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Agenda
• Last Class 

• Matmuls 

• Computation vs. Memory 

• W2 & W3 

• Reducing computation & memory at the matmul level 

• Today 

• Sparsity & Pruning



Basic idea



Goal
• We want to reduce the computational cost of matrix multiplication 

• Well-trained linear model with   and the dataset size  

 

• Compute.           = 54 FLOPs 

• Memory I/O.      FP32 weights = 36 Bytes 
(loading weights)

din = dout = 3 N = 3

WX =
w1 w2 w3
w4 w5 w6
w7 w8 w9

x1 x2 x3
x4 x5 x6
x7 x8 x9

2dindoutN

3 × 3



Sparsity
• Remove less important entries of the weight, thus skipping associated ops 

• Suppose that we “prune out” 4 entries, to get a 5-sparse matrix 

 

• Fancily put, we take a Hadamard product with some mask matrix 

WprunedX =
w1 w2 0
0 w5 0
w7 0 w9

x1 x2 x3
x4 x5 x6
x7 x8 x9

Wpruned = M ⊙ W, M = [
1 1 0
0 1 0
1 0 1]



Quiz. The matrix  has … 

(a) 44.4% Sparsity 

(b) 55.5% Sparsity

Wpruned w1 w2 0
0 w5 0
w7 0 w9



Advantages

 

• Compute & memory decreases proportionally to the sparsity 

• Compute.           30 FLOPs 

• Memory I/O.      20 Bytes 

Note. There are certain overheads, as we will see in the next class

w1 w2 0
0 w5 0
w7 0 w9

x1 x2 x3
x4 x5 x6
x7 x8 x9

(1 − sparsity) × (dense FLOPs) =

(1 − sparsity) × (dense I/O) =



Problem formulation



Problem formulation
• We apply pruning at a model level 

• Layer 1 pruned to xx% sparsity 

• Layer 2 pruned to yy% sparsity 

• (…) 

 Model achieves zz% global sparsity 

• Typically, one can achieve 20%—80% global sparsity without accuracy drop

⇒

Han et al., “Learning both weights and connections for efficient neural networks,” NeurIPS 2015



Problem formulation
• Minimize the training risk of the pruned model, given the sparsity constraint 

                  

• :             all neural net weights, vectorized 

• :        training risk 

• :         norm (i.e., the number of nonzero entries) 

• :                sparsity constraint 

Note. We are using a global sparsity constraint, just for simplicity.

minimizewpruned
L̂(wpruned) subject to ∥wpruned∥0 ≤ τ

w

L̂( ⋅ )

∥ ⋅ ∥0 ℓ0

τ



Problem formulation
• Alternatively, view it as a joint optimization of weights and mask 

 

 

• By doing so, we have decomposed this into two subproblems 

• Optimizing :    Unconstrained, continuous optimization 

• Optimizing :    Constrained, discrete optimization 

• Tricky part!

minimizem,w L̂(m ⊙ w)

subject to ∥m∥0 ≤ τ, mij ∈ {0,1}

w

m



Algorithm



Algorithm
• Typical pruning algorithms solve this via alternating optimization: 

1. Training.        Train the model for some steps                                                           (optimize w) 

2. Pruning.        Remove some weights, using some criterion                           (fix w, optimize m) 

3. Retraining.   Retrain the model for some steps, to recover from damage. (fix m, optimize w) 

4. Repeating.    Repeat steps 2–3 for some iterations 

(Note. there are other relaxation-based optimization algorithms as well)

Training Pruning Retraining

Repeating



Algorithm
• Two key elements: 

• Saliency. How can we identify less important weight? 

• Schedule. When do we introduce the sparsity? 

• Often reflects operational constraints, e.g., training cost 

1. Training.        Train the model for some steps 

2. Pruning.        Remove some weights, using some criterion 

3. Retraining.   Retrain the model for some steps, to recover from damage. 

4. Repeating.    Repeat steps 2–3 for some iterations



Saliency



Saliency
• At the pruning phase, we are solving the mask optimization: 

       

• This is NP-hard, and thus we typically rely on heuristics 

• Hessian 

• Gradient 

• Magnitude 

• That is, we compute these “scores” and simply prune out bottom-K.

minimizem L̂(m ⊙ w) subject to ∥m∥0 ≤ τ, mi ∈ {0,1}



Hessian-based pruning
• Idea. Express the training risk using the Taylor approximation 

• Suppose that pruning changes the weight . 

• Example. Removing i-th weight makes  

• Then, we can write: 

 

• :     First-order derivative (gradient), evaluated at  

• :    Second-order derivative (Hessian), evaluated at 

w → w + u

u = − wiei

L̂(w + u) ≈ L̂(w) + g⊤u +
u⊤Hu

2
g w

H w



Hessian-based pruning
• Now, assume that the weight  is well-trained. 

• Then, the gradient is near-zero, making: 

 

• As the first term on RHS is independent of mask, the mask optimization 
can be approximated by: 

 

           with appropriate constraints on .

w

L̂(w + u) ≈ L̂(w) +
u⊤Hu

2

min
u

u⊤Hu
2

u



Optimal Brain Damage
• LeCun et al. (1989) simplifies this as follows: 

• Suppose that we remove only one weight 

• Then, removing i-th layer makes , and thus 

 

• Simply compute this score for all i, and remove bottom-k weights 

• Requires some calibration data to compute Hessian

u = − wiei

u⊤Hu
2

=
|wi |

2 Hii

2

LeCun et al., “Optimal brain damage” NeurIPS 1989



Computational aspects
• Problem. Hessians have  entries 

• 1B-scale model will have  entries for Hessian = 4 exabytes 

• Fortunately, OBD only need Hessian diagonals, with  entries 

• Can be computed in a similar way to backpropagation 
(Homework. Derive the formula)

(#weight)2

1018

(#weight)

LeCun et al., “Optimal brain damage” NeurIPS 1989



Optimal Brain Surgeon
• Hassibi & Stork (1992) considers a slightly involved version: 

• Suppose that we remove only one weight, but can also update other 
weights to compensate for the removed weight. 

• Then, we are solving: 

 

• The Lagrangian form is: 

min
i { min

ui
{u⊤

i Hui

2
} subject to e⊤

i ui + wi = 0}

Li =
u⊤

i Hui

2
+ λ(e⊤

i ui − wi)

Hassibi & Stork., “Second order derivatives for network pruning: Optimal brain surgeon” NeurIPS 1992



Optimal Brain Surgeon
• For fixed i, the solution and the Lagrangian is: 

 

 

• We can select one weights with the smallest Lagrangian, make 
corresponding updates, and repeat… 

• Problem. This requires computing the inverse Hessian! 

• How can we do this, without requiring extremely large matrix inverse?

ui = −
wi

[H−1]ii
H−1 ⋅ ei

Li =
w2

i

2[H−1]ii

Hassibi & Stork., “Second order derivatives for network pruning: Optimal brain surgeon” NeurIPS 1992



Computing the inverse Hessian
• Suppose that we use the squared loss for the risk 

 

• Then, the loss gradient can be written as: 

L̂(w) =
1

2N

N

∑
i=1

(yi − f(xi; w))2

g =
1
N

N

∑
i=1

( f(xi; w) − yi)
∂f
∂w

(xi; w)

Hassibi & Stork., “Second order derivatives for network pruning: Optimal brain surgeon” NeurIPS 1992

Samplewise 
Error

Samplewise 
Gradient



Computing the inverse Hessian
• The Hessian is: 

 

• If our model is good enough, we can approximate: 

 

                                               

H =
1
N

N

∑
i=1

∂f
∂w

(xi; w)
∂f⊤

∂w
(xi; w) −

1
N

N

∑
i=1

( f(xi; w) − yi)
∂2f
∂w2

(xi; w)

H ≈
1
N

N

∑
i=1

∂f
∂w

(xi; w)
∂f⊤

∂w
(xi; w)

≜
1
N

N

∑
i=1

qiq⊤
i

Hassibi & Stork., “Second order derivatives for network pruning: Optimal brain surgeon” NeurIPS 1992

Samplewise 
Gradient



Computing the inverse Hessian
• This gives us a recursive formula for computing the Hessian 

 

• Combine this with the matrix inversion formula: 

 

• Then, we get a recursive formula for computing inverse Hessian 

Hm = Hm−1 +
1
N

qmq⊤
m

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

H−1
m = H−1

m−1 −
H−1

m−1qmq⊤
mH−1

m−1

N + q⊤
mH−1

m−1qm

Hassibi & Stork., “Second order derivatives for network pruning: Optimal brain surgeon” NeurIPS 1992



Other techniques
• Still, Hessian is too large to compute & hold on RAM for large models 

• Solution. 

• Compute Hessian layer-by-layer (Dong et al., 2017; Layerwise OBS) 

• https://arxiv.org/abs/1705.07565 

• Recent works on LLM develop more involved techniques: 

• Will be discussed in future lectures; https://arxiv.org/abs/2301.00774

Dong et al., “Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon” NeurIPS 2017

https://arxiv.org/abs/1705.07565
https://arxiv.org/abs/2301.00774


Gradient-based pruning
• In many cases, we cannot simply assume that gradient = 0 

• Pruning at initialization 

• e.g., SNIP (Lee et al., 2019) 

• Pruning pre-trained models before fine-tuning 

• e.g., Movement Pruning (Sanh et al., 2020) 

• Pruning underfitting models 

• e.g., large language models

Lee et al., “SNIP: Single-shot Network Pruning based on Connection Sensitivity,” ICLR 2019 
Sanh et al.., “Movement Pruning: Adaptive Sparsity by Fine-Tuning” NeurIPS 2020



Gradient-based pruning
• Idea. Use the first-order approximation: 

 

• Choose  weights with the smallest values of the gradient score: 

 

• In fact, taking an absolute value is a good idea (why?) 

L̂(w + u) ≈ L̂(w) + g⊤u

i

−wigi

|wigi |



Magnitude-based pruning
• Suppose that we cannot compute Hessian 

• Too much memory & computation needed 

• No calibration data 

• Idea. Blindly assume that the Hessian diagonal  is identical for all weights. 

• i.e., use the saliency score  

• i.e., remove weights with bottom-k weight magnitudes 

Hii

w2
i

|wi |



Magnitude-based pruning
• Problem. Prone to layer collapse, on global pruning 

• Suppose that we have two layer MLP, with:

0.1

0.3

0.2

0.4

100

200

200

300



Magnitude-based pruning
• Solution.  

• Layerwise heuristics (Gale et al., 2019) 

• Score scaling (Lee et al., 2021)

Gale et al., “The state of sparsity in deep neural networks,” arXiv 2019 
Lee et al., “Layer-adaptive Sparsity for the Magnitude-based Pruning,” ICLR 2021



Magnitude-based pruning
• With gradual pruning & good HP, magnitude-based pruning is good enough. 

• With limited retraining, Hessian-based methods are better

Gale et al., “The state of sparsity in deep neural networks,” arXiv 2019



Schedule



Pruning schedules
• There are many different sparsity schedules, with different purposes. 

• Gradual Pruning. 

• Best in terms of the 
accuracy vs. inference cost tradeoff 

• Requires lengthy training 
(2x — 10x of the original training) 

• Needs joint tuning of learning rate 
and sparsity schedules

Gale et al., “The state of sparsity in deep neural networks,” arXiv 2019



Pruning schedules
• e.g., cubic schedule (Zhu & Gupta, 2017; Google default)

Zhu & Gupta., “To prune, or not to prune: exploring the efficacy of pruning for model compression,” arXiv 2017



Pruning schedules
• Sparse Training (Pruning at init.) 

• Less GPU memory & training cost 

• Can train larger (sparse) models, 
theoretically 

• Requires lengthy training 

• Very unstable performance 

• Usually requires small sparsity 
or regrowth



Pruning schedules
• One-shot Pruning (or Post-Training Sparsity) 

• Little or no retraining. 

• Suitable for LLM-scale models 

• Bad performance, usually. 

• Can exploit pretrained checkpoints 

• End-user friendly



Further Readings
• Lottery ticket hypothesis 

• https://arxiv.org/abs/1803.03635 

• What is the state of neural network pruning? 

• https://arxiv.org/abs/2003.03033

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2003.03033


That’s it for today 🙌


