

• Decoder:

• Want-to-do. Given the weights , select the parameters so that it solves

• Of course, this is difficult; thus we use heuristic methods

f(w) = round(w/s + z1)

q(c) = s ⋅ (c − z1)

w s, z

min
s,z

L̂(g(f(w)))

Minmax Quantization
• A crude but working way: match the range!

• That is, determine so that

• Philosophy. Range that is just enough to capture the largest weights

s, z

min
i

wi = s(cmin − z), max
i

wi = s(cmax − z)

 (e.g., -128)cmin (e.g., +127)cmax

wmin = s(cmin − z) wmax = s(cmax − z)

weight distribution

Minmax Quantization

• Solving this, we get:

• One can do a similar thing to quantize activations:

• Requires some “calibration data” to compute

• Quite brittle; often needs some clipping

• Note. It is also popular (and often better) to simply do “grid search”

min
i

wi = s(cmin − z), max
i

wi = s(cmax − z)

s =
wmax − wmin

cmax − cmin
, z = cmin − round(wmin/s)

xmax, xmin

Minmax Quantization
• Brain teaser. Suppose that we want to choose

• If data and model parameters are sharded over many servers,
how much communication cost would we need?

(will be problematic for “dynamic quantization”)

xmax, xmin

Linear Quantization:
Matmuls

Matmuls
• Consider the matmul:

• Suppose that we have good quantizers for :

• That is, we have

• Then, we get:

Y = WX

W, X, Y

sW, zW, sX, zX, sY, wY

sY(cY − zY) = sW(cW − zW) ⋅ sX(cX − zX)

= sWsX(cWcX − zWcX − zXcW + zWzX)

Matmuls
• Rewriting, we have a formula for computing the codes of Y

• We have separated out FP ops from INT ops

• Problem. To compute , we need (FP) * (INT) operation

• Empirically,

 Write it as , with being an INT
 (bit shift)

cY =
sWsX

sY
(cWcX − zWcX − zXcW + zWzX) + zY

cY

sWsX/sY ∈ (0,1)

⇒ 2−n × M0 M0

Matmuls
• Some INT ops can be pre-computed, reducing inference-time compute

• Also, many weight distributions are nearly symmetric:

• If we let ,

• Not doable for activations, usually.

cY =
sWsX

sY
(cWcX − zWcX − zXcW + zWzX) + zY

zW = 0

cY =
sWsX

sY
(cWcX − zXcW) + zY

Symmetric Quantization
• Problem. INT is not symmetric! (e.g.,)

• Two different ways to do symmetric quantization:

• Full-range (). ONNX, PyTorch, …

• Restricted-Range (). TensorFlow, TensorRT, …

{−128,…,127}

⇐

⇒

cmin cmax

−∥w∥∞ +∥w∥∞

0

0

cmin cmax

−∥w∥∞ +∥w∥∞

0

0

• Note. Accumulation can take place in high-bits (e.g., INT32)

Symmetric Quantization

• Integer-only ops can dramatically reduce the latency

Symmetric Quantization

Jacob et al., “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” CVPR 2018

Advanced ideas for PTQ

Agenda
• In most PTQ algorithms, we adopt more ideas:

• Finer granularity

• Weight rescaling

• Activation clipping

• Adaptive rounding

Granularity
• Motivation. Weight ranges are quite dissimilar in different dimensions

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Granularity
• Idea. Apply different for different group of weights (and/or activations)

• Example. Per-Channel Quantization

(s, z)

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Granularity
• Example. Per-Vector Quantization

• Not much degradation in speed, if computation is done in the units of
fixed-length vectors

Dai et al., “VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference,” arXiv 2021

Granularity
• Further readings

• Use two-stage scaling factors (link)

• Sharing micro-exponents (link)

Dai et al., “VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference,” arXiv 2021

https://arxiv.org/abs/2102.04503
https://arxiv.org/abs/2302.08007

Rescaling
• Idea. Tackle the same problem, but use the positive homogeneity of ReLU.

• i.e., σ(cx) = cσ(x), ∀c > 0

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Rescaling
• Take a ReLU neural net

• Multiply x100 to all weights in jth output channel of layer i

• Multiply x0.01 to all weights in jth input channel of layer i+1

• Identical function, with different weights

• Do this many times to match the weight range

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Clipping
• Motivation.

• For activation, is determined via:

• During training. Take an exponential
moving average

• After training. Use calibration batches

• However, many outliers appear

sX

Mygasz, “8-bit inference with TensorRT,” 2021

Clipping
• Idea. Clip the activations

• Question. Where do we clip?

• Explicit optimization.

• Approximates w/ Gaussian/Laplace and minimize (e.g., ACIQ)

• Minimize via Newton-Raphson (e.g., OCTAV)

• Minimize the KL-divergence b/w quantized & reference dist (link)

ℓ2

ℓ2

Mygasz, “8-bit inference with TensorRT,” 2021

https://openreview.net/forum?id=B1x33sC9KQ
https://arxiv.org/pdf/2206.06501
https://www.cse.iitd.ac.in/~rijurekha/course/tensorrt.pdf

Clipping
• Use clipping activation.

• ReLU6 (brainteaser: why 6?)

• ReLU with learnable clipping range (e.g., PACT)

https://arxiv.org/abs/1805.06085

Rounding
• Motivation. Turns out that round-to-nearest (RTN) is suboptimal

• In fact, stochastic rounding gives better options than RTN

Nagel et al., “Up or Down? Adaptive Rounding for Post-Training Quantization,” ICML 2020

Rounding
• Idea. Round up-or-down in a way that minimizes the activation distortion

• More concretely, AdaRound solves

• : weight shift for round up/down

• : quantized weight

• : binary-forcing regularizer

• See also: AdaQuant, FlexRound

min
V:vi∈[0,1]

∥WX − W̃X∥2
F + λ ⋅ freg(V)

V

W̃ = s ⋅ (⌊W/s⌋ + V)

freg(V) = ∑
i

1 − |2Vi − 1 |β

Nagel et al., “Up or Down? Adaptive Rounding for Post-Training Quantization,” ICML 2020

https://openreview.net/forum?id=Mf4ZSXMZP7
https://arxiv.org/abs/2306.00317

QAT

Quantization-aware training
• After quantization, fine-tune the weight

• Recovers much of the lost accuracy

Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A whitepaper,” arXiv 2018

Quantization-aware training
• (1) Keep full-precision weight, and simulate quantization at forward

• (2) Compute gradients in full-precision

• (3) Update full-precision weights

Quantization-aware training

• Again, we are solving

• Challenge. Computing gradients through discretizing operation

• Example. Consider a linear regression

• The gradient is

• The red term is always zero-or-infinity!

min
w

L̂(q(w))

q(⋅)

min
w

(y − q(w)⊤x)2

2(q(w)⊤x − y) ⋅ x⊤ ∇wq(w)

Straight-through estimator
• Again, we use STE

• i.e., ignore quantization during backward

2(q(w)⊤x − y) ⋅ x⊤ ∇wq(w) ⇒ 2(q(w)⊤x − y) ⋅ x⊤ ∇w(w)

Further reading
• Some theoretical arguments suggest that using (clipped) ReLU, instead of

identity function, is a better choice for STE

• https://arxiv.org/abs/1903.05662

https://arxiv.org/abs/1903.05662

Other topics

Binary nets
• If all weights are binary, then we need no multiplications

Coubarieaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations,” NeurIPS 2015

Binary nets
• If all activations are binary as well, then we only need XNOR + Counting

Rastegari et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks,” ECCV 2016

LogQuant
• Use logarithmically quantized activations

• Multiplications are simply shifting bits

Miyashita et al., “Convolutional Neural Networks using Logarithmic Data Representation,” arXiv 2016

Next Class
• Knowledge distillation

That’s it for today 🙌

