Quantization - 2

Spring 2025

Agenda

e Linear quantization
e Various Issues

e Granularity

e Rescaling

e Clipping

e Rounding

o QAT

L inear Quantization

ldea

* Represent each weight as a scaled-and-shifted integers

 Advantage. Less compute, easy encoding/decoding

e Matmuls can be done in integer, and scaled-and-shifted back

11.2.2.4] [‘“]

—1
13 (1.2)-(1.1) - [1, 2] []

3

4 FLOPs 1 FLOP + 4 Integer Op

Formalization

* Represent each weight as scaled-and-shifted integers

e That s, our decoder is:
w=ys-(c—2z1)
e W: reconstructed weight
e C. code
e 5. scaling factor

e 7. zero point

Formalization
w=ys-(c—2z1

e Visually, what this decoder does Is as follows:

Code

space Cric

Weight
space

S(Crin — 2) —S7 0 S(Coyaxy — 2)

Formalization

w=ys-(c—2z1

Given this decoder, we encode to the nearest neighbor

e round(-):

0.05

weights

(32-bit float)

-0.98

1.48

-0.91

-0.14

0

-1.08

0

0.09

-1.03

1.53

1.49

¢ = round(w/s + z1)

mapping to the nearest integer inside the range

reconstructed weights
(32-bit float)

scale
(32-bit float)

quantized weights
(2-bit signed int)

zero point
(2-bit signed int)

21 o0 | -1.07|1.07| 0
A4 || -2 0| o |-107
2 1 | - = -1) X 1.07 -1.07 0 |-1.07
10/ 0 0 |1.07|1.07

quantization error

-0.05

0.09

0.41

0.09

0.05

-0.14

-0.01

-0.02

0.16

-0.22

0

0.04

-0.27

0

0.46

0.42

Formalization

e Now we have the encoder and decoder
e Encoder: f(w) = round(w/s + z1)

e Decoder: ¢g(¢)=s-(c—2z1)

e Want-to-do. Given the weights w, select the parameters s, 7 so that it solves
min L(g(f(W)))
\ V4

e Of course, this is difficult; thus we use heuristic methods

Minmax Quantization

e A crude but working way: match the range!

e Thatis, determine s, z so that

min w; = $(Cyin — 2)5 max w; = $(Cpax — 2)
l l

 Philosophy. Range that is just enough to capture the largest weights

Cmin Cmax

/ weight distribution :
e ——_——

Wmin = 9 (Cmin —2) Whax = 9 (Cmax - 2)

Minmax Quantization

min w; = s(Cpin — 2)5 max w; = $(Cpax — 2)
l l

e Solving this, we get:

Wiax — Wnin
§ = —8M8M88, Z = Cp, — round(w, . /5)

Crmax — Cmin

e One can do a similar thing to quantize activations:

e Requires some “calibration data” to compute Xx

max? A

min
e Quite brittle; often needs some clipping

* Note. It is also popular (and often better) to simply do “grid search”

Minmax Quantization

e Brain teaser. Suppose that we want to choose x

max? A

min

e |f data and model parameters are sharded over many servers,
how much communication cost would we need?

Linear Quantization:
Matmuls

Matmuls

e Consider the matmul:
Y = WX
e Suppose that we have good quantizers for W, X, Y:

e Thatis, we have Sy, Zw, Sx> Zx»> Sy, Wy

e Then, we get:
sy(Cy — Zy) = swlCw — 2w) - sx(Cx — 2x)

= SwSx(CweCx — Zwex — ZxCw t Zwix)

Matmuls

e Rewriting, we have a formula for computing the codes of Y

_ SWX
Cy =) (CwCx — ZwCx — ZxCw + Zwix) + Ty
Y

e \WWe have separated out FP ops from INT ops
e Problem. To compute ¢y, we need (FP) * (INT) operation
e Empirically, sywsx/sy € (0,1)

= Write it as 27" X M,,, with M, being an INT

Matmuls

e Some INT ops can be pre-computed, reducing inference-time compute

_ SWOX
Cy =) (CwCx — ZwCx — ZxCw + Zwix) + Ty
Y

e Also, many weight distributions are nearly symmetric:

o If weletzyw =0,

SWSX
CY —

(CWCX - Zch) + ZY
Sy

 Not doable for activations, usually.

Symmetric Quantization

e Problem. INT is not symmetric!

e Two different ways to do symmetric quantization:

e Full-range (<). ONNYX, PyTorch, ..

e Restricted-Range (=). TensorFlow, TensorRT, ...

Symmetric Quantization

* Note. Accumulation can take place in high-bits (e.g., INT32)

int _ quantized outputs

Jw

zero point
zp 2
-

Int
scale factor

SwSx/Sy o
INt32

quantized bias +

Upia -
2LAS Int32 int32

Conv
Int INt
quantized inputs Ee[VELLF{=TeRWCTle]g] &S
Ux JQw

Symmetric Quantization

e Integer-only ops can dramatically reduce the latency

70 | * _n
) .
>
> »
= 60 - -l
8 L |
< n
Q.
o o0 O
= Float
. = 8-bit
4 J
0 D 15 30 60 120

Latency (ms)
Figure 4.1: ImageNet classifier on Qualcomm Snapdragon

835 big cores: Latency-vs-accuracy tradeoff of floating-
point and integer-only MobileNets.

Jacob et al, “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” CVPR 2018

Advanced ideas for PTQ

Agenda

e In most PTQ algorithms, we adopt more ideas:
 Finer granularity
e Weight rescaling
e Activation clipping

e Adaptive rounding

Granularity

 Motivation. Weight ranges are quite dissimilar in different dimensions

100 -

75 -

o
Hi
0
HH
= H
()
—H
—
HH
HH
[
HH
HH
]
H+
H—
I
HH
{H
i
[
U
H
H
HH
l
H

1 23456 7 8 91011121314151617181920212223242526272829303132
Output channel index

Figure 2. Per (output) channel weight ranges of the first depthwise-
separable layer in MobileNetV2. In the boxplot the min and max
value, the 2nd and 3rd quartile and the median are plotted for each
channel. This layer exhibits strong differences between channel
welight ranges.

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Granularity

» ldea. Apply different (s, 7) for different group of weights (and/or activations)

e Example. Per-Channel Quantization

per-tensor quantization per-channel quantization

2,72
S.7Z S1,Z1

S0, Z0

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Granularity

e Example. Per-Vector Quantization

e Not much degradation in speed, if computation is done Iin the units of
fixed-length vectors

Input activation Weight Output activation

K
P
Q
Figure 1. Convolution — Comparison between per-layer/per-

output-channel scaling and per-vector scaling.

Dai et al, “VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference,” arXiv 2021

Granularity

 Further readings

e Use two-stage scaling factors (link)

e Sharing micro-exponents (link)

Dai et al, “VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference,” arXiv 2021

https://arxiv.org/abs/2102.04503
https://arxiv.org/abs/2302.08007

Rescaling

ldea. Tackle the same problem, but use the positive homogeneity of RelLU.

e i.e,o(cx) =co(x), Vec>0

100 - -
75 -
50 - I
> 25 - L
-
(0]
oC

mT;%@?=%l%%§%= D%;=;5==;T§T
I [

1 23456 7 8 91011121314151617181920212223242526272829303132
Output channel index

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

Rescaling

e Take a RelLU neural net
 Multiply X100 to all weights in jth output channel of layer |
o Multiply xO.01 to all weights in jth input channel of layer i+1
e |dentical function, with different weights

Do this many times to match the weight range

Output channel ¢; Input channel channel d;

l

Layer 1 ¢ /sl Layer 2

Nagel et al., “Data-free quantization through weight equalization and bias correction,” ICCV 2019

e Motivation.

e For activation, sy Is determined via:

SJUNO0D JO J3qWNU PazZI|eW.IOoN

moving average

e During training. Take an exponential
o After training. Use calibration batches

e However, many outliers appear

)
=
©
>
c
O
+—J
©
=
-+
O
<

Mygasz, “8-bit inference with TensorRT,” 2021

Clipping

e |dea. Clip the activations

e Question. Where do we clip?

o Explicit optimization.

» Approximates w/ Gaussian/Laplace and minimize £ (e.g., ACIQ)

e Minimize £? via Newton-Raphson (e.g., OCTAV)

e Minimize the KL-divergence b/w quantized & reference dist (link)

Mygasz, “8-bit inference with TensorRT,” 2021

https://openreview.net/forum?id=B1x33sC9KQ
https://arxiv.org/pdf/2206.06501
https://www.cse.iitd.ac.in/~rijurekha/course/tensorrt.pdf

Clipping

e Use clipping activation.

e RelLUG (brainteaser: why 6?)

e RelLU with learnable clipping range (e.g., PACT)

On

https://arxiv.org/abs/1805.06085

Rounding

e Motivation. Turns out that round-to-nearest (RTN) is suboptimal

e |Infact, stochastic rounding gives better options than RTN

rounding-to-nearest
03105 |0.7]|0.2 > 0 1 1 0
Rounding scheme Acc(%)
Nearest 52.29
Ceil 0.10
Floor 0.10
Stochastic 52.061+5.52
Stochastic (best) 63.06

Nagel et al,, “Up or Down? Adaptive Rounding for Post-Training Quantization,” ICML 2020

Rounding

e |dea. Round up-or-down in a way that minimizes the activation distortion

e More concretely, AdaRound solves

min [[WX — WX][7 + 4 - £, (V)

V:v.€[0,1]
¢ V: weight shift for round up/down
e W=ys.(|W/s| + V) quantized weight
o Jreo(V) = Z 1 —|2V, =1 \ﬁ: binary-forcing regularizer
i

e See also: AdaQuant, FlexRound

Nagel et al,, “Up or Down? Adaptive Rounding for Post-Training Quantization,” ICML 2020

https://openreview.net/forum?id=Mf4ZSXMZP7
https://arxiv.org/abs/2306.00317

QAT

Quantization-aware training

o After quantization, fine-tune the weight

e Recovers much of the lost accuracy

Pre-trained model

Training data

Post-Training Quantization Quantization-Aware Training
Neural Network| Floating-Point | Asymmetric Symmetric Asymmetric Symmetric
Per-Tensor Per-Channel Per-Tensor Per-Channel
70.9% 0.1% 59.1% 70.0% 70.7%
MobileNetv2 | 710% | 01% | ces% | 9% | 71w
"""""""""" % | r22% | 721% | 0% | 0%

Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A whitepaper,” arXiv 2018

Quantization-aware training

* (1) Keep full-precision weight, and simulate quantization at forward
e (2) Compute gradients in full-precision

e (3) Update full-precision weights

—» Forward
<+— Backward

“Simulated/Fake Quantization” weights
W = Swaw = O(W) weight quantization
Layer —, activation ‘:’m_» Layer
N-1 quantization T N+

ensure discrete-valued
weights and activations
In the boundaries

these operations still run in full precision

Quantization-aware training

« Again, we are solving min i(q(w))
W

e Challenge. Computing gradients through discretizing operation g(-)

e Example. Consider a linear regression

min(y — g(w)'x)*

e The gradient is

2(qw) 'x —y) - X"V g(w)

e The red term is always zero-or-infinity!

Straight-through estimator

e Again, we use STE

* |.e., Ignore quantization during backward

2qwW)'x—y)-x"Vogw) = 2(gw)'x—y)-x"V (W)

Weigh r A Quantized Weight Q

(FP) Quantizer ‘ (INT)

i [§ 2.2 — 1 2
— — > Forward Pass
17 | 36 . . 2 | 2

N\ -
+ ‘ N

STE
0.1 | -0.1 0.1 | -0.1
> 1 A > Backward Pass
-0.2 | 0.2 -0.2 | 0.2
. J
Gradient dL/dr Gradient dL/dQ

(FP) (FP)

Further reading

 Some theoretical arguments suggest that using (clipped) RelLU, instead of
iIdentity function, is a better choice for STE

e https://arxiv.org/abs/1903.05662

https://arxiv.org/abs/1903.05662

Other topics

Binary nets

e |If all weights are binary, then we need no multiplications

— X N

2
0
1

y=0+(-2)+0+(—-1)

Coubarieaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations,” NeurlPS 2015

Binary nets

e |If all activations are binary as well, then we only need XNOR + Counting

W X Y= bw bx |XNOR(bw, bx)
________________ T o
________________ r . ot 1 e 0

-1 -1 1 0 0 % T

1 1 1 0 1 0

Rastegari et al, “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks,” ECCV 2016

LogQuant

e Use logarithmically quantized activations

e Multiplications are simply shifting bits

I 32b float
o —

WXx

(a) Conventional

=N

From memory
LARGE bandwidth Multlply-AccumuIate LARGE bandwidth

ooo

S

To memory

32b float

(b) Proposed 1

— K —»@»m» 1] (R
From memory 3b fixed W K X Leftmost ‘1’ 3b fixed To memory
SMALL bandwidth Bit shift-Accumulate position SMALL bandwidth

Miyashita et al., “Convolutional Neural Networks using Logarithmic Data Representation,” arXiv 2016

Next Class

e Knowledge distillation

That's it for today (-

