Quantization -1

Spring 2025

Agenda
e Question. How do we reduce the computational cost of matmuls?
e \W2. Sparsity
e |.e, reducing the number of nonzero elements
e \W3. Quantization

e e, reducing the precision of weights

Basic idea

Quantization

o Approximating some X € 2 by an element of small, discrete subset %/ C 2

o X may be either discrete (e.g., FP32) or continuous (e.g., R)

e Example. Approximating a float by an integer (e.g., 3.141592 = 3)

1001

PN

1000

0111

0110

0101

0100

0011
0010

0001
0000

01 02 03 04 05 06 07 08 09 10 11 12 153

Weight Quantization

e We quantize the weights of a matrix, so that
243 172 | M1 A2 N 2 2|1 R
072 —=3.28| |*3 M4 10 =3 [*3 M4

e Memory. Less bits to store and transfer

e Computation. Less operations to be done

Activation Quantization

e Plus, we will often do activation quantization (i.e., x)
243 172 | |—-1.12 2.21 N 2 211-1 2
0772 =328 1 527 2.09 10 =31 |5 2

e Example. If weights and input are integers:

 QOutputs are integers

o After RelLU, will remain as an integer

= All ops are integers!

Problem formulation

Problem formulation

e Minimize the training loss of a model with quantized parameters

minimize,, .., L(g(W))

e Here, g(-) is a quantization function
o Applied entrywise (scalar quant.) or blockwise (vector quant.)

* We assume scalar quantization \/

e Different g(-) is used for each tensor

Problem formulation

e The (scalar) quantization function g(-) consists of two functions:

gq=gc°f

e Encoder f: R — {1,...,K} generates codes from inputs

e Partitions the space into K groups

e Decoderg : {1,...,K} — | approximates inputs from codes

e Decides an output for each partition

Algorithm

Algorithms
mIinimize,, a() I:(q(w))
e Typically solved by:
e Train w
e Optimize g(-)

e Further tune w

* Another option: Do quantized training from scratch (later)

Optimizing ¢g(-)
e Difficult to optimize using i(.+)
e Popular. Relax it to a weight approximation:
mIinimize,, a() dist(g(w), w)
e Here, dist(-, -) is some distance measure (e.g., £ distance)

 This is equivalent to:

min dist(w, w)
Wi, ,€C

mlnC={cl,...,ck}

e (Cisthe "codebook”

Key Issue

MiNe_¢. 3 min dist(w, w)

Wiy, €C
e A key issue here is to choose the search space of C wisely.
e Storage-oriented. No constraint
e e.g., K-means quantization
 Computation-oriented. Use HW-friendly data types (e.g., INT)
e e.g., linear quantization

 we'll review data types very soon

Another issue

min dist(w, w)
Wi, ,€C

mlnC={cl,...,ck}

o Of courseg, this relaxation is not as good as directly minimizing L(-)
e Thus we perform further tuning
 Advanced calibration

e Quantization-aware training (QAT)

e ()

Agenda

e Today
e Recap on data types
e K-means quantization
e Next class
e Linear quantization

e Additional tricks

Recap: Data type numerics

Integer (unsigned)

e Given n bits, the value will be computed as

=1

e Covers the range {0,...,2" — 1}

O/,0|1]1[0]0|0/|1

X X X X X X X X

27 +26+25+24+23+224+21420 =49

Integer (signed)
e Same as unsigned integer, but uses the first bit to represent sign
e O: Positive
e 1. Negative
e Two conventions:
e Sign—-magnitude
e Two's complement

Sign Bit

.O 11170 ,0]0]| 1

INT: Sign-magnitude
 Multiplicative representation of sign
e First bit represents X (—1)
(—1)%&" X (uint,_,)
e 000..00 denotes zero

e 100..00 also denotes zero

e Covers the range {—=2""1 —1,...2"1 -1}

.0 11170 ,0|0]| 1
X

X X X X X X

- 26425424423 4224 21420 =249

INT: Two's complement

e Additive representation of sign
e Uses the first bit to represent =1
(signbit) - (=27") + (wint,_;)
e 000..00 denotes O
e 100..00 denotes —2""~!
e Covers the range {—2""1,...2"1 — 1}

W1 olol1 1)1
X X

X X X X X X

-27+26 + 25+ 24 + 23+ 22+ 214+ 20 = -49

Fixed-point numbers

o Shifts INT by a fixed decimal point
(-1 x (uint,_,) x 27¢

 Used for low-cost microprocessors

 For early uses in DL, see Vanhouke'll, Hwang&Sung'l4

.o|1|1|o 0olo | 1
X X X X X X X X

-23+ 22+ 21+ 2042-142-242-312-4 = 3,0625

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37631.pdf
https://ieeexplore.ieee.org/document/6986082/

Floating-point numbers

e |[EEE /54 standard

e Decimal point is flexibly represented with exponent bits
(=)™ x (14 Fraction) x 2(Exponent=127

 There exists an exponent bias of -127

e Question. How do we represent zero?

23 22 21 20 21222324

Sign 8 bit Exponent 23 bit Fraction

Floating-point numbers

 Answer. We allocate special symbols to represent end cases

e |f exponent bits are 00..0, we apply a special rule
(—=1)%8" % (Fraction) x 2!'71%7

e By letting fraction bits be 00..0O, we get zero

e |f exponent bias are 11..1, we apply the rules:

e |f fraction bits are 00...0, denotes o0

e else, denotes NaN

FP16

* FP16 uses less dynamic range and less precision than FP32
e Exponent: 8 —> 5

e Fraction: 23 —> 10

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

IEEE Half Precision 16-bit Float (IEEE FP16)

BF16

* Introduced by Google Brain (thus called brain float)
e BF16 uses the same dynamic range and less precision than FP32
e Exponent: 8 —> 8

e Fraction: 23 —> 7/

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

Brain Float (BF16)

TF32

e Introduced in NVIDIA Ampere architectures; stands for“tensor float”
e Uses 19 bits
 Exponent: 8 (same as BF16)

e Fraction: 23 —> 10 (same as FP16)

IEEE Half Precision 16-bit Float (IEEE FP16)

Brain Float (BF16)

Nvidia TensorFloat (TF32)

FP8

e Multiple standards
e Different companies

 Inference (precision) / Backward (range)

e Example. NVIDIA FP8 (in H100)

Nvidia FP8 (E4M3)

-I_r * FP8 E4M3 does not have INF, and S.1111.111> is used for NaN.
* Largest FP8 E4M3 normal value is S.1111.1102 =448.

Nvidia FP8 (E5M2) for gradient in the backward

- I * FP8 E5M2 have INF (S.11111.002) and NaN (S.11111.XX>).
* Largest FP8 E5SM2 normal value is S.11110.112=57344.

FP4

 Very limited dynamic range

INT4
-1,-2,—3,—4,—5'-6,-7,-8 ’ . . . ’ . . . > —1,—2,—3,—4,—5,—6,-7,—8
o, 1, 2, 3, 4, 5, 6, 7 0 1 2 3 4 5 6 7 o, 1, 2, 3, 4, 5, 6, 7
O|0(1] =t
ol1]1]1 =
FP4 (E1M2)
=Uy=UVeo,y=ly=le0y=L,)=2:2,=3,=3. —0 0000000 VU=l =L,y =3,=%2,=2,-9,~
-MM 0,-0.5,-1,-1.5,-2,-2.5,-3,-3.5 . 0,-1,-2,-3,-4,-5,-6,-7
o, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 0 1 2 33.5 o, 1, 2, 3, 4, 5, 6, 7

0|1 | =0.25x210=0.5
1|1 | =(1+0.75)x210=3.5

FP4 (E2M1)
-0,-0.5,-1,-1.5,-2,-3,-4,-6 -0,-1,-2,-3,-4,-6,-8,-12
Or 03¢ 2p 1034 2, 3, &, 6 0 1 2 ; : : " 0, 1, 2, 3, 4, 6, 8, 12 0>
=0.5x21-1=0.5

=(1+0.5)x231=1

no inf, no NaN

FP4 (E3MO)

-0,-0.25,-0.5,-1,-2,-4,-8,-16 P —O,—l,—2,—4,—8,—16,—32,—64x
o, 0.25, 0.5, 1, 2, 4, 8, 16 0 1 2 4 8 16 o, 1, 2, 4, 8, 16, 32, 64

=(1+0)x21-3=0.25
=(1+0)x27-3=16

0.25

no inf, no NaN

FP4

e Yet, the possibility is open

 Blackwell has added support for FPG, FP4

Supported Tensor Core
precisions

Supported CUDA® Core
precisions

Blackwell

FP64, TF32, BFI16, FP16, FP8, INT8, FP6, FP4

FP64, FP32, FP16, BF16

Ampere Turing

FP64, TF32, bfloatl6,

FP16, INT8, INT4, INTI
FP16, INT8, INT4, INTI

FP64, FP32, FPI16, FP64, FP32, FPI16,
bfloatl6, INT8 INT8

Hopper

FP64, TF32, BFI16, FP16, FP8, INT8

FP64, FP32, FP16, BF16, INT8

Volta

FP16

FP64, FP32, FP16,
INTS

Numerics vs. Throughput

e On Al10O GPU math, the relative throughput are:

FP32 TF32 FP16/ BF16

| x 8X 16X

Table 1. Relative throughput of A100 GPU math.

Numerics vs. Energy & Chip area

e On TSMC 45nm 0.9V, different data types and bitwidths translate into:

Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um?)

8b Add 0.03 36

16b Add 0.05 |8 67 |

32b Add 0.1 [137 [

16b FP Add 04 pe— 1360 |—

32b FP Add 0.9 | s184 ([

8b Mult 02 [282 |

32b Mult R T — 3495 |

16b FP Mult 1.1 —— 1640 |

32b FP Mult 37 e— 7700 (S

32b SRAM Read (8KB) 5 [N/A

32b DRAM Read 640 | N/A

1 10 100 1000 10000 1 10 100 1000

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about 1t)”, ISSCC 2014

Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Numerics vs. Training cost

e For certaln cases, low-precision training i1s as good as high-precision

e Not always true, sadly

126M BF16 1.3B BF16 58 BF16 22B FP16 1758 BF16

o= 126MFP8 e=» e=i1 3BFP8 == e=5B FP38 - a=))FB FP8 o= = | 758 FP8

--
.
fion
A
- .
- e o o -

% of Training

Figure 1: Training loss (perplexity) curves for various GPT-3 models. x-axis is normalized number of iterations.

Micikevicius et al., “FP8 formats for deep learning,” arXiv 2022

K-Means Quantization

K-Means Quantization

e Recall that we were solving

min dist(w, w)
Wis... W ,€C

mlnC={cl,...,ck}

e K-means quantization puts no constraint on C:
e Storage. Well optimized
e Computation. Cannot use low-bit matmuls

e Plus, requires weights to be decoded to full-precision before use

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016

Algorithm

e K-means quantization simply use £* distance:

. . ~ 2
mlnC:{Cla° . °9Ck} ~ ml,.,Il Z (Wl - Wl)
14%

e This is exactly 1D K-means, with neural network weights as the data.
e Solved via Lloyd'’s algorithm
e Assign weights to clusters by nearest neighbor matching
e Compute centroids via averaging

e Repeat until convergence

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016

Algorithm

o As £?loss is imperfect, we fine-tune the centroids using the average gradients
of the weights assigned to each cluster

weights cluster index fine-tuned
(32-bit float) (2-bit int) centroids centroids

3 0 2 1 |3

cluster | 1 1 0 3 |2:

=>

0 3 1 0 |1:

-0.02|-0.01| 0.01

Han et al., “Deep Compression: Compressing DNNs with pruning, trained quantization, and Huffman coding,” ICLR 2016

Storage
e Note. We need to store the codebook as welll

o If we quantize N X N matrix with codebook size K, the compression rate is

(log, K)N*/8 + 4K
4N?
weights cluster index
(32-bit float) (2-bit int) centroids

ol [|-

-1.08 custer | 1 | 1 | 0 | 3 |2:|1.50
208l ™ | 0 | 3|1 o 1: | 0.00
1.49 3 1 2 2 |0:|-1.00
Indexes codebook
storage = 53122 tﬂftfei B - §2bibtitx =12 gt 125 E:I: ;16 g =208

| 1)
3.2 x smaller

Next Class

e Linear quantization
e Various Issues

e Granularity

e Rescaling

e Clipping

e Rounding

o QAT

That's it for today (-

