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Agenda
• Another approach for mask optimization 

• Why would sparse models work? 

• System considerations for sparsity 

• Unstructured sparsity 

• Structured sparsity



Another approach for 
mask optimization



Problem
• Recall. In the last class, we discussed a heuristic method to solve: 

 

 

• Challenge. Optimizing the discrete mask  

• Constrained optimization 

• Discrete optimization

minimizem,w L̂(m ⊙ w)

subject to ∥m∥0 ≤ τ, mij ∈ {0,1}

m



Relaxation
• Idea. Remove the constraint by considering the Lagrangian relaxation 

 

• Tune  to meet the sparsity constraint  

• Next challenge. Optimizing discrete variables with a less heuristic way 

• Also common in other domains 

• We will illustrate a simple approach by Srinivas et al. (2017)

L̂(m ⊙ w) + λ∥m∥0, mi ∈ {0,1}

λ τ

Srinivas et al., “Training sparse neural networks,” CVPR workshop 2017



Probabilistic gate
• Idea. Model  as a random vector with a latent variable 

• Example. Simply use 

 

and optimize the continuous . 

• The optimand will then be: 

 

• Use Monte Carlo approach — sample  and optimize.

m

mi ∼ Bern(zi)

z

𝔼[L̂(m ⊙ w)] + λ ⋅ 𝔼∥m∥0 = 𝔼[L̂(m ⊙ w)] + λ∥z∥1

m



Probabilistic gate
• Problem. How do we compute the gradient for  w.r.t. the first term? 

 

• Solution. Simply ignore the gradient; pretend if we have 

 

• This trick has a fancy name, called straight-through estimator (STE) 

• We will come back to this, in quantization lectures 

• Not really an unbiased estimate, but good enough

z

𝔼[L̂(m ⊙ w)] + λ∥z∥1

∂mi

∂zi
= 1



Other fixes
• Problem#1. We want  to be close to 0 or 1. 

• Solution. Add a regularizer, to make 

 

• Problem#2. How do we keep ? 

• Solution. Assume that there is yet another latent , such that 

∥z∥

L̂(m ⊙ w) + λ1∥z∥1 + λ2 ∑
i

zi(1 − zi)

zi ∈ [0,1]

u

zi = sigmoid(ui)



Further readings
• More popular form is based on binary concrete distribution (a.k.a. Gumbel-

softmax), instead of the Bernoulli distribution 

• Louizos et al., “Learning Sparse Neural Networks through  regularization,” ICLR 2017 (link)L0

https://arxiv.org/abs/1712.01312


Why do sparse nets work?



Why should it work?
• Question. Why do we expect sparse models to work as well as dense models? 

• Answer. No concrete justification 🥲 

• Nevertheless, there are some motivations…



Why should it work?
• Biological motivation. Human brain also does some sort of pruning.

C. A. Walsh, “Peter Huttenlocher (1931-2013),” Nature, 2013



Why should it work?
• Natural sparsity. Many natural data or relationships are actually sparse 

• e.g., simply irrelevant input features



Why should it work?
• Theoretical guarantees. We use much more parameters than what is 

theoretically sufficient. 

• We need only  weights to achieve zero training loss on  samples.Õ( N) N

Vardi et al., “On the Optimal Memorization Power of ReLU Neural Networks,” ICLR 2022



Why should it work?
• Generalization (depracated). In the past, it was believed that less parameters 

will lead to better generalization, by avoiding overfitting. 

• This no longer seems to be a valid logic, and is empirically not true.



System considerations: 
Unstructured sparsity



Recap: Processing Dense Matrices
• Matrices are usually stored in either: 

• Row-major.         C, NumPy, PyTorch, … 

• Column-major.  MATLAB, Julia, Fortran, …

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/


Recap: Processing Dense Matrices
• The storage format affects the runtime & arithmetic intensity 

• Reason 1. Alters the memory access pattern 

• Example. If the matrix  is in row-major, which code will run faster? 
                (on CPU, one is 15x faster than another; see link)

A

https://pytorch.org/blog/tensor-memory-format-matters/


Recap: Processing Dense Matrices
• Reason 2. Some HWs and kernels are customized for certain formats 

• Example. For conv2d, tensor core implementations are written for NHWC 
                while PyTorch default is NCHW (link)

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#tensor-layout


Sparse matrices, unstructured
• There are various formats to store unstructured sparse matrices 

• Unstructured: no designated patterns on 0s. 

• Quick look at two popular options: COO, CSR 

• Different pros & cons 

• SpMV (Sparse Matrix-Vector Mult.) 

• Storage



COO (Coordinate)
• For each nonzero, store  

(row, col, val) separately 

• Flexible editing 

• PyTorch default

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022



CSR (Compressed Sparse-Row)
• For each nonzero, store (col, val) 

with the pointers for the column idx 
where each row starts at 

• cuSPARSE default

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022



Storage
• Suppose that we have an NxN matrix with K nonzero elements. 

• Suppose that we use COO 

• Val. K Bytes                      (if using INT8) 

• Col. K Bytes      (2K if 256 < N < 65536) 

• Row. K Bytes     (2K if 256 < N < 65536) 

 3K Bytes 

• If Sparsity  66.6%, we are good.

⇒

≥



Storage
• Consider the case of CSR 

• Val. K Bytes                           (if using INT8) 

• Col. K Bytes        (2K if 256 < N <= 65536) 

• Row. 2N Bytes          (if 256 < K <= 65536) 
           N Bytes                          (if K <= 256) 

 2K + 2N Bytes  (2K + N if very sparse) 

• If Sparsity  50%, we are good.

⇒

≥



• In other words, the break-even sparsity of storage depends on… 

• Matrix dimensions 

• Precision 

• Usually, requires at least 50%…

Storage

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021



SpMV

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022

• If we use COO: 

• assign one thread per nonzero 

• coalesced memory access



SpMV

Hwu et al., “Programming Massively Parallel Processors,” Elsevier, 2022

• If we use CSR:  

• Each thread writes on only one output 

• Dependent memory access



• On GPU, we conventionally do: 

• Fetch nonzeros from the sparse matrix 

• Fetch corresponding dense elements 

• Use tensor cores for matmuls

SpMV on GPU

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021



SpMV on GPU
• Problem. More overhead if we group rows 

• Wasted computation 

• Time for fetching values from the 
dense matrix

P. Micikevicius, Invited Talk @ Sparse Neural Network Workshop, 2021



SpMV on GPU
• Solution. 

• Custom kernels                              ( ) 
(but we won’t go deep here; see link) 

• Structures in zeros

⇒

Gale et al., “Sparse GPU Kernels for Deep Learning,” SuperComputing 2020

https://arxiv.org/abs/2006.10901


System considerations: 
Structured sparsity



Structured Sparsity
• Pruning a group of weights at once 

• The pruned model becomes a small dense model 

• Less sparsity can be achieved 

• However, real advantages in runtime & memory



Structured Sparsity
• ConvNets. Prune a convolution filter  Remove an output channel 

                                                                 Prunes subsequent filters
⇒
⇒

Li et al., “Pruning filters for efficient ConvNets,” ICLR 2017



Structured Sparsity
• Transformers. Many variants 

• Transformer block 

• Single layer 

• MHSA 

• FFN 

• Attention head 

• Neurons in the FFN layer

Kim et al., “Shortened LLaMA: A Simple Depth Pruning for Large Language Models,” arXiv 2024.



Structured Sparsity
• Neuron Merging. If two neurons are similar, we can merge instead of removing 

• Less retraining needed

Srinivas and Babu, “Data-free parameter pruning for deep neural networks,” BMVC 2016



Structured + Fine-Grained Sparsity
• 2:4 Sparsity (NVIDIA). Constrain to have at least 2 zeros in length-4 blocks 

• 50% sparsity with usually no quality drop 

• Metadata can be very small; 2 bits per nonzero.

Mishra et al., “Accelerating sparse deep neural networks,” arXiv 2021.



Structured + Fine-Grained Sparsity
• Requires customized HW and engines (Sparse Tensor Cores, TensorRT 8.0)

Mishra et al., “Accelerating sparse deep neural networks,” arXiv 2021.



Other examples
• NAVER + Samsung 

• Specialized HW with fixed-to-fixed encoding for sparsity (link) 

• Neural Magic 

• CPU runtime for on-device acceleration (DeepSparse)

Mishra et al., “Accelerating sparse deep neural networks,” arXiv 2021.

https://arxiv.org/abs/2105.01869
hhttps://docs.neuralmagic.com/products/deepsparse/


Remarks
• We have skipped the whole ideas of activation sparsity: 

 

• See following references: 

• https://proceedings.mlr.press/v119/kurtz20a.html 

• https://www.jmlr.org/papers/v22/21-0366.html

WX → WXsparse

https://proceedings.mlr.press/v119/kurtz20a.html
https://www.jmlr.org/papers/v22/21-0366.html


That’s it for today 🙌


