Sparsity - 2

Spring 2025



Agenda

 Another approach for mask optimization
e Why would sparse models work?
e System considerations for sparsity

e Unstructured sparsity

e Structured sparsity



Another approach for
mask optimization



Problem

e Recall. In the last class, we discussed a heuristic method to solve:
minimize,, , L(m © w)

subject to |mlly <z, m; e {0,1}

e Challenge. Optimizing the discrete mask m
e Constrained optimization

e Discrete optimization



Relaxation

 |dea. Remove the constraint by considering the Lagrangian relaxation
Lmow)+Alml,,  m e {0,1}

e Tune A to meet the sparsity constraint 7

* Next challenge. Optimizing discrete variables with a less heuristic way

e Also common in other domains

 We will illustrate a simple approach by Srinivas et al. (2017)

Srinivas et al., “Training sparse neural networks,” CVPR workshop 201/



Probabillistic gate

e ldea. Model m as a random vector with a latent variable

e Example. Simply use

m; ~ Bern(z;)

and optimize the continuous Z.

e The optimand will then be:

“[L(m O wW)] + 1 -

‘HmHo

“[Lm © w)] + A|z||

e Use Monte Carlo approach — sample m and optimize.



Probabillistic gate

 Problem. How do we compute the gradient for Z w.r.t. the first term?

“[Lm © w)] + A||z]|

e Solution. Simply ignore the gradient; pretend if we have

om;
1
aZi

e This trick has a fancy name, called straight-through estimator (STE)

e We will come back to this, in quantization lectures

 Not really an unbiased estimate, but good enough



Other fixes

e Problem#1. We want ||z|| to be close to O or 1.

e Solution. Add a regularizer, to make

Lm O w) + Allz]f; + /122 z(1 = z;)

e Problem#2. How do we keep z; € [0,1]?

e Solution. Assume that there is yet another latent u, such that




Further readings

e More popular form is based on binary concrete distribution
, Instead of the Bernoulli distribution

e Louizos et al, “Learning Sparse Neural Networks through L regularization,” ICLR 2017 (link)


https://arxiv.org/abs/1712.01312

Why do sparse nets work?



Why should it work?

e Question. Why do we expect sparse models to work as well as dense models?

e Answer. No concrete justification @&

e Nevertheless, there are some motivations...



Why should it work?

e Biological motivation. Human brain also does some sort of pruning.

36 weeks

gestation 4 years 6 years

Newborn 3 months 6 months

.: i ,“. Xy . ‘ . _ . - T ;q Y . ‘ - g
Synapse formation Synapse pruning

C. A. Walsh, “Peter Huttenlocher (1931-2013),” Nature, 2013



Why should it work?

e Natural sparsity. Many natural data or relationships are actually sparse

e e.g., simply irrelevant input features

MR-CT Data Set MR TI1-MR T2 Data Set

Image Data set |
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Why should it work?

e Theoretical guarantees. We use much more parameters than what is
theoretically sufficient.

e We need only 5(\/&) weights to achieve zero training loss on /N samples.

Theorem 1.1 (informal statement). Let (x1,y1),...,(Xn,yn) € R? x {1,...,C?} be a set of N labeled
samples of a constant dimension d, with ||x;|| < r for every i and ||x; — x;|| > d for every i # j. Then,

there exists a ReLU neural network F' : R? — R with width 12, depth O (\/N ), and O (\/N ) parameters,
such that F(x;) = y; for every i € [N], where the notation O(-) hides logarithmic factors in N,C,r, 6.

Vardi et al, “On the Optimal Memorization Power of ReLU Neural Networks,” ICLR 2022



Why should it work?

 Generalization (depracated). In the past, it was believed that less parameters
will lead to better generalization, by avoiding overfitting.

 This no longer seems to be a valid logic, and I1s empirically not true.

Total Error

Variance

Optimum Model Complexily

Error

Model Complexity



System considerations:
Unstructured sparsity



Recap: Processing Dense Matrices

e Matrices are usually stored In either:

e Row-major. C, NumPy, PyTorch, ...

e Column-major. MATLAB, Julia, Fortran, ...

1 Vi 3 row-major

4 < 6 — 1 2 3 4 < 6 £ 8 9

1 2 3 column-major

4 5 b — 1 4 7 2 5 8 3 6 9

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/



https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

Recap: Processing Dense Matrices

 The storage format affects the runtime & arithmetic intensity

e Reason 1. Alters the memory access pattern

e« Example. If the matrix A is in row-major, which code will run faster?

// loopl accesses data in matrix 'a’ in row major order, // loop2 accesses data in matrix 'a' in column major order
// since 1 is the outer loop variable, and j is the // since j is the outer loop variable, and i is the
// inner loop variable. // inner loop variable.
int loopl(int a[4000][4000]) % int loop2(int a[4000][4000]) %
int s = 0; int s = 0;
for (int 1 = 0; 1 < 4000; ++1) 3 for (int 7 = 0; 7 < 4000; ++j) 13
for (int § = 0; 7 < 4000; ++7j) 1% for (int 1 = 0; 1 < 4000; ++1) 3
s += a[i][j]; s += al[i][]];
§ §
§ §
return s; return s;

§ §


https://pytorch.org/blog/tensor-memory-format-matters/

Recap: Processing Dense Matrices

e Reason 2. Some HWs and kernels are customized for certain formats

e Example. For conv2d, tensor core implementations are written for NHWC
while PyTorch default is NCHW (link)

Performance of Convolution Weight
Gradient with C = 1024, H=W = 7,
K=1024, R=S=3

p |
a T —e— NCHW dat
O -. : VORIV gata
~ 150 | —e— NHWC data
m i
— z


https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#tensor-layout

Sparse matrices, unstructured

e There are various formats to store unstructured sparse matrices
e Unstructured: no designated patterns on Os.
e Quick look at two popular options: COO, CSR
e Different pros & cons
e SpMV (Sparse Matrix-Vector Mult.)

 Storage



COO (Coordinate)

e For each nonzero, store
(row, col, val) separately

* Flexible editing

e PyTlorch default

Matrix:

Row:

Column:

Value:

7

S
2

6
0 1 (12|23
1 2 | 3123
7 319286

Hwu et al., “Programming Massively Parallel Processor

s,” Elsevier, 2022



CSR (Compressed Sparse-Row)

e For each nonzero, store (col, val)

with the pointers for the column idx Matrix: R
where each row starts at 5 3|09
e cUSPARSE default 2 | 8
6

RowPtrs: [ O | 2 [ 5 | 7 | 8

Column: O | 1 |0 (2|3 |1 2|3

Value: [ 1 | 7|5 | 3|9 | 2| 8 | 6

Hwu et al, “Programming Massively Parallel Processors,” Elsevier, 2022



Storage

e Suppose that we have an NxN matrix with K honzero elements.

e Suppose that we use COO

e Val. K Bytes Matrix: | 1 | 7

e Col. KBytes > 3193

* Row. K Bytes

= 3K Bytes
Row: [ O [ O | 1 | 1

Column: | O | 1 | 0 | 2

o If Sparsity > 66.6%, we are good. Value: | 1 [ 7 |5 |3




Storage

e Consider the case of CSR
e Val. K Bytes (if using INT8)
e Col. K Bytes (2K if 256 < N <= 65536)

 Row. 2N Bytes (if 256 < K <= 65536)

N Bytes (if K <= 256)
= 2K + 2N Bytes (2K + N if very sparse) Rowtrs:
Column:
Value:

o If Sparsity > 50%, we are good.

Matrix:




Storage

e |In other words, the break-even sparsity of storage depends on...
e Matrix dimensions
 Precision

e Usually, requires at least 50%...

1B values 2B values
1.8 1.8 —-O—Dense
1.6 1.6
Q 1 4 e 150 g)o » COO
g © o— CSR
E 12 8 1.2
2 v 10 e=166
g 1.0 g - .
- (08 ‘5
% . -O—PDense *-0.75 E
e e-0.50
COO 0 3)
™~ .2 ¢ 0.20
: * OF ° 0 (.02
SO”‘/ 60(}"{) 70\ 80(/\/ 90(.}/(/' 100(/{,‘/' SO/‘ 60)'73 70 | 80/0 902”0 lOO /0
Sparsity Sparsity

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021



e |f we use COO:

e assign one thread per nonzero

e coalesced memory access

Matrix:

Row:

Column:

Value:

SpMV

S
¥4 % >
e
JEN _

S258S

‘6

0lol1]1 2 | 3
01|02 2 | 3
1 3 8 | 6

Multiple threads writing
to the same output

(need atomic operations)

Parallelization approach:
Assign one thread per nonzero

Hwu et al, “Programming Massively Parallel Processors,” Elsevier, 2022



SpMV
e |f we use CSR:

e Each thread writes on only one output

e Dependent memory access

Parallelization approach:

(
Matrix: 21 7
)

5 3 9 Assign one thread to loop over
% X = each input row sequentially
2 8 and update corresponding
% output element
6

RowPtrs: | O | 2 | 5 | 7 | 8

Column: | O | 110 |2 |3 (1| 2|3

Value: [ 1 [ 7 |5 (3 [9 (2|8 |6

2 ﬁ | 2 2 ﬁ Hwu et al, “Programming Massively Parallel Processors,” Elsevier, 2022



SpMV on GPU

e On GPU, we conventionally do: 3 4 2 1

 Fetch nonzeros from the sparse matrix

e Fetch corresponding dense elements

e Use tensor cores for matmuls 3/4]2]1

w|afafno] [

w=[nlololo~wla] =T .

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021



SpMV on GPU

 Problem. More overhead if we group rows
e Wasted computation

 Time for fetching values from the
dense matrix

3

N

o
OO

oS
o O

~ | O

-

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021
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SpMV on GPU

. — Nvidia cuBLAS -+ Nvidia cuSPARSE == Qur Approach
e Solution. 600 \
500 \\\\\ | | | | \
e Custom kernels (=) ~_ \
, ) Soo \
(but we won't go deep here; see link) 5400 NN T 98%
3 _ﬁq—o—
) ~< | | \
: £ 300 S | -
e Structures in zeros 2 W< |
% 200 G5 ||
\\\ .
100 | | | | 4
A
N
\
%50 60 70 80 90 100

Sparsity (%)

Fig. 1. Sparse matrix—-matrix multiplication runtime for a weight-sparse
long short-term memory network problem. Input size 8192, hidden size
2048, and batch size 128 in single-precision on an Nvidia V100 GPU with
CUDA 10.1. Using our approach, sparse computation exceeds the performance
of dense at as low as 71% sparsity. Existing vendor libraries require 14 X fewer
non-zeros to achieve the same performance. This work enables speedups for
all problems in the highlighted region.

Gale et al,, “Sparse GPU Kernels for Deep Learning,” SuperComputing 2020


https://arxiv.org/abs/2006.10901

System considerations:
Structured sparsity



Structured Sparsity

 Pruning a group of weights at once
e The pruned model becomes a small dense model
e |ess sparsity can be achieved

e However, real advantages in runtime & memory
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Structured Sparsity

e ConvNets. Prune a convolution filter = Remove an output channel
= Prunes subsequent filters

h,‘

w;

I,

kernel matrix

Fij

Xi+1

Ni+1

EEEn

;19

—

Xi+2

Li et al., “Pruning filters for efficient ConvNets,” ICLR 2017



Structured Sparsity

Transformers. Many variants Output Logit \

LM Head

Transtormer Block,,

e JTransformer block

* Single layer of [ Transformer Block, 3

Transformer Block, ,

e MHSA .

MHA

Transformer Block, Norm
. FFN 1 «\
Input Embedding '
e Attention head o{Depth Pruning o{Width Pruning

Figure 3: Comparison of pruning granularities. Width pruning re-
duces the size of weight matrices while maintaining the number
of matrix-level operations. Depth pruning eliminates entire Trans-
former blocks, or individual MHA and FFN modules, leading to

fewer memory accesses and matrix-level operations.

e Neurons in the FFN layer

Kim et al, “Shortened LLaMA: A Simple Depth Pruning for Large Language Models,” arXiv 2024.



Structured Sparsity

* Neuron Merging. If two neurons are similar, we can merge instead of removing

e |Less retraining needed

Figure 1: A toy example showing the effect of equal weight-sets (W; = Wy). The circles in
the diagram are neurons and the lines represent weights. Weights of the same colour 1n the
input layer constitute a weight-set.

Srinivas and Babu, “Data-free parameter pruning for deep neural networks,” BMVC 2016



Structured + Fine-Grained Sparsity

o 2:4 Sparsity (NVIDIA). Constrain to have at least 2 zeros in length-4 blocks
e 50% sparsity with usually no quality drop

e Metadata can be very small; 2 bits per nonzero.

Structured-sparse Structured-sparse and
matrix W compressed matrix W

Fine-grained
structured-sparse
matrix format

R X C/2 elements +
R X C/2 2bits meta
data
f———  — F— C/2 — F——C/2
"
D = zero entry Non-zero data 2-bits
values indices

Mishra et al.,, “Accelerating sparse deep neural networks,” arXiv 2021.



Structured + Fine-Grained Sparsity

e Requires customized HW and engines (Sparse Tensor Cores, TensorRT 8.0)

Sparse operation
on Tensor Core

Choose matching K/2

elements out of K
elements
Select‘ ‘|'

A

B matrix (Dense) B matrix (Dense)

Dense operation
on Tensor Core

gAccumulator (result) ccumulator (result) HiiNN

—N—
N BN B N N[~ ol HENE
o L LI o LI I mdEN
3 HEERERN S ] 1111 HEEN
Q 11 l.- 2 H R IIII ....
* DI e =< [ TIT EEEE
‘g H B EHEN © Humiill HEEE
< 11 11 E . Humiiil 111
HEEETE BN H d11 HEEE
I K I C matrix (Dense) k2 — |_|\_5/2 C matrix (Dense)
Non-zero data 2-bits
values indices
Dense MXNXK GEMM Sparse MXNXK GEMM

Mishra et al.,, “Accelerating sparse deep neural networks,” arXiv 2021.



Other examples

e NAVER + Samsung

e Specialized HW with fixed-to-fixed encoding for sparsity (link)

e Neural Magic

e CPU runtime for on-device acceleration (DeepSparse)

Mishra et al.,, “Accelerating sparse deep neural networks,” arXiv 2021.


https://arxiv.org/abs/2105.01869
hhttps://docs.neuralmagic.com/products/deepsparse/

Remarks

 We have skipped the whole ideas of activation sparsity:

WX - WX

sparse

o See following references:

e https://proceedings.mir.press/v119/kurtz20a.html
e https://www.milr.org/papers/v22/21-0366.html



https://proceedings.mlr.press/v119/kurtz20a.html
https://www.jmlr.org/papers/v22/21-0366.html

That's it for today (-



