
Spring 2025

Accelerating Diffusion Models
EECE695D: Efficient ML Systems

Recall: Diffusion model
• A generative model, i.e., method to model the probability density

• “denoising diffusion probabilistic model”

• Like many other generative models, is generated as a pushforward
of some easy-to-sample density (e.g., Gaussian)

• Goal. Learn a good from samples of

p(x)

p(x)

f(⋅) x

z ∼ 𝒩(0,Id) Generator f(⋅) x = f(z) ∼ p(x)

Recall: Diffusion model

• Challenge.

• How should we generate the corresponding for some sample ?

• Also, is likely to be very complicated

• Idea. There is a straightforward way to model (use)

• Plus, this can be decomposed into many sub-functions

z(i) x(i)

f(⋅)

f −1 z(i) = f −1(x(i))

f −1

z ∼ 𝒩(0,Id) Generator f(⋅) x = f(z) ∼ p(x)

Recall: Diffusion model
• Forward diffusion. Adds Gaussian noise gradually

• Given , we can sample as

q(xt |xt−1) = 𝒩(xt | 1 − βtxt−1, βtI)

x0 xt

xt = ᾱtx0 + 1 − ᾱtϵ, ᾱt =
t

∏
i=1

αi⏟
=1−βi

: analogous to “time”
between and

βt
t t − 1

x0 z = xTx1 x2 (⋯)

Recall: Diffusion model
• Reverse denoising. Want to model

• After some math*, one can realize that we can approximate

where the mean can be written as:

• As the model is Gaussian, fitting the distribution is simply training with the
squared loss

q(xt−1 |xt)

q(xt−1 |xt) = 𝒩(xt−1 |μθ(xt), σ2
t Id)

μθ(xt)

μθ(xt, t) =
1
αt (xt −

1 − αt

1 − ᾱt
ϵθ(xt, t)) Noise model; to be trained

from the data

CVPR 2022 tutorial on diffusion models

Recall: Diffusion model
• Training. Train by noise prediction

ϵ ∼ 𝒩(0,Id)

x0
⊕

ᾱt

1 − ᾱt

t ∼ Unif({1,…, T})

ϵθ(⋅)

xt

Train with MSE loss!

ϵθ(xt, t)

Ho et al., “Denoising Diffusion Probabilistic Models,” NeurIPS 2020

• Sampling. Step-by-step denoising

Recall: Diffusion model

xt

ϵθ(⋅)

ϵθ(xt, t)
1
αt

−
1 − αt

αt − ᾱtαt

⊕

ϵ ∼ 𝒩(0,Id)

σt

⊕

xt−1
Ho et al., “Denoising Diffusion Probabilistic Models,” NeurIPS 2020

Problem
• Goal. We want fast & on-device generation

• Hopefully video editing as well

Approaches
• Many different approaches

• SDE/ODE solvers

• Reduce the number of denoising steps

• Deterministic sampler (e.g., DDIM)

• Distillation

• Reduce the computational cost of denoising model

• Compress the model (Presentation 1)

• Re-use computed values (Presentation 2)

• Parallel sampling (Presentation 3)

ODE solvers
• Idea. Consider infinitesimal time intervals

• Recall that the forward diffusion is

• This becomes an stochastic differential equation

q(xt |xt−1) = 𝒩(xt | 1 − βtxt−1, βtI)

xt = 1 − β(t)Δtxt−1 + β(t)Δt𝒩(0,I)

≈ xt−1 −
β(t)Δt

2
xt−1 + β(t)Δt𝒩(0,I)

⇒ dxt = −
1
2

β(t)xtdt + β(t)dωt

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021

ODE solvers

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021

ODE solvers
• The reverse diffusion process can be written as:

• We can train a neural network which approximates this “score function”

• Use for tractibility

• The reverse can then be expressed as:

• Use off-the-shelf SDE solvers.

• Can also come up with ODE version, which is very fast!

dxt = −
1
2

β(t)(xt + 2∇xt
log qt(xt))dt + β(t)dω̄t

qt(xt |x0)

dxt = −
1
2

β(t)(xt + 2sθ(xt, t))dt + β(t)dω̄t

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations,” ICLR 2021

Deterministic sampler
• Idea. We can play with the noise-adding procedure

• Markov property (is there a reason why it should be so?)

• Fixed (can we introduce learnable components?)

• Desired. Want faster “mixing” during forward

• so that reverting them can be done in fewer steps

q(xt |xt−1) = 𝒩(xt | 1 − βtxt−1, βtI)

Song et al., “Denoising Diffusion Implicit Models,” ICLR 2021

Deterministic sampler
• DDIM. No noise-adding during the sampling

• Theoretical motivations from approximating (not)

• Same training procedure

• Faster sampling (1000 25~40), but slightly weaker image diversity

q(xt−1 |xt, x0) q(xt−1 |xt)

→

ϵθ(⋅)

ϵθ(xt, t)
1
αt

−
1 − αt

αt − ᾱtαt

⊕ ⊕

xt−1

xt

Song et al., “Denoising Diffusion Implicit Models,” ICLR 2021

Distillation
• Idea. Simply distill a multi-step denoiser from a single-step one

• Luhman & Luhman (2021) distills with the loss

where denotes the mean of the estimated Gaussian.

• is generated by multi-step diffusion

L =
1
2

𝔼xT
∥fstu(xT) − ftea(xT)∥2

2

f(⋅)

ftea

Luhman and Luhman, “Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed,” arXiv 2021

Distillation
• Later works find that progressive distillation is beneficial, in general

• No need to run full number of sampling steps with the original model

Salimans and Ho, “Progressive Distillation for Fast Sampling of Diffusion Models,” ICLR 2022

Considerations in model compression
• A noteworthy characteristic of diffusion models is their time-dependency

• The activation distribution changes from timestep to timestep

• Requires a careful calibration of quantization range

Shang et al., “Post-training Quantization on Diffusion Models,” CVPR 2023

Considerations in feature reuse
• There seems to be much feature redundancy across timesteps

• Caching and reusing high-level features or attention can save
computations at the expense of minimal quality degradation

Ma et al., “DeepCache: Accelerating Diffusion Models for Free,” CVPR 2024

Further readings
• Consistency models

• https://arxiv.org/abs/2303.01469

• Parallel sampling

• https://arxiv.org/abs/2305.16317

• Early stopping

• https://arxiv.org/abs/2205.12524

https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2305.16317
https://arxiv.org/abs/2205.12524

That’s it for today 🙌

