
Spring 2025

Quantization - 1
EECE695D: Efficient ML Systems

Agenda
• Question. How do we reduce the computational cost of matmuls?

• W2. Sparsity

• i.e., reducing the number of nonzero elements

• W3. Quantization

• i.e., reducing the precision of weights

• Note. Many graphics from Song Han’s lecture notes

Basic idea

Quantization
• Approximating some by an element of small, discrete subset

• may be either discrete (e.g., FP32) or continuous (e.g.,)

• Example. Approximating a float by an integer (e.g.,)

X ∈ 𝒳 𝒴 ⊆ 𝒳

𝒳 ℝ

3.141592 ⇒ 3

Weight Quantization
• We quantize the weights of a matrix, so that

• Memory. Less bits to store and transfer

• Computation. Less operations to be done
 (as we’ll see, it depends on how we quantize)

[2.43 1.72
9.72 −3.28] [x1 x2

x3 x4] ⇒ [2 2
10 −3] [x1 x2

x3 x4]

Activation Quantization
• Plus, we will often do activation quantization (i.e.,)

• Example. If weights and input are integers:

• Outputs are integers

• After ReLU, will remain as an integer

 All ops are integers!

x

[2.43 1.72
9.72 −3.28] [−1.12 2.21

5.27 2.09] ⇒ [2 2
10 −3] [−1 2

5 2]

⇒

Problem formulation

Problem formulation
• Minimize the training loss of a model with quantized parameters

• Here, is a quantization function

• Applied entrywise (scalar quant.) or blockwise (vector quant.)

• We assume scalar quantization

• Different is used for each tensor

minimizew,q(⋅) L̂(q(w))

q(⋅)

q(⋅)

Problem formulation
• The (scalar) quantization function consists of two functions:

• Encoder generates codes from inputs

• Partitions the space into K groups

• Decoder approximates inputs from codes

• Decides an output for each partition

(using bits per entry)

q(⋅)

q = g ∘ f

f : ℝ → {1,…, K}

g : {1,…, K} → ℝ

log2 K

Algorithm

Algorithms

• Typically solved by:

• Train (full-precision)

• Optimize

• Further tune (low-precision)

• Another option: Do quantized training from scratch (later)

minimizew,q(⋅) L̂(q(w))

w

q(⋅)

w

Optimizing q(⋅)
• Difficult to optimize using

• Popular. Relax it to a weight approximation:

• Here, is some distance measure (e.g., distance)

• This is equivalent to:

• is the “codebook”

L̂(⋅)

minimizew,q(⋅) dist(q(w), w)

dist(⋅ , ⋅) ℓ2

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

C

Key issue

• A key issue here is to choose the search space of wisely.

• Storage-oriented. No constraint

• e.g., K-means quantization

• Computation-oriented. Use HW-friendly data types (e.g., INT)

• e.g., linear quantization

• we’ll review data types very soon

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

C

Another issue

• Of course, this relaxation is not as good as directly minimizing

• Thus we perform further tuning

• Advanced calibration

• Quantization-aware training (QAT)

• (…)

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

L̂(⋅)

Agenda
• Today

• Recap on data types

• K-means quantization

• Next class

• Linear quantization

• Additional tricks

Recap: Data type numerics

Integer (unsigned)
• Given bits, the value will be computed as

• Covers the range

n
n

∑
i=1

bi ⋅ 2n−i

{0,…,2n − 1}

Integer (signed)
• Same as unsigned integer, but uses the first bit to represent sign

• 0: Positive

• 1: Negative

• Two conventions:

• Sign-magnitude

• Two’s complement

INT: Sign-magnitude
• Multiplicative representation of sign

• First bit represents

• 000…00 denotes zero

• 100…00 also denotes zero (negative zero; one symbol wasted)

• Covers the range

× (−1)

(−1)sign × (uintn−1)

{−2n−1 − 1,…,2n−1 − 1}

INT: Two’s complement
• Additive representation of sign

• Uses the first bit to represent

• 000…00 denotes 0

• 100…00 denotes

• Covers the range

−2n−1

(sign bit) ⋅ (−2−n) + (uintn−1)

−2n−1

{−2n−1, …,2n−1 − 1}

Fixed-point numbers
• Shifts INT by a fixed decimal point

• Used for low-cost microprocessors

• For early uses in DL, see Vanhouke’11, Hwang&Sung’14

(−1)sign × (uintn−1) × 2−d

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37631.pdf
https://ieeexplore.ieee.org/document/6986082/

Floating-point numbers
• IEEE 754 standard

• Decimal point is flexibly represented with exponent bits

• There exists an exponent bias of -127

• Question. How do we represent zero?

(−1)sign × (1 + Fraction) × 2(Exponent)−127

Floating-point numbers
• Answer. We allocate special symbols to represent end cases

• If exponent bits are 00…0, we apply a special rule

• By letting fraction bits be 00…0, we get zero

• If exponent bias are 11…1, we apply the rules:

• if fraction bits are 00…0, denotes

• else, denotes NaN (wasted bits!)

(−1)sign × (Fraction) × 21−127

∞

FP16
• FP16 uses less dynamic range and less precision than FP32

• Exponent: 8 —> 5

• Fraction: 23 —> 10

BF16
• Introduced by Google Brain (thus called brain float)

• BF16 uses the same dynamic range and less precision than FP32

• Exponent: 8 —> 8

• Fraction: 23 —> 7

TF32
• Introduced in NVIDIA Ampere architectures; stands for“tensor float”

• Uses 19 bits

• Exponent: 8 (same as BF16)

• Fraction: 23 —> 10 (same as FP16)

FP8
• Multiple standards

• Different companies

• Inference (precision) / Backward (range)

• Example. NVIDIA FP8 (in H100)

FP4
• Very limited dynamic range

FP4
• Yet, the possibility is open

• Blackwell has added support for FP6, FP4

Numerics vs. Throughput
• On A100 GPU math, the relative throughput are:

Numerics vs. Energy & Chip area
• On TSMC 45nm 0.9V, different data types and bitwidths translate into:

Numerics vs. Training cost
• For certain cases, low-precision training is as good as high-precision

• Not always true, sadly

Micikevicius et al., “FP8 formats for deep learning,” arXiv 2022

K-Means Quantization

K-Means Quantization
• Recall that we were solving

• K-means quantization puts no constraint on :

• Storage. Well optimized

• Computation. Cannot use low-bit matmuls

• Plus, requires weights to be decoded to full-precision before use

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

C

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016

Algorithm
• K-means quantization simply use distance:

• This is exactly 1D K-means, with neural network weights as the data.

• Solved via Lloyd’s algorithm

• Assign weights to clusters by nearest neighbor matching

• Compute centroids via averaging

• Repeat until convergence

ℓ2

minC={c1,…,ck} min
w̃1,…,w̃d∈C

d

∑
i=1

(w̃i − wi)2

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016

Algorithm
• As loss is imperfect, we fine-tune the centroids using the average gradients

of the weights assigned to each cluster
ℓ2

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016

• Note. We need to store the codebook as well!

• If we quantize matrix with codebook size , the compression rate is N × N K

(log2 K)N2/8 + 4K
4N2

Storage

Next Class
• Linear quantization

• Various issues

• Granularity

• Rescaling

• Clipping

• Rounding

• QAT

That’s it for today 🙌

