Sparsity – 2 EECE695D: Efficient ML Systems

Spring 2025

Agenda

- Another approach for mask optimization
- Why would sparse models work?
- System considerations for sparsity
 - Unstructured sparsity
 - Structured sparsity

Another approach for mask optimization

• **Recall.** In the last class, we discussed a heuristic method to solve:

minimize_{**m**,**w**} $\hat{L}(\mathbf{m} \odot \mathbf{w})$

- Challenge. Optimizing the discrete mask m
 - Constrained optimization
 - Discrete optimization

Problem

subject to $\|\mathbf{m}\|_0 \le \tau$, $m_{ij} \in \{0,1\}$

Relaxation

- Idea. Remove the constraint by considering the Lagrangian relaxation $\hat{L}(\mathbf{m} \odot \mathbf{w}) + \lambda \|\mathbf{m}\|_0, \qquad m_i \in \{0, 1\}$
 - Tune λ to meet the sparsity constraint τ

- Next challenge. Optimizing discrete variables with a less heuristic way
 - Also common in other domains

• We will illustrate a simple approach by Srinivas et al. (2017)

Probabilistic gate

- Idea. Model m as a random vector with a latent variable
 - <u>Example</u>. Simply use

and optimize the continuous **Z**.

The optimand will then be:

Use Monte Carlo approach — sample m and optimize.

 $m_i \sim \text{Bern}(z_i)$

$\mathbb{E}[\hat{L}(\mathbf{m} \odot \mathbf{w})] + \lambda \cdot \mathbb{E}\|\mathbf{m}\|_{0} = \mathbb{E}[\hat{L}(\mathbf{m} \odot \mathbf{w})] + \lambda \|\mathbf{z}\|_{1}$

Probabilistic gate

- **Problem.** How do we compute the gradient for **z** w.r.t. the first term?
 - $\mathbb{E}[\hat{L}(\mathbf{m} \odot \mathbf{w})] + \lambda \|\mathbf{z}\|_{1}$
 - <u>Solution.</u> Simply ignore the gradient; pretend if we have

- This trick has a fancy name, called straight-through estimator (STE)
 - We will come back to this, in quantization lectures
 - Not really an unbiased estimate, but good enough

$$\frac{\partial m_i}{\partial z_i} = 1$$

Other fixes

- Problem#1. We want $||\mathbf{z}||$ to be close to 0 or 1.
 - <u>Solution</u>. Add a regularizer, to make $\hat{L}(\mathbf{m} \odot \mathbf{w}) + \lambda_1 ||\mathbf{z}|$
- Problem#2. How do we keep $\mathbf{z}_i \in [0,1]$?
 - Solution. Assume that there is yet another latent ${f u}$, such that

$$_{1} \|\mathbf{z}\|_{1} + \lambda_{2} \sum_{i} z_{i} (1 - z_{i})$$

 $z_i = sigmoid(u_i)$

Further readings

- softmax), instead of the Bernoulli distribution

More popular form is based on binary concrete distribution (a.k.a. Gumbel-

• Louizos et al., "Learning Sparse Neural Networks through L_0 regularization," ICLR 2017 (link)

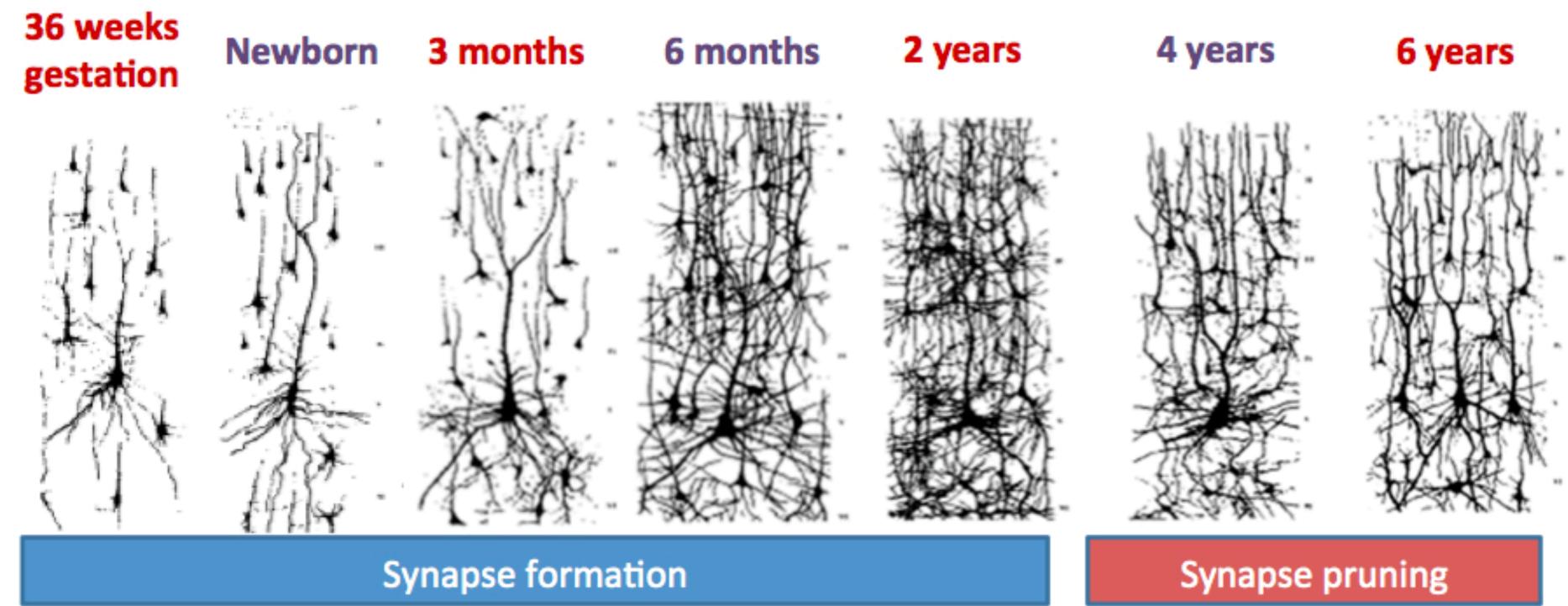
Why do sparse nets work?

- - <u>Answer</u>. No concrete justification (2)

Nevertheless, there are some motivations...

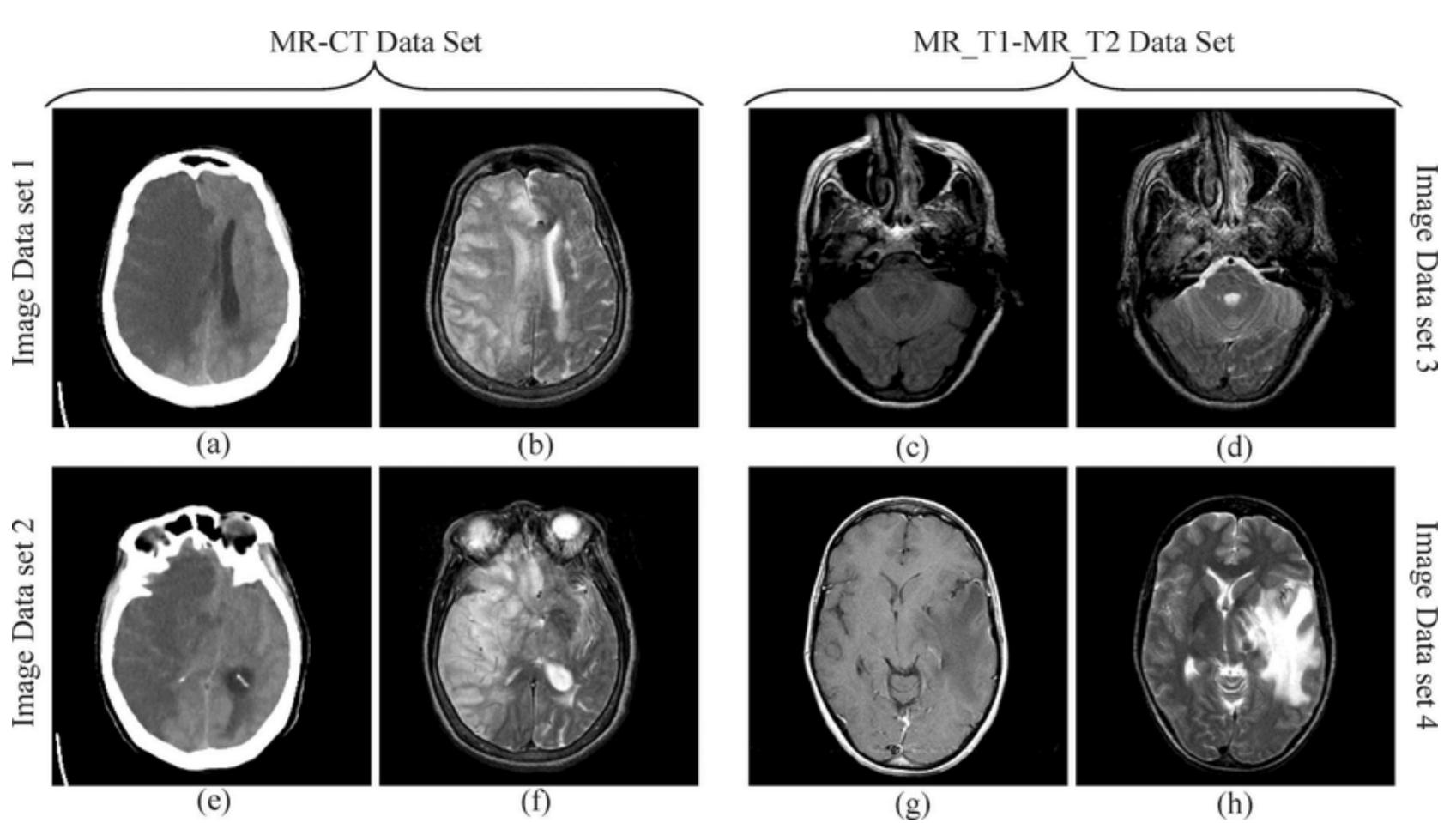
<u>Question</u>. Why do we expect sparse models to work as well as dense models?

Biological motivation. Human brain also does some sort of pruning. \bullet



C. A. Walsh, "Peter Huttenlocher (1931–2013)," Nature, 2013

- Natural sparsity. Many natural data or relationships are actually sparse
 - e.g., simply irrelevant input features

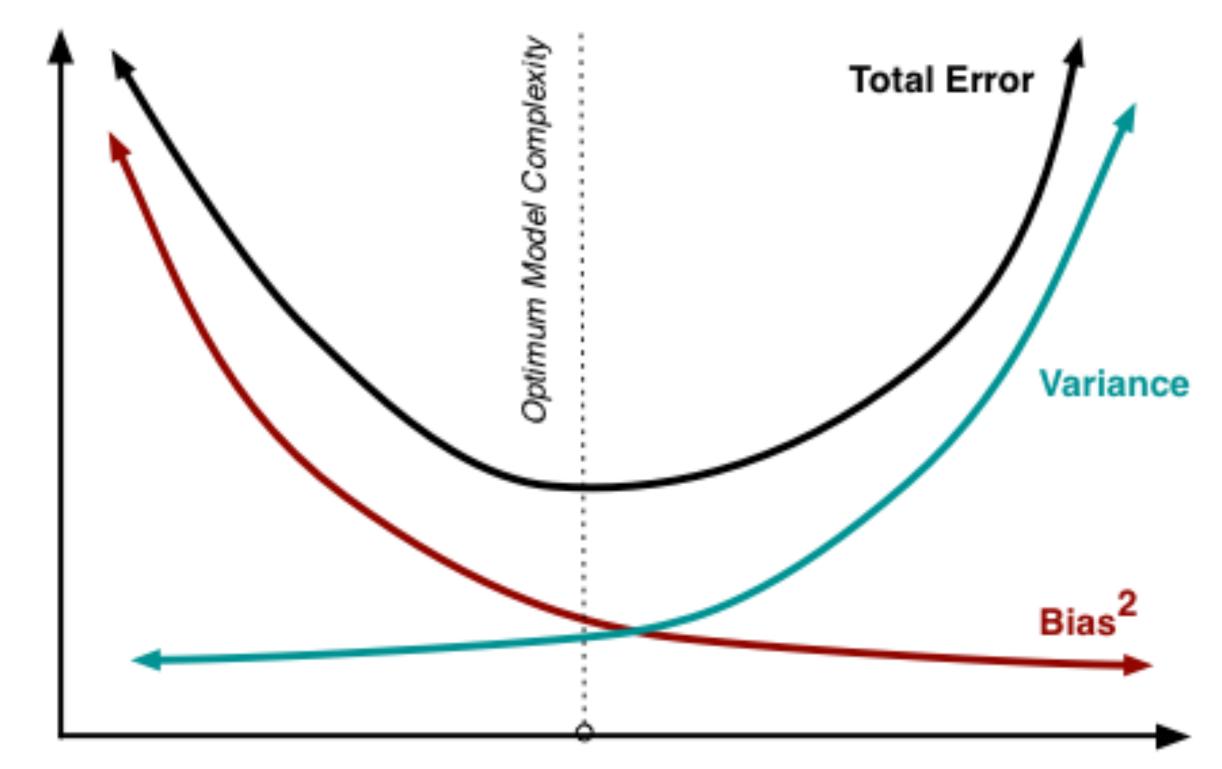


• Theoretical guarantees. We use much more parameters than what is theoretically sufficient.

• We need only $\tilde{O}(\sqrt{N})$ weights to achieve zero training loss on N samples.

Theorem 1.1 (informal statement). Let $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N) \in \mathbb{R}^d \times \{1, \ldots, C\}$ be a set of N labeled samples of a constant dimension d, with $\|\mathbf{x}_i\| \leq r$ for every i and $\|\mathbf{x}_i - \mathbf{x}_j\| \geq \delta$ for every $i \neq j$. Then, there exists a ReLU neural network $F : \mathbb{R}^d \to \mathbb{R}$ with width 12, depth $\tilde{O}(\sqrt{N})$, and $\tilde{O}(\sqrt{N})$ parameters, such that $F(\mathbf{x}_i) = y_i$ for every $i \in [N]$, where the notation $\tilde{O}(\cdot)$ hides logarithmic factors in N, C, r, δ^{-1} .

- will lead to better generalization, by avoiding overfitting.



Error

• Generalization (depracated). In the past, it was believed that less parameters

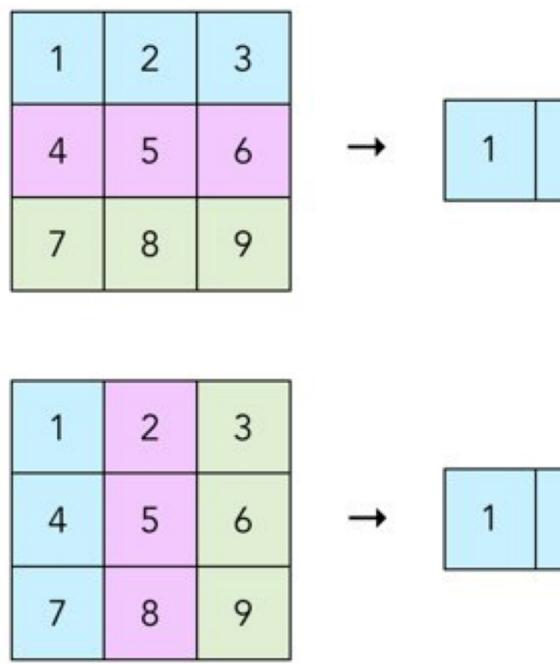
This no longer seems to be a valid logic, and is empirically not true.

Model Complexity

System considerations: Unstructured sparsity

Recap: Processing Dense Matrices

- Matrices are usually stored in either:
 - <u>Row-major.</u> C, NumPy, PyTorch, ...
 - Column-major. MATLAB, Julia, Fortran, ...



row-major 3 2 7 9 5 8 4 6

column-major

4	7	2	5	8	3	6	9
---	---	---	---	---	---	---	---

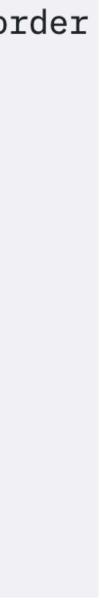
https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

Recap: Processing Dense Matrices

- The storage format affects the runtime & arithmetic intensity
- **Reason 1.** Alters the memory access pattern
 - Example. If the matrix A is in row-major, which code will run faster? (on CPU, one is 15x faster than another; see link)

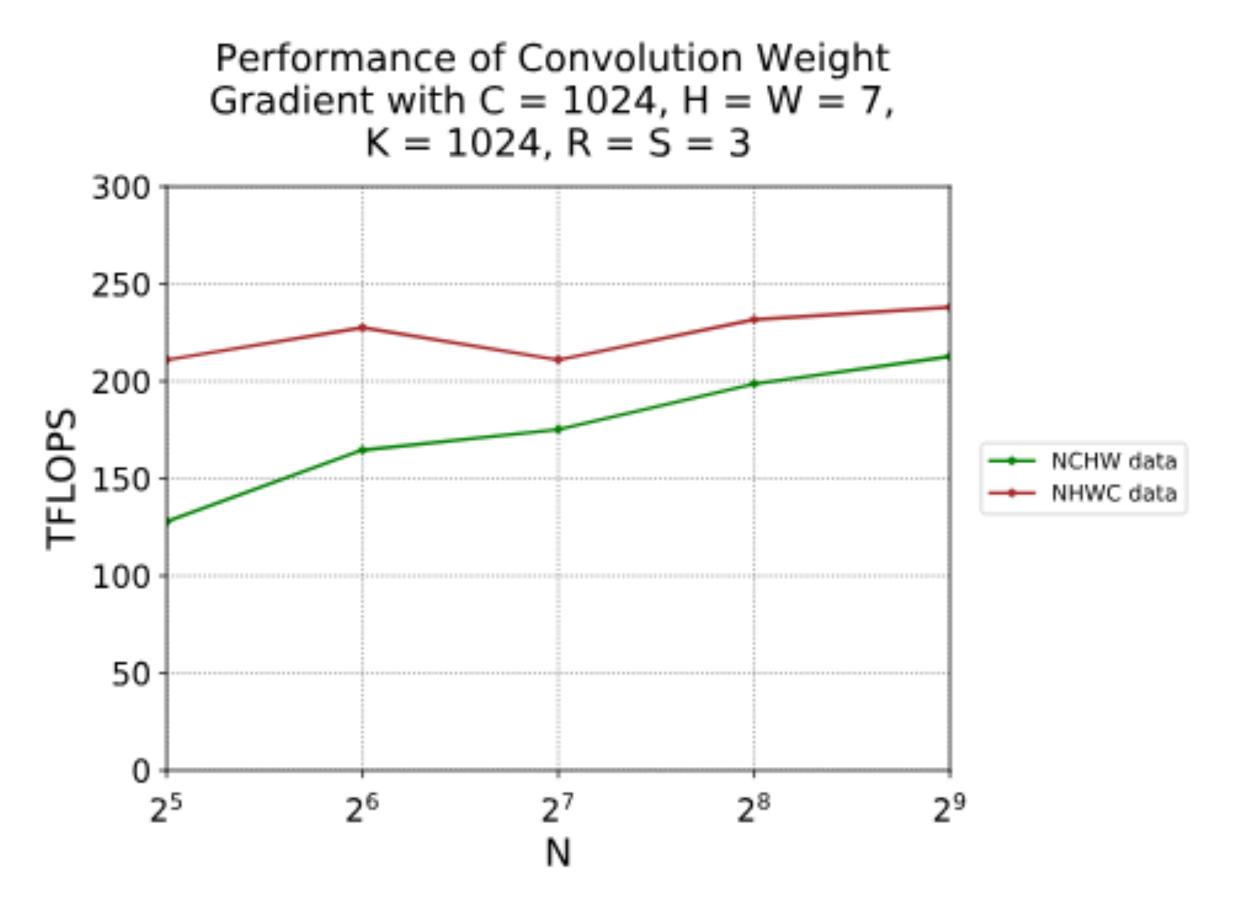
```
// loop1 accesses data in matrix 'a' in row major order,
// since i is the outer loop variable, and j is the
// inner loop variable.
int loop1(int a[4000][4000]) {
 int s = 0;
 for (int i = 0; i < 4000; ++i) {</pre>
   for (int j = 0; j < 4000; ++j) {</pre>
     s += a[i][j];
   2
 return s;
```

```
// loop2 accesses data in matrix 'a' in column major order
// since j is the outer loop variable, and i is the
// inner loop variable.
int loop2(int a[4000][4000]) {
 int s = 0;
 for (int j = 0; j < 4000; ++j) {</pre>
   for (int i = 0; i < 4000; ++i) {</pre>
     s += a[i][j];
 return s;
```



Recap: Processing Dense Matrices

- Reason 2. Some HWs and kernels are customized for certain formats
 - <u>Example</u>. For conv2d, tensor core implementations are written for NHWC while PyTorch default is NCHW (<u>link</u>)



Sparse matrices, unstructured

- There are various formats to store unstructured sparse matrices
 - Unstructured: no designated patterns on Os.
 - Quick look at two popular options: COO, CSR
 - Different pros & cons
 - SpMV (Sparse Matrix-Vector Mult.)
 - Storage

COO (Coordinate)

- For each nonzero, store (row, col, val) separately
- Flexible editing
- PyTorch default

Colum

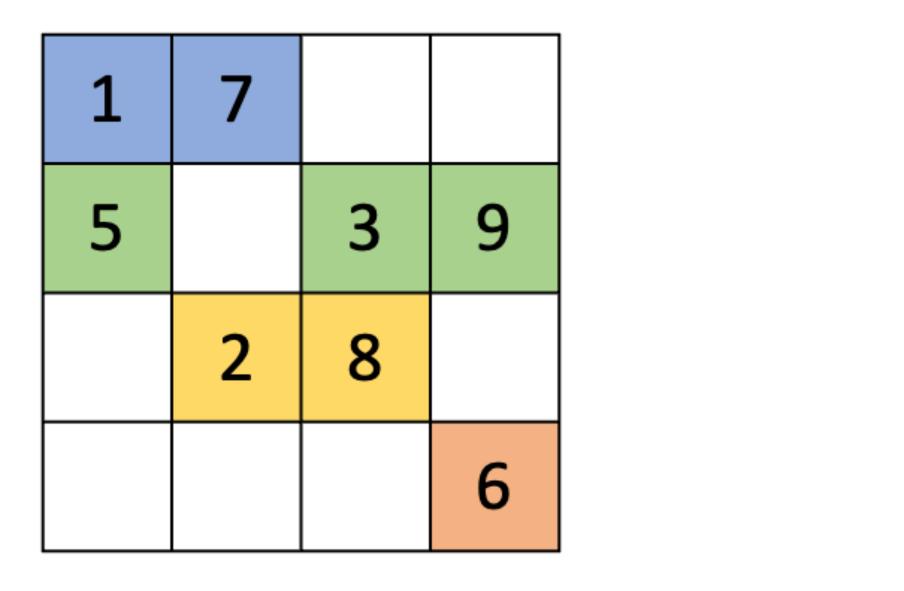
Matrix:	1	7						
	5		3	9				
		2	8					
				6				
Row:	0	0	1	1	1	2	2	3
Column:	0	1	0	2	3	1	2	3
Value:	1	7	5	3	9	2	8	6

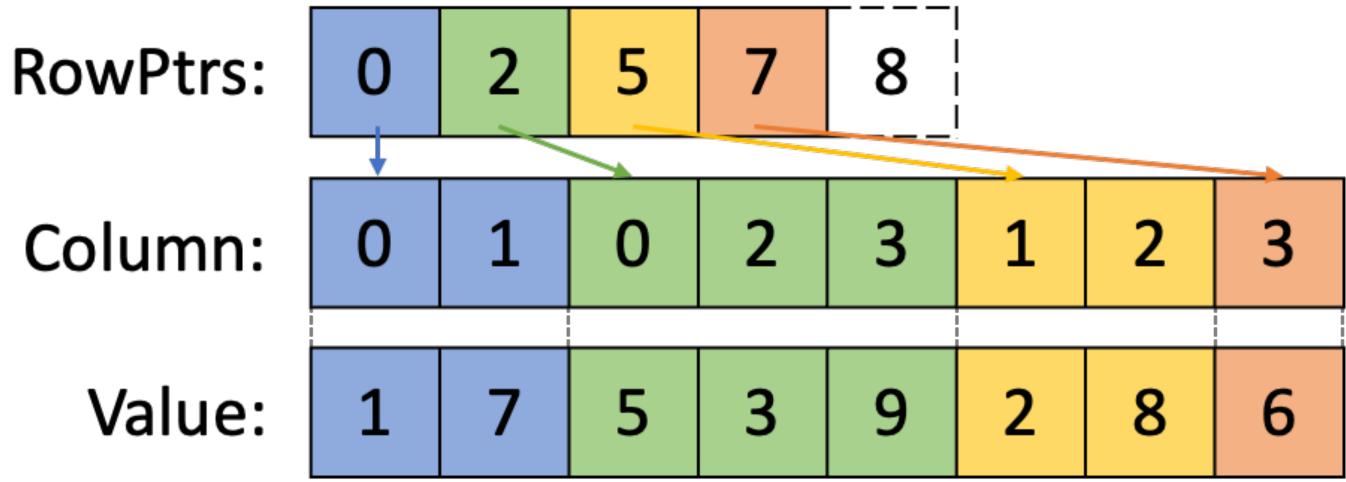
Hwu et al., "Programming Massively Parallel Processors," Elsevier, 2022

CSR (Compressed Sparse-Row)

- For each nonzero, store (col, val) with the pointers for the column idx where each row starts at
- cuSPARSE default

Matrix:





- Suppose that we have an NxN matrix with K nonzero elements.
- Suppose that we use COO
 - Val. K Bytes
 - Col. K Bytes (2K if 256 < N < 65536)
 - **Row.** K Bytes (2K if 256 < N < 65536)

 \Rightarrow 3K Bytes

• If Sparsity \geq 66.6%, we are good.

Storage

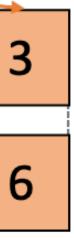
(if using INT8) Matrix: Row: Column: Value:

Storage

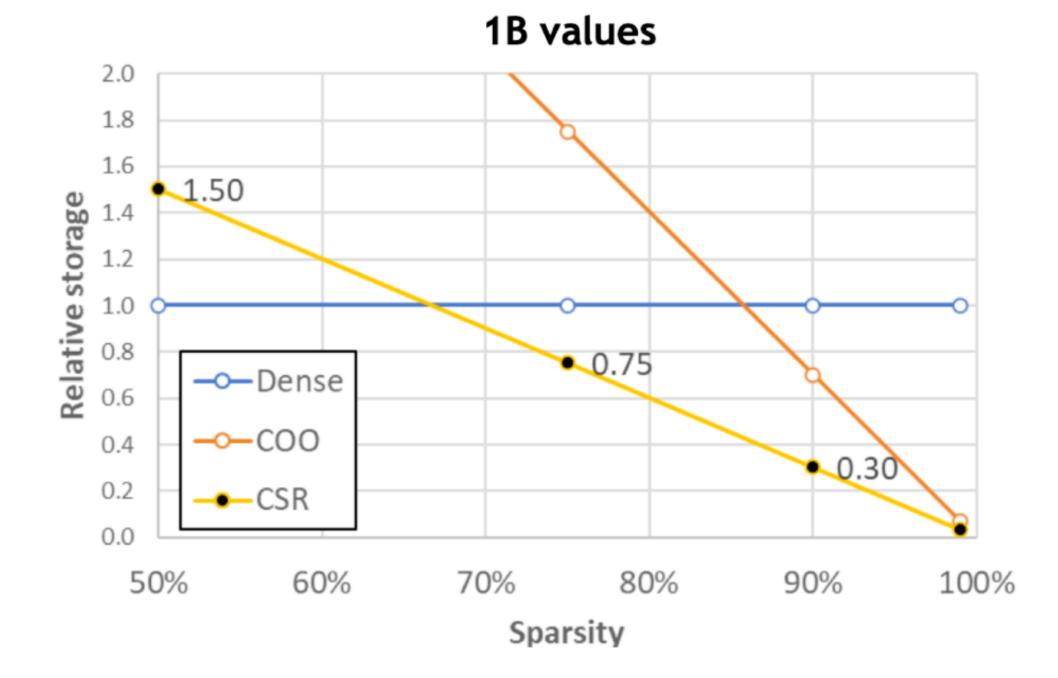
- Consider the case of **CSR**
 - Val. K Bytes (if us
 - Col. K Bytes (2K if 256 < N <
 - Row. 2N Bytes (if 256 < K < N Bytes (if 1
 - \Rightarrow 2K + 2N Bytes (2K + N if very

• If Sparsity \geq 50%, we are good.

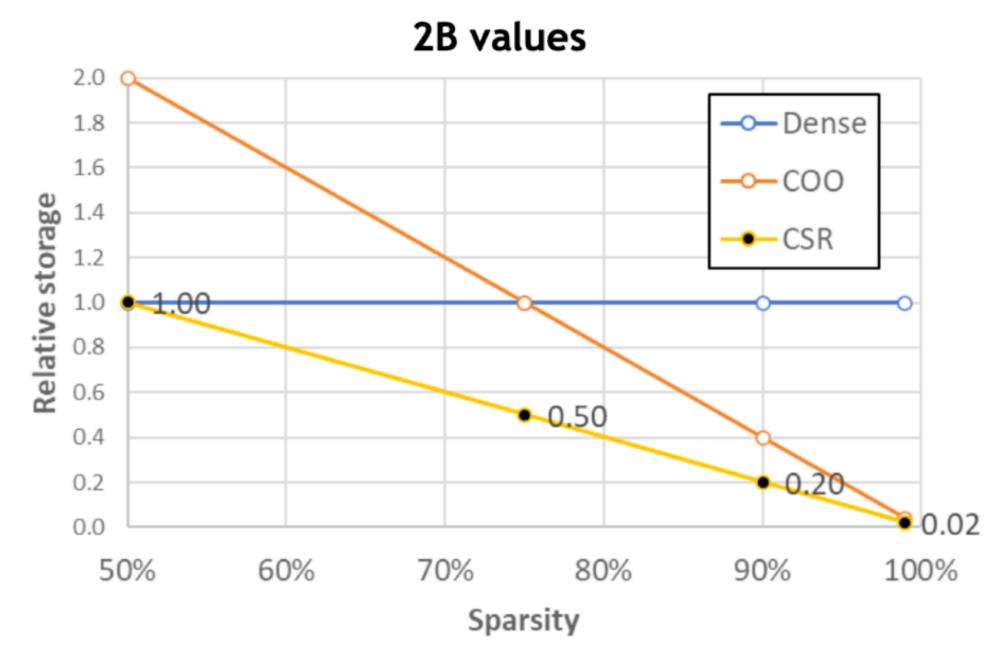
ain a INITO)								
sing INT8) Matrix:	1	7						
(= 65536)	5		3	9				
<= 65536)		2	8					
K <= 256)				6				
, sparse) RowPtrs:	0	2	5	7	8			
Column:	0	1	0	2	3	1	2	
Value:	1	7	5	3	9	2	8	



- In other words, the break-even sparsity of storage depends on...
 - Matrix dimensions
 - Precision
- Usually, requires at least 50%...

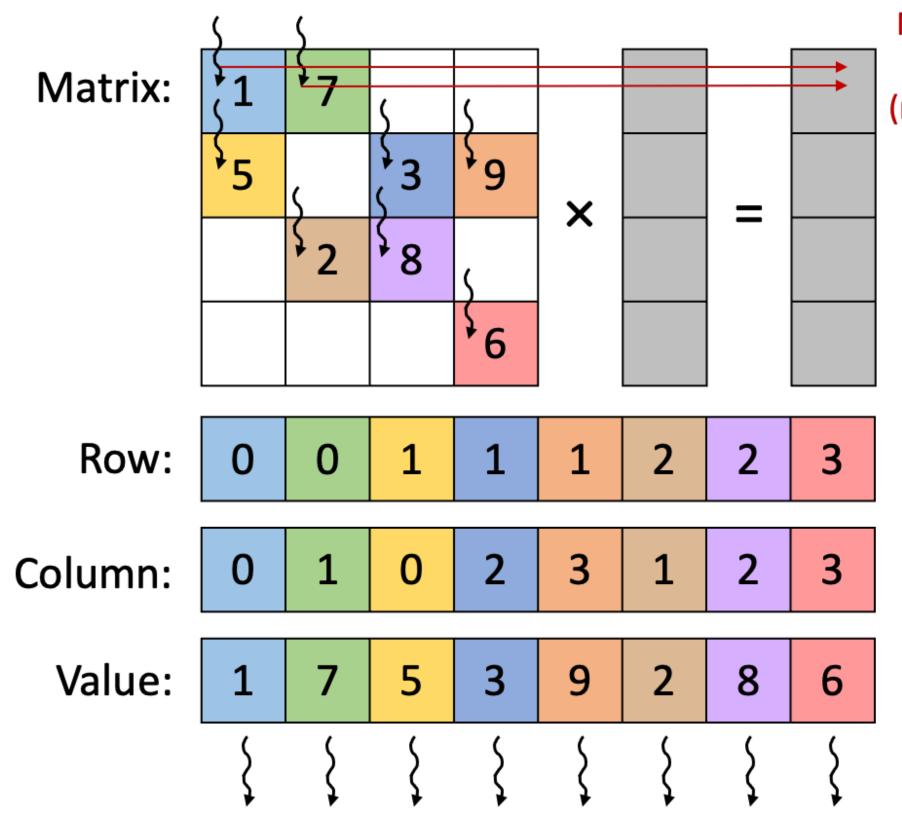


Storage



P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021

- If we use **COO**:
 - assign one thread per nonzero
 - coalesced memory access



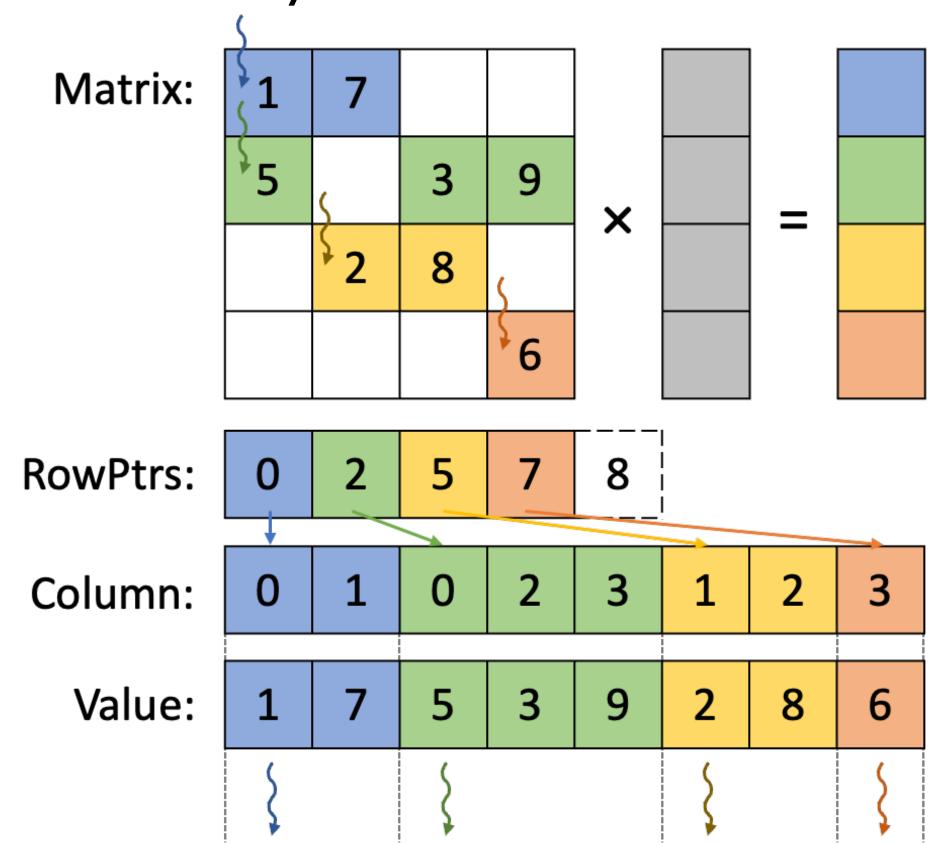
SpMV

Multiple threads writing to the same output (need atomic operations)

Parallelization approach: Assign one thread per nonzero

Hwu et al., "Programming Massively Parallel Processors," Elsevier, 2022

- If we use **CSR**:
 - Each thread writes on only one output
 - Dependent memory access



SpMV

Parallelization approach:

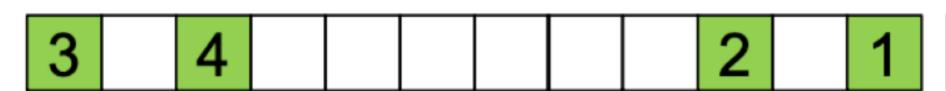
Assign one thread to loop over each input row sequentially and update corresponding output element

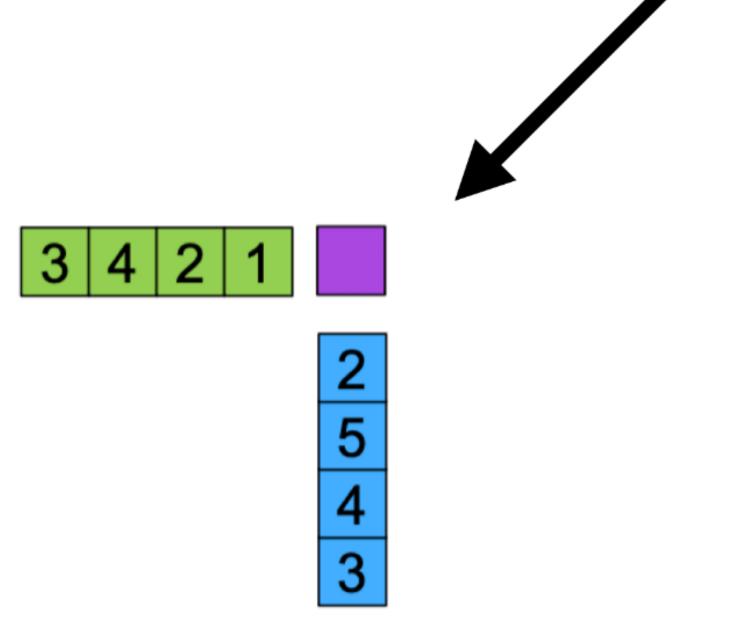
Hwu et al., "Programming Massively Parallel Processors," Elsevier, 2022

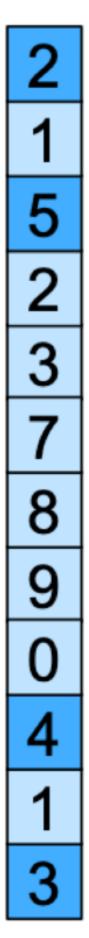


SpMV on GPU

- On GPU, we conventionally do:
 - Fetch nonzeros from the sparse matrix
 - Fetch corresponding dense elements
 - Use tensor cores for matmuls

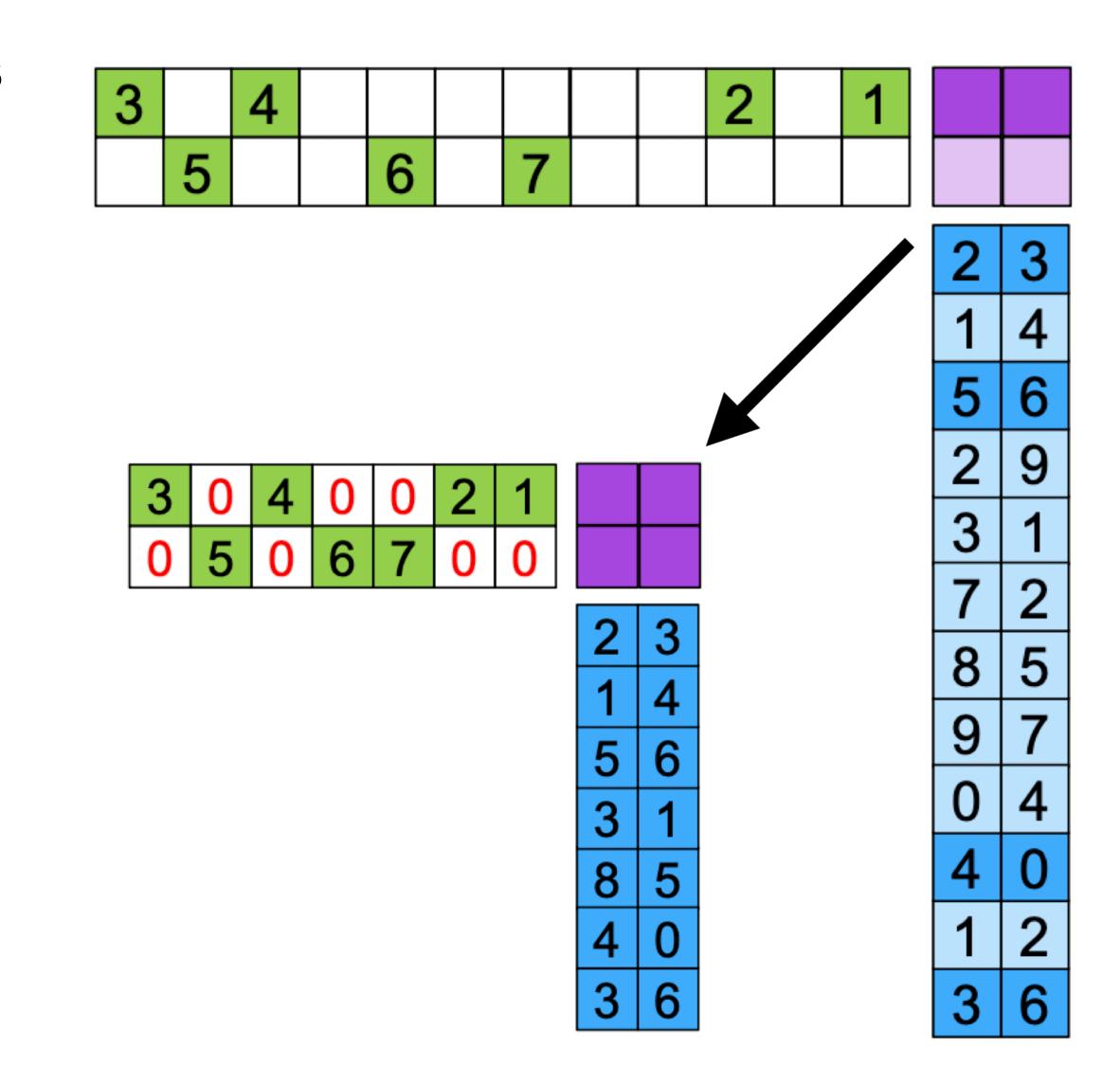






SpMV on GPU

- **Problem.** More overhead if we group rows
 - Wasted computation
 - Time for fetching values from the dense matrix



SpMV on GPU

- Solution.
 - Custom kernels (but we won't go deep here; see <u>link</u>)
 - Structures in zeros

 (\Rightarrow)

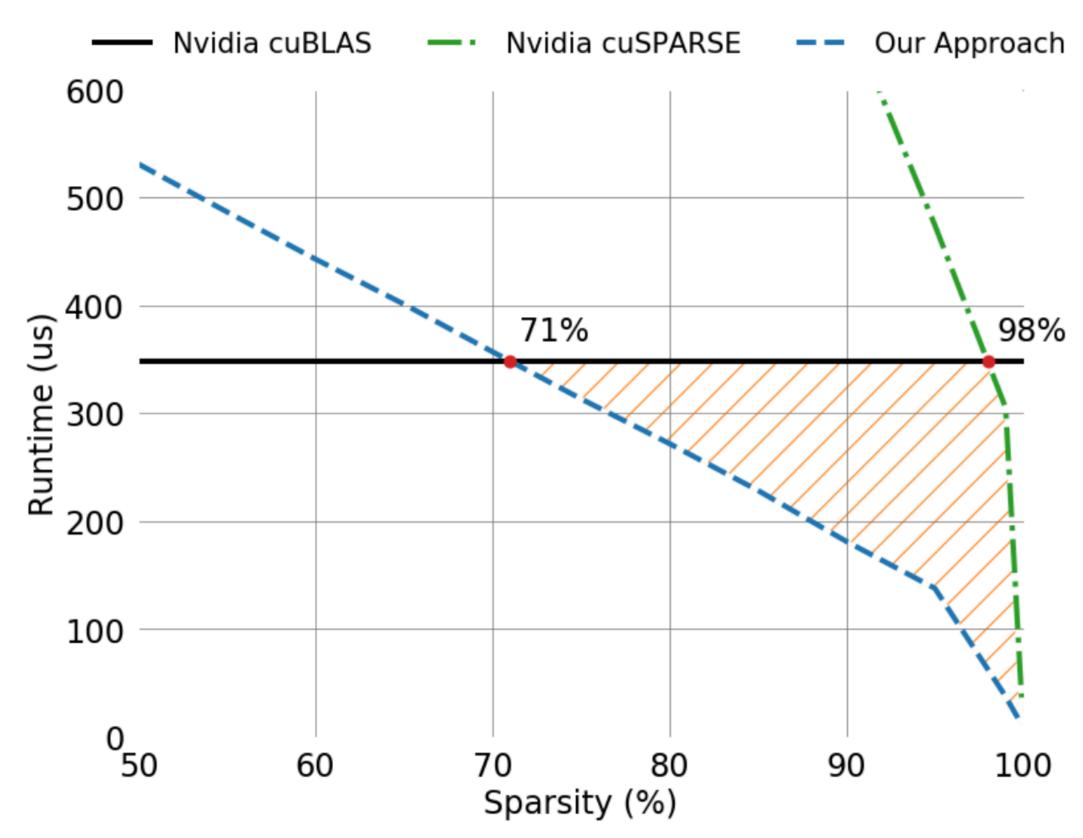
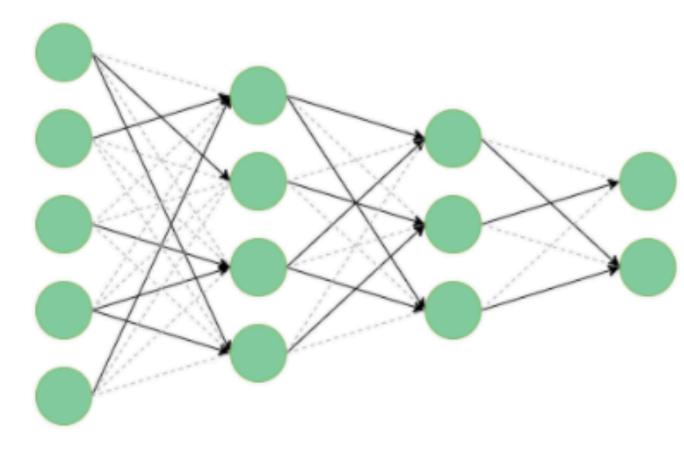


Fig. 1. Sparse matrix-matrix multiplication runtime for a weight-sparse long short-term memory network problem. Input size 8192, hidden size 2048, and batch size 128 in single-precision on an Nvidia V100 GPU with CUDA 10.1. Using our approach, sparse computation exceeds the performance of dense at as low as 71% sparsity. Existing vendor libraries require $14 \times$ fewer non-zeros to achieve the same performance. This work enables speedups for all problems in the highlighted region.

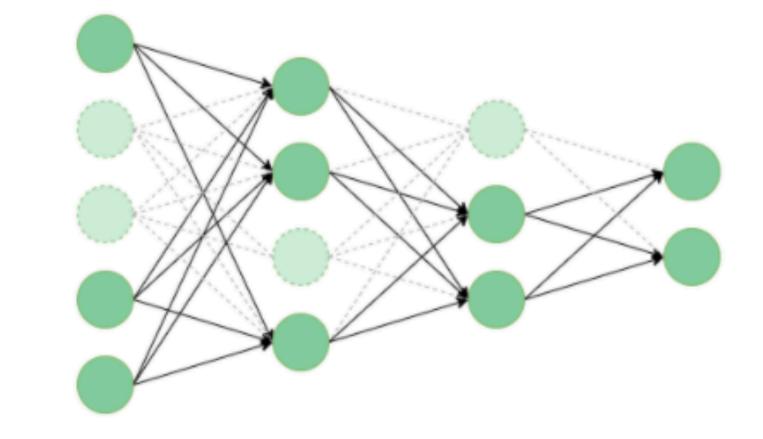
System considerations: Structured sparsity

- Pruning a group of weights at once
 - The pruned model becomes a small dense model
 - Less sparsity can be achieved
 - However, real advantages in runtime & memory

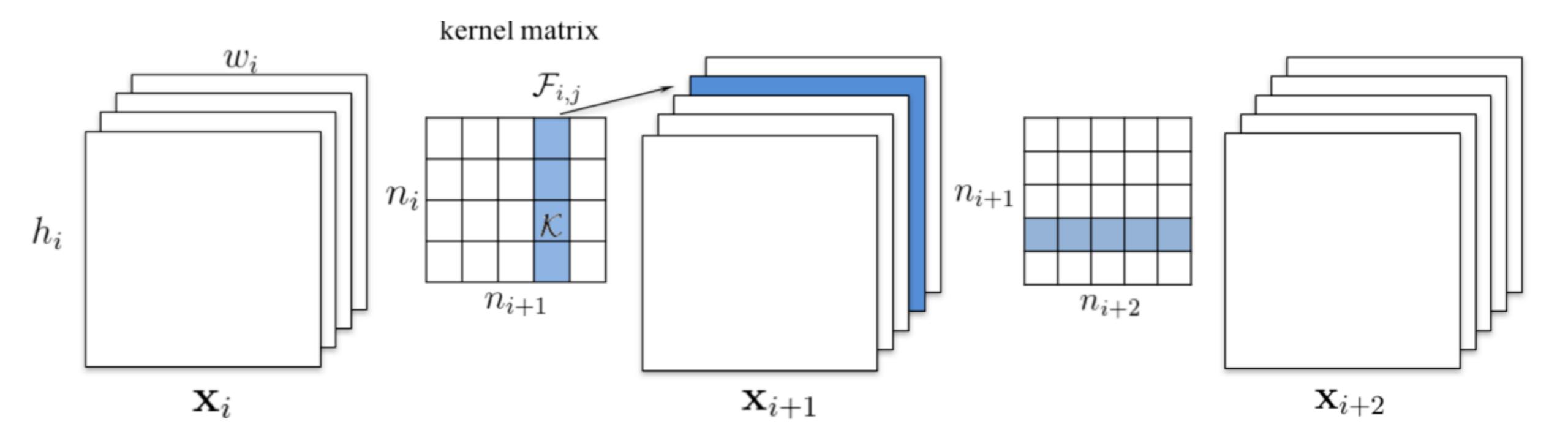
Unstructured Pruning



Structured Pruning



ConvNets. Prune a convolution filter ⇒ Remove an output channel



⇒ Prunes subsequent filters

- Transformers. Many variants
 - Transformer block
 - Single layer
 - MHSA
 - FFN
 - Attention head
 - Neurons in the FFN layer

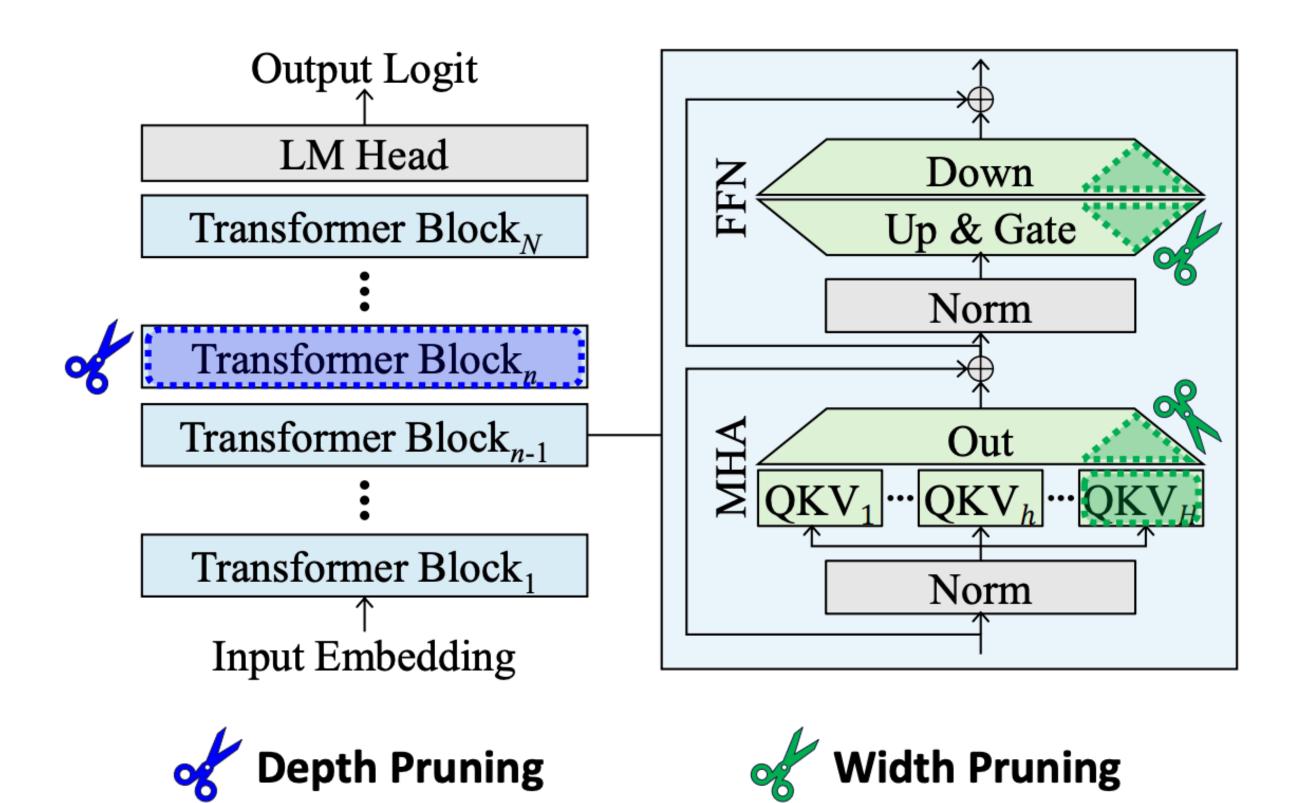
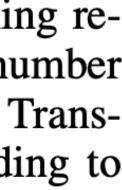


Figure 3: Comparison of pruning granularities. Width pruning reduces the size of weight matrices while maintaining the number of matrix-level operations. Depth pruning eliminates entire Transformer blocks, or individual MHA and FFN modules, leading to fewer memory accesses and matrix-level operations.

Kim et al., "Shortened LLaMA: A Simple Depth Pruning for Large Language Models," arXiv 2024.



- - Less retraining needed

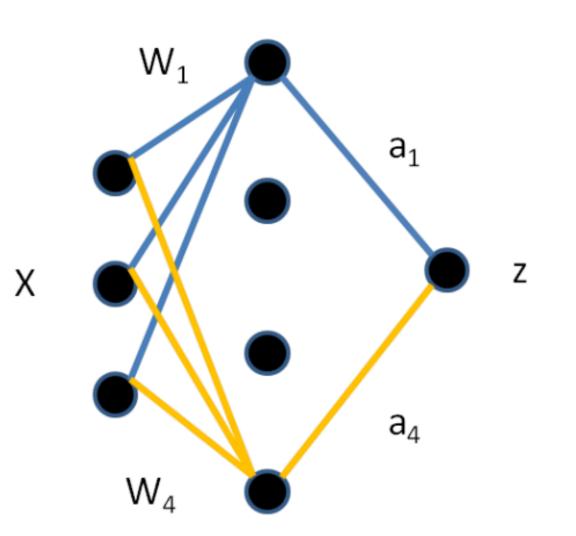
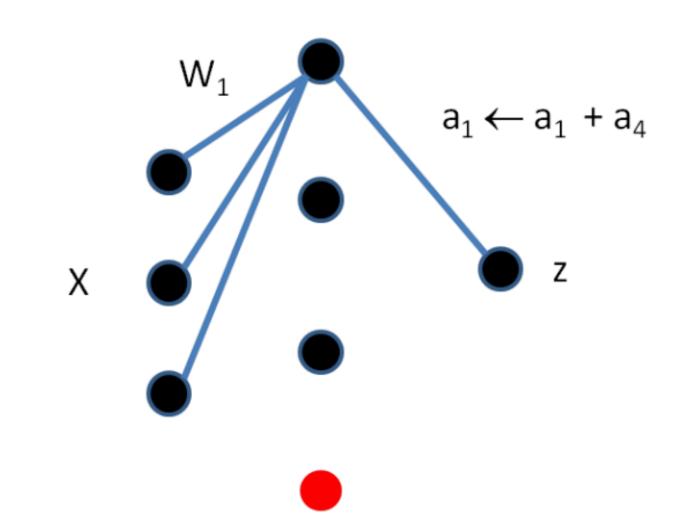


Figure 1: A toy example showing the effect of equal weight-sets ($W_1 = W_4$). The circles in the diagram are neurons and the lines represent weights. Weights of the same colour in the input layer constitute a weight-set.

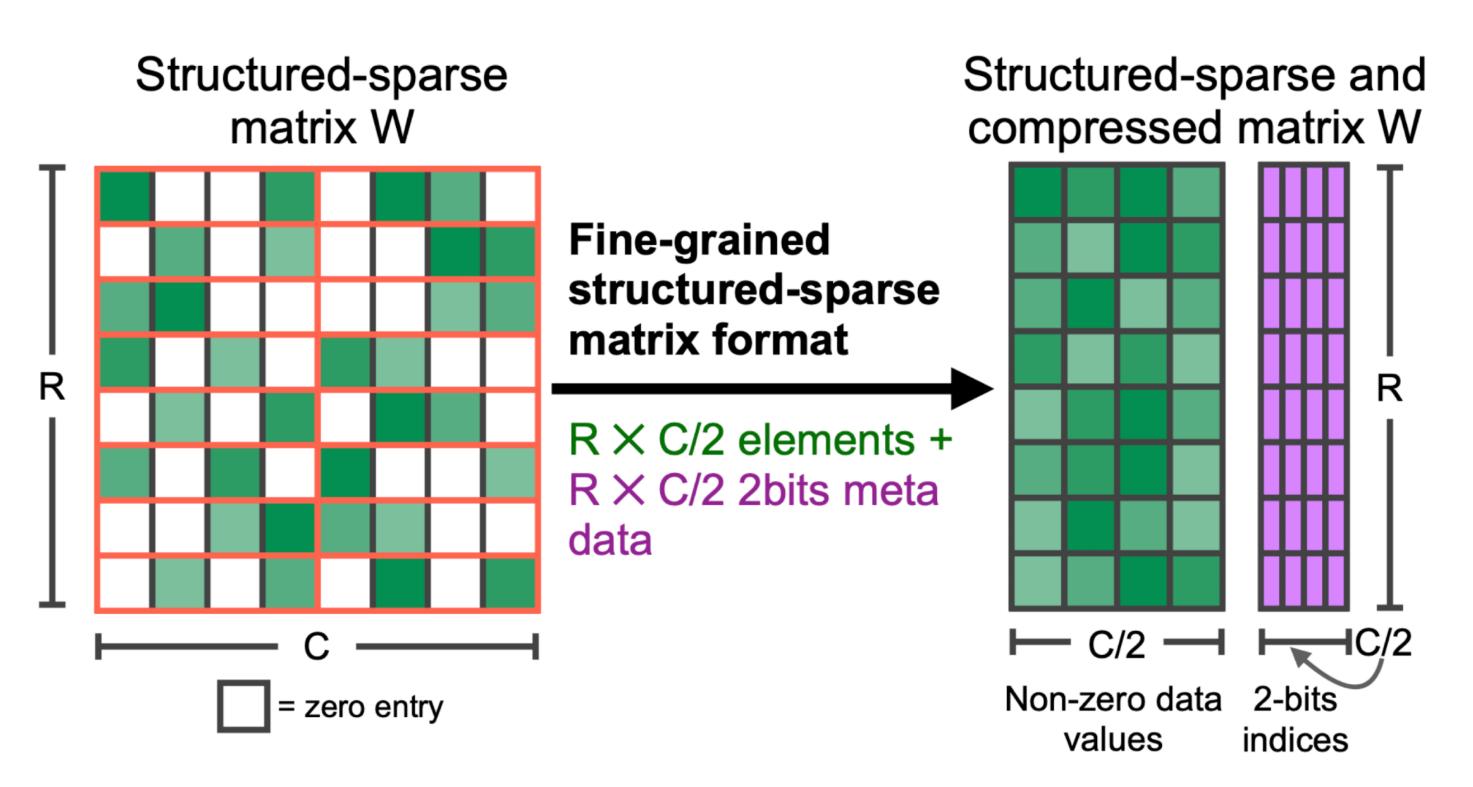
• Neuron Merging. If two neurons are similar, we can merge instead of removing



Srinivas and Babu, "Data-free parameter pruning for deep neural networks," BMVC 2016

Structured + Fine-Grained Sparsity

- 2:4 Sparsity (NVIDIA). Constrain to have at least 2 zeros in length-4 blocks
 - 50% sparsity with usually no quality drop
 - Metadata can be very small; 2 bits per nonzero.



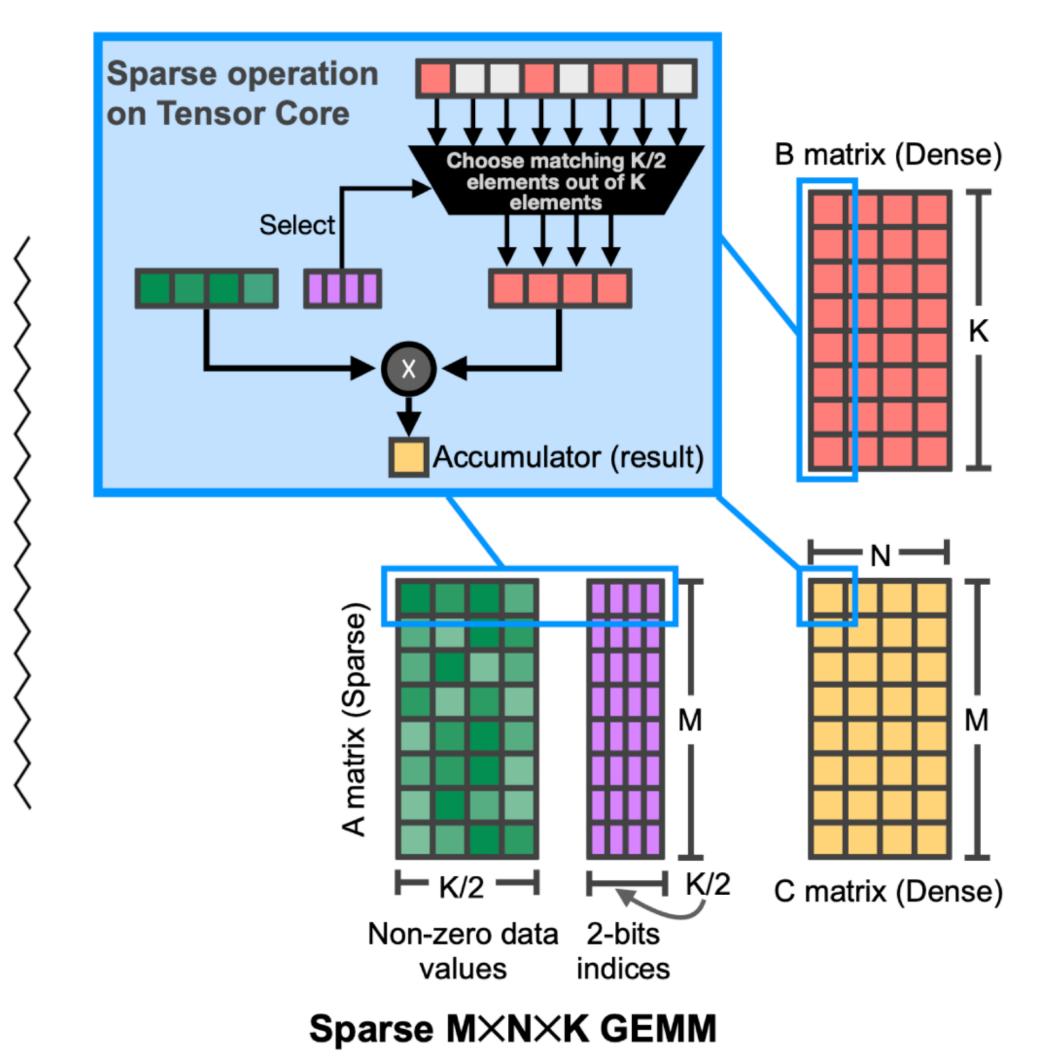
Mishra et al., "Accelerating sparse deep neural networks," arXiv 2021.

Structured + Fine-Grained Sparsity



Dense M×N×K GEMM

Requires customized HW and engines (Sparse Tensor Cores, TensorRT 8.0)



Mishra et al., "Accelerating sparse deep neural networks," arXiv 2021.

- NAVER + Samsung
 - Specialized HW with fixed-to-fixed encoding for sparsity (link)
- Neural Magic
 - CPU runtime for on-device acceleration (<u>DeepSparse</u>)

Other examples

Mishra et al., "Accelerating sparse deep neural networks," arXiv 2021.

Remarks

• We have skipped the whole ideas of activation sparsity:

- See following references:
 - <u>https://proceedings.mlr.press/v119/kurtz20a.html</u>
 - <u>https://www.jmlr.org/papers/v22/21–0366.html</u>

