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Agenda
• Question. How do we reduce the computational cost of matmuls? 

• W2. Sparsity 

• i.e., reducing the number of nonzero elements 

• W3. Quantization 

• i.e., reducing the precision of weights 

• Note. Many graphics from Song Han’s lecture notes



Basic idea



Quantization
• Approximating some  by an element of small, discrete subset  

•  may be either discrete (e.g., FP32) or continuous (e.g., ) 

• Example. Approximating a float by an integer (e.g., )

X ∈ 𝒳 𝒴 ⊆ 𝒳

𝒳 ℝ

3.141592 ⇒ 3



Weight Quantization
• We quantize the weights of a matrix, so that 

 

• Memory. Less bits to store and transfer 

• Computation. Less operations to be done 
                          (as we’ll see, it depends on how we quantize)

[2.43 1.72
9.72 −3.28] [x1 x2

x3 x4] ⇒ [ 2 2
10 −3] [x1 x2

x3 x4]



Activation Quantization
• Plus, we will often do activation quantization (i.e., ) 

 

• Example. If weights and input are integers: 

• Outputs are integers 

• After ReLU, will remain as an integer 

 All ops are integers!

x

[2.43 1.72
9.72 −3.28] [−1.12 2.21

5.27 2.09] ⇒ [ 2 2
10 −3] [−1 2

5 2]

⇒



Problem formulation



Problem formulation
• Minimize the training loss of a model with quantized parameters 

 

• Here,  is a quantization function 

• Applied entrywise (scalar quant.) or blockwise (vector quant.) 

• We assume scalar quantization 

• Different  is used for each tensor

minimizew,q(⋅) L̂(q(w))

q( ⋅ )

q( ⋅ )



Problem formulation
• The (scalar) quantization function  consists of two functions: 

 

• Encoder         generates codes from inputs 

• Partitions the space into K groups 

• Decoder       approximates inputs from codes 

• Decides an output for each partition 

(using  bits per entry)

q( ⋅ )

q = g ∘ f

f : ℝ → {1,…, K}

g : {1,…, K} → ℝ

log2 K



Algorithm



Algorithms
 

• Typically solved by: 

• Train                      (full-precision) 

• Optimize  

• Further tune         (low-precision) 

• Another option: Do quantized training from scratch (later)

minimizew,q(⋅) L̂(q(w))

w

q( ⋅ )

w



Optimizing q( ⋅ )
• Difficult to optimize using  

• Popular. Relax it to a weight approximation: 

 

• Here,  is some distance measure (e.g.,  distance) 

• This is equivalent to: 

 

•  is the “codebook”

L̂( ⋅ )

minimizew,q(⋅) dist(q(w), w)

dist( ⋅ , ⋅ ) ℓ2

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

C



Key issue
 

• A key issue here is to choose the search space of  wisely. 

• Storage-oriented. No constraint 

• e.g., K-means quantization 

• Computation-oriented. Use HW-friendly data types (e.g., INT) 

• e.g., linear quantization 

• we’ll review data types very soon

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

C



Another issue
 

• Of course, this relaxation is not as good as directly minimizing  

• Thus we perform further tuning 

• Advanced calibration 

• Quantization-aware training (QAT) 

• (…)

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

L̂( ⋅ )



Agenda
• Today 

• Recap on data types 

• K-means quantization 

• Next class 

• Linear quantization 

• Additional tricks



Recap: Data type numerics



Integer (unsigned)
• Given  bits, the value will be computed as 

 

• Covers the range 

n
n

∑
i=1

bi ⋅ 2n−i

{0,…,2n − 1}



Integer (signed)
• Same as unsigned integer, but uses the first bit to represent sign 

• 0: Positive 

• 1: Negative 

• Two conventions: 

• Sign-magnitude 

• Two’s complement



INT: Sign-magnitude
• Multiplicative representation of sign 

• First bit represents  

 

• 000…00 denotes zero 

• 100…00 also denotes zero               (negative zero; one symbol wasted) 

• Covers the range 

× (−1)

(−1)sign × (uintn−1)

{−2n−1 − 1,…,2n−1 − 1}



INT: Two’s complement
• Additive representation of sign 

• Uses the first bit to represent  

 

• 000…00 denotes 0 

• 100…00 denotes  

• Covers the range 

−2n−1

(sign bit) ⋅ (−2−n) + (uintn−1)

−2n−1

{−2n−1, …,2n−1 − 1}



Fixed-point numbers
• Shifts INT by a fixed decimal point 

 

• Used for low-cost microprocessors 

• For early uses in DL, see Vanhouke’11, Hwang&Sung’14

(−1)sign × (uintn−1) × 2−d

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37631.pdf
https://ieeexplore.ieee.org/document/6986082/


Floating-point numbers
• IEEE 754 standard 

• Decimal point is flexibly represented with exponent bits 

 

• There exists an exponent bias of -127 

• Question. How do we represent zero?

(−1)sign × (1 + Fraction) × 2(Exponent)−127



Floating-point numbers
• Answer. We allocate special symbols to represent end cases 

• If exponent bits are 00…0, we apply a special rule 

 

• By letting fraction bits be 00…0, we get zero 

• If exponent bias are 11…1, we apply the rules: 

• if fraction bits are 00…0, denotes  

• else, denotes NaN                                                                  (wasted bits!)

(−1)sign × (Fraction) × 21−127

∞



FP16
• FP16 uses less dynamic range and less precision than FP32 

• Exponent: 8 —> 5 

• Fraction: 23 —> 10



BF16
• Introduced by Google Brain (thus called brain float) 

• BF16 uses the same dynamic range and less precision than FP32 

• Exponent: 8 —> 8 

• Fraction: 23 —> 7



TF32
• Introduced in NVIDIA Ampere architectures; stands for“tensor float” 

• Uses 19 bits 

• Exponent: 8                                                                                  (same as BF16) 

• Fraction: 23 —> 10                                                                        (same as FP16)



FP8
• Multiple standards 

• Different companies 

• Inference (precision) / Backward (range) 

• Example. NVIDIA FP8 (in H100)



FP4
• Very limited dynamic range



FP4
• Yet, the possibility is open 

• Blackwell has added support for FP6, FP4



Numerics vs. Throughput
• On A100 GPU math, the relative throughput are:



Numerics vs. Energy & Chip area
• On TSMC 45nm 0.9V, different data types and bitwidths translate into:



Numerics vs. Training cost
• For certain cases, low-precision training is as good as high-precision 

• Not always true, sadly

Micikevicius et al., “FP8 formats for deep learning,” arXiv 2022



K-Means Quantization



K-Means Quantization
• Recall that we were solving 

 

• K-means quantization puts no constraint on : 

• Storage. Well optimized 

• Computation. Cannot use low-bit matmuls 

• Plus, requires weights to be decoded to full-precision before use

minC={c1,…,ck} min
w̃1,…,w̃d∈C

dist(w̃, w)

C

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016



Algorithm
• K-means quantization simply use  distance: 

 

• This is exactly 1D K-means, with neural network weights as the data. 

• Solved via Lloyd’s algorithm 

• Assign weights to clusters by nearest neighbor matching 

• Compute centroids via averaging 

• Repeat until convergence

ℓ2

minC={c1,…,ck} min
w̃1,…,w̃d∈C

d

∑
i=1

(w̃i − wi)2

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016



Algorithm
• As  loss is imperfect, we fine-tune the centroids using the average gradients 

of the weights assigned to each cluster
ℓ2

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016



• Note. We need to store the codebook as well! 

• If we quantize  matrix with codebook size , the compression rate is N × N K

(log2 K)N2/8 + 4K
4N2

Storage



Next Class
• Linear quantization 

• Various issues 

• Granularity 

• Rescaling 

• Clipping 

• Rounding 

• QAT



That’s it for today 🙌


