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Recall: Diffusion model
• A generative model, i.e., method to model the probability density  

• “denoising diffusion probabilistic model” 

• Like many other generative models,  is generated as a pushforward 
of some easy-to-sample density (e.g., Gaussian) 

• Goal.   Learn a good   from samples of 

p(x)

p(x)

f( ⋅ ) x

z ∼ 𝒩(0,Id) Generator f( ⋅ ) x = f(z) ∼ p(x)



Recall: Diffusion model

• Challenge.  

• How should we generate the corresponding  for some sample ? 

•  Also,  is likely to be very complicated 

• Idea. There is a straightforward way to model                   (use ) 

• Plus, this  can be decomposed into many sub-functions

z(i) x(i)

f( ⋅ )

f −1 z(i) = f −1(x(i))

f −1

z ∼ 𝒩(0,Id) Generator f( ⋅ ) x = f(z) ∼ p(x)



Recall: Diffusion model
• Forward diffusion. Adds Gaussian noise gradually 

 

• Given , we can sample  as 

q(xt |xt−1) = 𝒩(xt | 1 − βtxt−1, βtI)

x0 xt

xt = ᾱtx0 + 1 − ᾱtϵ, ᾱt =
t

∏
i=1

αi⏟
=1−βi

: analogous to “time” 
between  and 

βt
t t − 1

x0 z = xTx1 x2 (⋯)



Recall: Diffusion model
• Reverse denoising. Want to model  

• After some math*, one can realize that we can approximate 

 

where the mean  can be written as: 

 

• As the model is Gaussian, fitting the distribution is simply training with the 
squared loss

q(xt−1 |xt)

q(xt−1 |xt) = 𝒩(xt−1 |μθ(xt), σ2
t Id)

μθ(xt)

μθ(xt, t) =
1
αt (xt −

1 − αt

1 − ᾱt
ϵθ(xt, t)) Noise model; to be trained 

from the data

CVPR 2022 tutorial on diffusion models



Recall: Diffusion model
• Training. Train by noise prediction

ϵ ∼ 𝒩(0,Id)

x0
⊕

ᾱt

1 − ᾱt

t ∼ Unif({1,…, T})

ϵθ( ⋅ )

xt

Train with MSE loss!

ϵθ(xt, t)

Ho et al., “Denoising Diffusion Probabilistic Models,” NeurIPS 2020



• Sampling. Step-by-step denoising

Recall: Diffusion model

xt

ϵθ( ⋅ )

ϵθ(xt, t)
1
αt

−
1 − αt

αt − ᾱtαt

⊕

ϵ ∼ 𝒩(0,Id)

σt

⊕

xt−1
Ho et al., “Denoising Diffusion Probabilistic Models,” NeurIPS 2020



Problem
• Goal. We want fast & on-device generation 

• Hopefully video editing as well



Approaches
• Many different approaches 

• SDE/ODE solvers 

• Reduce the number of denoising steps 

• Deterministic sampler (e.g., DDIM) 

• Distillation 

• Reduce the computational cost of denoising model 

• Compress the model                                                          (Presentation 1) 

• Re-use computed values                                                  (Presentation 2) 

• Parallel sampling                                                                        (Presentation 3)



ODE solvers
• Idea. Consider infinitesimal time intervals 

• Recall that the forward diffusion is 

 

• This becomes an stochastic differential equation 

 

 

        

q(xt |xt−1) = 𝒩(xt | 1 − βtxt−1, βtI)

xt = 1 − β(t)Δtxt−1 + β(t)Δt𝒩(0,I)

≈ xt−1 −
β(t)Δt

2
xt−1 + β(t)Δt𝒩(0,I)

⇒ dxt = −
1
2

β(t)xtdt + β(t)dωt

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021



ODE solvers

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021



ODE solvers
• The reverse diffusion process can be written as: 

 

• We can train a neural network which approximates this “score function” 

• Use  for tractibility 

• The reverse can then be expressed as: 

 

• Use off-the-shelf SDE solvers. 

• Can also come up with ODE version, which is very fast!

dxt = −
1
2

β(t)(xt + 2∇xt
log qt(xt))dt + β(t)dω̄t

qt(xt |x0)

dxt = −
1
2

β(t)(xt + 2sθ(xt, t))dt + β(t)dω̄t

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021



Deterministic sampler
• Idea. We can play with the noise-adding procedure 

 

• Markov property                               (is there a reason why it should be so?) 

• Fixed                                            (can we introduce learnable components?) 

• Desired. Want faster “mixing” during forward 

• so that reverting them can be done in fewer steps

q(xt |xt−1) = 𝒩(xt | 1 − βtxt−1, βtI)

Song et al., “Denoising Diffusion Implicit Models,” ICLR 2021



Deterministic sampler
• DDIM. No noise-adding during the sampling 

• Theoretical motivations from approximating   (not ) 

• Same training procedure 

• Faster sampling (1000  25~40), but slightly weaker image diversity

q(xt−1 |xt, x0) q(xt−1 |xt)

→

ϵθ( ⋅ )

ϵθ(xt, t)
1
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−
1 − αt

αt − ᾱtαt

⊕ ⊕

xt−1

xt

Song et al., “Denoising Diffusion Implicit Models,” ICLR 2021



Distillation
• Idea. Simply distill a multi-step denoiser from a single-step one 

• Luhman & Luhman (2021) distills with the loss 

 

where  denotes the mean of the estimated Gaussian. 

•  is generated by multi-step diffusion

L =
1
2

𝔼xT
∥fstu(xT) − ftea(xT)∥2

2

f( ⋅ )

ftea

Luhman and Luhman, “Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed,” arXiv 2021



Distillation
• Later works find that progressive distillation is beneficial, in general 

• No need to run full number of sampling steps with the original model

Salimans and Ho, “Progressive Distillation for Fast Sampling of Diffusion Models,” ICLR 2022



Considerations in model compression
• A noteworthy characteristic of diffusion models is their time-dependency 

• The activation distribution changes from timestep to timestep 

• Requires a careful calibration of quantization range

Shang et al., “Post-training Quantization on Diffusion Models,” CVPR 2023



Considerations in feature reuse
• There seems to be much feature redundancy across timesteps 

• Caching and reusing high-level features or attention can save 
computations at the expense of minimal quality degradation

Ma et al., “DeepCache: Accelerating Diffusion Models for Free,” CVPR 2024



Further readings
• Consistency models 

• https://arxiv.org/abs/2303.01469 

• Parallel sampling 

• https://arxiv.org/abs/2305.16317 

• Early stopping 

• https://arxiv.org/abs/2205.12524

https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2305.16317
https://arxiv.org/abs/2205.12524


That’s it for today 🙌


