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Recall: Diffusion model

e A generative model, i.e, method to model the probability density p(x)

e “denoising diffusion probabilistic model”

e Like many other generative models, p(X) is generated as a pushforward
of some easy-to-sample density (e.g., Gaussian)
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e Goal. Learnagood f( -)from samples of X



Recall: Diffusion model
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e Challenge.
e How should we generate the corresponding 7" for some sample x()?

e Also, f( -)is likely to be very complicated

e |dea. There Is a straightforward way to modelf_1

e Plus, thisf‘1 can be decomposed into many sub-functions



Recall: Diffusion model

 Forward diffusion. Adds Gaussian noise gradually

(Xt ‘ Xt_l) — '/V(Xt ‘ 1 — ﬁtxt—la ﬂtI) P, analogous to “time”

betweentandr— 1

e Given X, we can sample X, as

Fixed forward diffusion process
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Generative reverse denoising process

XO—> X, — X2—> () — Z = X



Recall: Diffusion model

* Reverse denoising. Want to model g(x,_; | X))

e After some math™, one can realize that we can approximate

q (Xt—l ‘ Xt) =N (Xt—l ‘//t(g(Xt), Utz Id)

where the mean p,(X,) can be written as:

1 |l —a,

Xt — — EQ(XP t) Noise model: to be trained

| /at /1 — a, from the data

e As the model is Gaussian, fitting the distribution is simply training with the
squared loss

//tQ(Xta t) —

CVPR 2022 tutorial on diffusion models



Recall: Diffusion model

Algorithm 1 Training

repeat

* Training. Train by noise prediction S x)
. Xo ~q(x
3: (r)v Unifc;)rm({l, ., T}
: 4. €~ N(0,1
[ ~ Unlf({ 19 KX T}) 5: "T‘ake gr(adiel)lt descent step on
Vo [l€ — eo(vVaxo + VI aure, 1)

6: until converged
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e ~N(0,1)) Train with MSE loss!
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Ho et al, “Denoising Diffusion Probabilistic Models,” NeurlPS 2020



ilon model

Diffus

-step denoising

Recall

Algorithm 2 Sampling

XT N(O,I)

for ¢
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e Sampling. Step-by
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Ho et al, “Denoising Diffusion Probabilistic Models,” NeurlPS 2020



Problem

e Goal. We want fast & on-device generation
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Approaches

e Many different approaches

« SDE/ODE solvers

e Reduce the number of denoising steps
e Deterministic sampler (e.g., DDIM)
e Distillation

 Reduce the computational cost of denoising model
e Compress the model
e Re-use computed values

e Parallel sampling



ODE solvers

e |dea. Consider infinitesimal time intervals

e Recall that the forward diffusion is

Q(Xt‘xt—l) — */V(Xt‘ V 1 — ﬁtxt—la ﬁtl)

e This becomes an stochastic differential equation

=1/1 — p(OALX,_ ++/pt)AtN(0,I)
A
X, — (2 t 1+ POALN(O,I)

= dx, = — %ﬁ(t)xtdt + /B dw,

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021



ODE solvers

Forward diffusion process (fixed)

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021



ODE solvers

 The reverse diffusion process can be written as:

dx, = — %ﬂ(t) (Xt + 2 thlog %(Xt))dt + 4/ /(O do,

 We can train a neural network which approximates this “score function”

e Use ¢g,(X,|Xy) for tractibility

 The reverse can then be expressed as:

1

dx, = — > B0 (X, + 2sy(X,, 1) )dt + /(1) d,

e Use off-the-shelf SDE solvers.

e Can also come up with ODE version, which is very fast!

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021



Deterministic sampler

 |dea. We can play with the noise-adding procedure

(X, [ X,_1) = '/V(Xt‘\/ I =01, 1)
» Markov property (is there a reason why it should be so?)

e Fixed (can we introduce learnable components?)

e Desired. Want faster “mixing” during forward

e so that reverting them can be done In fewer steps

Noise
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Song et al., “Denoising Diffusion Implicit Models,” ICLR 2021



Deterministic sampler

 DDIM. No noise-adding during the sampling

» Theoretical motivations from approximating g(X,_, | X,,X,) (not g(x, ;| x,))

e Same training procedure

e Faster sampling (1000 — 25~40), but slightly weaker image diversity

Song et al., “Denoising Diffusion Implicit Models,” ICLR 2021



Distillation

e |dea. Simply distill a multi-step denoiser from a single-step one

e Luhman & Luhman (2021) distills with the loss

1

L= 5 _XTHfstu(XT ) _ftea(XT)H%

where f( - ) denotes the mean of the estimated Gaussian.

¢ f., 1S generated by multi-step diffusion

--------------------------------------------------------------------------------------------

Pstudent (X() ‘XT)

Luhman and Luhman, “Knowledge Distillation in lterative Generative Models for Improved Sampling Speed,” arXiv 2021



Distillation

e Later works find that progressive distillation i1s beneficial, in general

* No need to run full number of sampling steps with the original model

t=1 € € €

23/4 = f(z1;m)-
: Distillatio>

z1/2 = [(23/4;M)+
v Distillatio> >X = f(z1;0)
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Salimans and Ho, “Progressive Distillation for Fast Sampling of Diffusion Models,” ICLR 2022



Considerations in model compression

A noteworthy characteristic of diffusion models is their time-dependency
 The activation distribution changes from timestep to timestep

 Requires a careful calibration of quantization range
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Shang et al,, “Post-training Quantization on Diffusion Models,” CVPR 2023
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Considerations in feature reuse

There seems to be much feature redundancy across timesteps

e Caching and reusing high-level features or attention can save
computations at the expense of minimal quality degradation

(a) Examples of Feature Maps (b) HeatMap for Similarity
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Ma et al, “DeepCache: Accelerating Diffusion Models for Free,” CVPR 2024



Further readings

e Consistency models

e https://arxiv.org/abs/2303.01469

e Parallel sampling

e https://arxiv.org/abs/2305.16317

e Early stopping
o https://arxiv.org/abs/2205.12524



https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2305.16317
https://arxiv.org/abs/2205.12524

That's it for today (-



