
Spring 2025

Sparsity - 2
EECE695D: Efficient ML Systems

Agenda
• Another approach for mask optimization

• Why would sparse models work?

• System considerations for sparsity

• Unstructured sparsity

• Structured sparsity

Another approach for
mask optimization

Problem
• Recall. In the last class, we discussed a heuristic method to solve:

• Challenge. Optimizing the discrete mask

• Constrained optimization

• Discrete optimization

minimizem,w L̂(m ⊙ w)

subject to ∥m∥0 ≤ τ, mij ∈ {0,1}

m

Relaxation
• Idea. Remove the constraint by considering the Lagrangian relaxation

• Tune to meet the sparsity constraint

• Next challenge. Optimizing discrete variables with a less heuristic way

• Also common in other domains

• We will illustrate a simple approach by Srinivas et al. (2017)

L̂(m ⊙ w) + λ∥m∥0, mi ∈ {0,1}

λ τ

Srinivas et al., “Training sparse neural networks,” CVPR workshop 2017

Probabilistic gate
• Idea. Model as a random vector with a latent variable

• Example. Simply use

and optimize the continuous .

• The optimand will then be:

• Use Monte Carlo approach — sample and optimize.

m

mi ∼ Bern(zi)

z

𝔼[L̂(m ⊙ w)] + λ ⋅ 𝔼∥m∥0 = 𝔼[L̂(m ⊙ w)] + λ∥z∥1

m

Probabilistic gate
• Problem. How do we compute the gradient for w.r.t. the first term?

• Solution. Simply ignore the gradient; pretend if we have

• This trick has a fancy name, called straight-through estimator (STE)

• We will come back to this, in quantization lectures

• Not really an unbiased estimate, but good enough

z

𝔼[L̂(m ⊙ w)] + λ∥z∥1

∂mi

∂zi
= 1

Other fixes
• Problem#1. We want to be close to 0 or 1.

• Solution. Add a regularizer, to make

• Problem#2. How do we keep ?

• Solution. Assume that there is yet another latent , such that

∥z∥

L̂(m ⊙ w) + λ1∥z∥1 + λ2 ∑
i

zi(1 − zi)

zi ∈ [0,1]

u

zi = sigmoid(ui)

Further readings
• More popular form is based on binary concrete distribution (a.k.a. Gumbel-

softmax), instead of the Bernoulli distribution

• Louizos et al., “Learning Sparse Neural Networks through regularization,” ICLR 2017 (link)L0

https://arxiv.org/abs/1712.01312

Why do sparse nets work?

Why should it work?
• Question. Why do we expect sparse models to work as well as dense models?

• Answer. No concrete justification 🥲

• Nevertheless, there are some motivations…

Why should it work?
• Biological motivation. Human brain also does some sort of pruning.

C. A. Walsh, “Peter Huttenlocher (1931-2013),” Nature, 2013

Why should it work?
• Natural sparsity. Many natural data or relationships are actually sparse

• e.g., simply irrelevant input features

Why should it work?
• Theoretical guarantees. We use much more parameters than what is

theoretically sufficient.

• We need only weights to achieve zero training loss on samples.Õ(N) N

Vardi et al., “On the Optimal Memorization Power of ReLU Neural Networks,” ICLR 2022

Why should it work?
• Generalization (depracated). In the past, it was believed that less parameters

will lead to better generalization, by avoiding overfitting.

• This no longer seems to be a valid logic, and is empirically not true.

System considerations:
Unstructured sparsity

Recap: Processing Dense Matrices
• Matrices are usually stored in either:

• Row-major. C, NumPy, PyTorch, …

• Column-major. MATLAB, Julia, Fortran, …

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

Recap: Processing Dense Matrices
• The storage format affects the runtime & arithmetic intensity

• Reason 1. Alters the memory access pattern

• Example. If the matrix is in row-major, which code will run faster?
 (on CPU, one is 15x faster than another; see link)

A

https://pytorch.org/blog/tensor-memory-format-matters/

Recap: Processing Dense Matrices
• Reason 2. Some HWs and kernels are customized for certain formats

• Example. For conv2d, tensor core implementations are written for NHWC
 while PyTorch default is NCHW (link)

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#tensor-layout

Sparse matrices, unstructured
• There are various formats to store unstructured sparse matrices

• Unstructured: no designated patterns on 0s.

• Quick look at two popular options: COO, CSR

• Different pros & cons

• SpMV (Sparse Matrix-Vector Mult.)

• Storage

COO (Coordinate)
• For each nonzero, store

(row, col, val) separately

• Flexible editing

• PyTorch default

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022

CSR (Compressed Sparse-Row)
• For each nonzero, store (col, val)

with the pointers for the column idx
where each row starts at

• cuSPARSE default

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022

Storage
• Suppose that we have an NxN matrix with K nonzero elements.

• Suppose that we use COO

• Val. K Bytes (if using INT8)

• Col. K Bytes (2K if 256 < N < 65536)

• Row. K Bytes (2K if 256 < N < 65536)

 3K Bytes

• If Sparsity 66.6%, we are good.

⇒

≥

Storage
• Consider the case of CSR

• Val. K Bytes (if using INT8)

• Col. K Bytes (2K if 256 < N <= 65536)

• Row. 2N Bytes (if 256 < K <= 65536)
 N Bytes (if K <= 256)

 2K + 2N Bytes (2K + N if very sparse)

• If Sparsity 50%, we are good.

⇒

≥

• In other words, the break-even sparsity of storage depends on…

• Matrix dimensions

• Precision

• Usually, requires at least 50%…

Storage

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021

SpMV

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022

• If we use COO:

• assign one thread per nonzero

• coalesced memory access

SpMV

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022

• If we use CSR:

• Each thread writes on only one output

• Dependent memory access

• On GPU, we conventionally do:

• Fetch nonzeros from the sparse matrix

• Fetch corresponding dense elements

• Use tensor cores for matmuls

SpMV on GPU

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021

SpMV on GPU
• Problem. More overhead if we group rows

• Wasted computation

• Time for fetching values from the
dense matrix

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021

SpMV on GPU
• Solution.

• Custom kernels ()
(but we won’t go deep here; see link)

• Structures in zeros

⇒

Gale et al., “Sparse GPU Kernels for Deep Learning,” SuperComputing 2020

https://arxiv.org/abs/2006.10901

System considerations:
Structured sparsity

Structured Sparsity
• Pruning a group of weights at once

• The pruned model becomes a small dense model

• Less sparsity can be achieved

• However, real advantages in runtime & memory

Structured Sparsity
• ConvNets. Prune a convolution filter Remove an output channel

 Prunes subsequent filters
⇒
⇒

Li et al., “Pruning filters for efficient ConvNets,” ICLR 2017

Structured Sparsity
• Transformers. Many variants

• Transformer block

• Single layer

• MHSA

• FFN

• Attention head

• Neurons in the FFN layer

Kim et al., “Shortened LLaMA: A Simple Depth Pruning for Large Language Models,” arXiv 2024.

Structured Sparsity
• Neuron Merging. If two neurons are similar, we can merge instead of removing

• Less retraining needed

Srinivas and Babu, “Data-free parameter pruning for deep neural networks,” BMVC 2016

Structured + Fine-Grained Sparsity
• 2:4 Sparsity (NVIDIA). Constrain to have at least 2 zeros in length-4 blocks

• 50% sparsity with usually no quality drop

• Metadata can be very small; 2 bits per nonzero.

Mishra et al., “Accelerating sparse deep neural networks,” arXiv 2021.

Structured + Fine-Grained Sparsity
• Requires customized HW and engines (Sparse Tensor Cores, TensorRT 8.0)

Mishra et al., “Accelerating sparse deep neural networks,” arXiv 2021.

Other examples
• NAVER + Samsung

• Specialized HW with fixed-to-fixed encoding for sparsity (link)

• Neural Magic

• CPU runtime for on-device acceleration (DeepSparse)

Mishra et al., “Accelerating sparse deep neural networks,” arXiv 2021.

https://arxiv.org/abs/2105.01869
hhttps://docs.neuralmagic.com/products/deepsparse/

Remarks
• We have skipped the whole ideas of activation sparsity:

• See following references:

• https://proceedings.mlr.press/v119/kurtz20a.html

• https://www.jmlr.org/papers/v22/21-0366.html

WX → WXsparse

https://proceedings.mlr.press/v119/kurtz20a.html
https://www.jmlr.org/papers/v22/21-0366.html

That’s it for today 🙌

