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Motivation

» Diffusion models generate high-quality images but are computationally intensive.

s As model size scales (e.g., SD 1.4 (0.8B) - SDXL (2.6B) - FLUX.1 (12B)):
Better quality.

Heavier memo ry. FLUX.1-dev BF16 SVDQuant INT4 (W4A4)
(25 Steps) LPIPS: 0.223
Higher inference latency. DiT Memory: 22.7 GiB DiT Memory: 6.5 GiB (3.5x Less)
E2E Latency: 111.7 s E2E Latency: 12.9 s (8.7% Faster)

s Low-bit quantization (4-bit) is promising
Goal: W4A4 Quantization.

® ‘ SVDQuant | ) o . SYD(lJ:ant

iS lite . .
and fast © ' w and fast

Prompt: a cyberpunk cat holding a huge neon sign that says "SVDQuant is lite and fast", wearing fancy goggles and a black leather jacket.
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Limits of Standard PTQ in Diffusion Models

s As model size scales (e.g., SD 1.4 (0.8B) - SDXL (2.6B) - FLUX.1 (12B)):

Better quality.
Heavier memory.

Higher inference latency.

s Unlike LLMs:

— LLMs are bandwidth-bound
— Diffusion models are compute-bound

— FLUX.1 (12B) vs Llama2 (13B):
FLUX.1 is over 3x heavier than Llama2
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Prior Works

s Q-Diffusion, PTQ4DM: 8-bit quantization.
— For U-Net backbone.

s MixDQ, ViDiT-Q:
— Use low-bit inference engines.
— Show actual speedups on GPUs.
— ViDiT-Q: W8AS8, MixDQ: W4AS8

s Most prior work:
— Targets only weights (W4A16)
— No support for both weights & activations in 4-bit
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Existing Strategy: Smoothing

outlier IX| W]
. . . . . w 10 0.1
= Shift outliers from activations to weights : owtsivenis
— Scaling each channel in X by smoothing factor A. g LA i
C . -1 N . hard to quantize very easy to quantize
— X =X-diag(A)™, W =W -diag(1). () Original
— Y =(X-diag) 1) - (W - diag(1)) | smoothed lemigﬁwg‘lculw W
5
m For Diffusion Models, weight outlier is also critical. O SMytoguaitice | eAsyi quantize
7
. . S th t
— Looks like this: (b) SmoothQuan
. Outliers Origirzlgl C o After Smoz%thing More
o ' T Outliers
= g :% 08
r £ IR0 L N
'*3 6 :8 0.6 2
:E 4 E% 04 -?)‘310 .
E 2 W E‘goz >
0 0 P 0
0 18k 37k 55k 74k 0 Tk 14k 21k, 0 18k 37k 55k T4k 0 7k 14k 21k
Input Activation Group Index Weight Group Index ' Input Activation Group Index Weight Group Index
(a) |X]| (b) | W] v (© |1X] =X diag@)! (@ |W|=|W-diagd)|
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4bit Quantization + Low-Rank Branch

s High-precision branch for outliers.
— 16-bit low rank branch + 4-bit residual branch.

— Y =(X-diagh)™) - (W -diag()) =X -W =X+ (L;L, + R) = XL,L, + XR
— Y =~ XL1L, + sxsgQ(X)Q(R)

Migrate Difﬂ/c_ultX@‘Smoothing Migrate Difficulty with SVD
Outlier v 3 v — W _ Low-Rank B hL.L
o oy 2 T CANAAAAAY | CAAAAAAAA S AANARRAN T
3 L | | ] 16-Bit L,
. ) | | -
g 1 1
"é Low Effective Bits " ! ' | | =4 rank=32
: ({1 - | A - .
& y : I | . 16-B1t L2
0 Channel 0 Input Channel ' 0 Channel 0 Input Channel : 0 Channel 0 Input Channel
Very Hard to Quantize Hard to Quantize ' Easy to Quantize Harder to Quantize ' Easy to Quantize Easy to Quantize =~ No Need to Quantize
(a) Original (b) Shift Outliers from Activation X to Weight W (c) SVDQuant (Ours)
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Diffusion model (U-Net)
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Diffusion
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Quantization Preliminary

s Given a tensor X, the quantization process is defined as: Qx: Low-bit representation of X
x x Sy: Scaling factor
QX = round (S_) , Sy = max(|X])
X

Qmax: Maximum quantized value
—  For signed k-bit integer quantization, ¢4, = 271 — 1
—  For 4-bit floating-point quantization (E2M1), gyqr = 6 (1.1, % 2371)
— Dequantized tensor Q(X) = sy - Qy

Admax

m For alinear layer with input X and weight W, its computation:

XW = QX)Q(W) = sysw - QxQw

= we denote X-bit weight, y-bit activation as W, 4,,.

— This work focus on W4A4 quantization for acceleration.
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Quantization Prelimina

ry

m Traditional methods to suppress outliers include QAT and rotation.

— QAT requires massive computing resources.

s Rotation is inapplicable due to the usage of adaptive normalization layers.
— Online rotation of both activations and weights incurs significant runtime overhead.

¥
O
—
2
=
E
o

RMSNorm

quantize

INT4
N x
FP16

Y
o
Py
g
z

?

Rotation applied to a LLaMa-style FFN. The RMSNorm
scaling (a) has been absorbedinto the weight matrices

rPOSTELCH

Noise hX
32x32x4 32x32x4
4 4

Linear and Reshape

Layer Norm /

DiT Block

1 I
Patchify = Embed
|

Noised Timestep t

Latent !
32x32x4 Label y

Latent Diffusion Transformer

—d

Scale
1

Pointwise
Feedforward

1
Scale, Shift
1
Layer Norm

—

Scale
1
Multi-Head
Self-Attention
1
Scale, Shift
1
Layer Norm

]

\ Input Tokens

a3
—2

Y2:82

—

~

a1

Y1,81

MLP
I

Conditioning

DiT Block with adaLN-Zero

=

AdaLN

11/31



Problem Formulation

= Consider a linear layer with input X € R?*™ and weight W € R™*™, Quantization
error can be defined as:

E(X,W) = |[XW = QX)QW)||

s Proposition 4.1 (Error decomposition).
The quantization error can be decomposed as follows:

EX, W) < [[X[[plW = QWW)lF + Wl + W =QW)lF)

s To minimize the overall quantization error, we aim to optimize four terms.
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Proof of Proposition 4.1

s The proof of proposition use two inequalities.
— 1) Triangle inequality: ||A + Bl|r < ||Allz + |Bl|¢
— 2) Cauchy-Schwarz Inequality: ||[AB||r < ||Allz||B]|7

rPOSTELCH
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SVDQuant

s SVDQuant 1) first migrates outliers from activation to weight by smoothing, and then

2) absorbs the migrated weight outliers into the low-rank branch.

= Smooth outliers in activations using a per-channel smoothing factor A € R™:

X=X -diag(Q)™1, W = diag(1) - W

max(|Wi,: |)

. Outliers Orlglggl 7 y After Smolt‘)othmg More ,
° : Outliers : Outliers
2 | g |
s 8 o 15| | - ; 08 o 15
~ gt Smoothing = 3
£ 6 = ' 206 =
e 210 Ei =10
E 4 '% | 1| S04 -%
= Z s | < =
5, - | Zo02
3 &
= .

0 0 0 0

0 I8 3%k 55k T4k 0 7k 14 2Ik 0 18 37k sk 74k 0 7k 14k

Input Activation Group Index Weight Group Index
(@ |X| (b) [W]

Input Activation Group Index

A Wfight Group Index «
() |X|=|X-diag)™"'| (d) |W]=|W-diag@d)|s

max(|X:,i|)a

1-a

= While the smoothed input X exhibits fewer outliers, W has a significant increase in

both magnitude and the presence of outliers. = raise || — Q(W)||:
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SVDQuant

m Coreinsightis to introduce a 16-bit low-rank branch to further migrate the weight
quantization difficulty.

= Specifically, we decompose W = L,L, + R,where L; € R™¥" L, € R™*™. Then XW
can be approximated as:

XW = XW = XL,L, + XR ~ XL, L, + Q(X)Q(R)

16-bit low-rank path  4-bit residual path

m 7 is typically set to 16 or 32, so additional parameters and computation for the low-
rank branch are negligible.
— However, it still requires careful system design to eliminate redundant memory access
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SVDQuant

s From reformulated equation, quantization error can be expressed as

O EEW) = KW - U0l A
= ||[XW — (XL, L, + Q(X)eR)||, = | XR — @(X)Q®)| . = E(X. R)

a Since X is already free from outliers, we only need to focus on optimizing the
IR||Fand [[R — Q(R)|[F.

s Then, how to minimize terms relatedto R = W — L,{L,?
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SVDQuant

m Proposition 4.2 (Quantization error bound).

For any tensor R and quantization method Q(R) = sgrQg. Assuming the elements of R follow a
distribution that satisfies the following regularity condition: There exists a constant c such that

E[max(|R|)] < c - E[lIR||r].

Then, we have

E[R — QR)lx] < 28R B[|IR]|4].

Amax

s From this proposition, the quantization error is bounded by the magnitude of R.
— Thus, our goal is to find the optimal L, L, that minimizes ||R||r = ||l7[7 — L1L2||F.
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Proof of Proposition 4.2

Proposition 4.2 (Quantization error bound). For any tensor R and quantization method described in
Equation I as Q(R) = sg - Qr. Assuming the elements of R follow a distribution that satisfies the
following regularity condition: There exists a constant ¢ such that

Then, we have

E [max(|R|)] < c-E[||R]|p] .

B[R - Q) < L2 kg,

(7

®)

where size( R) denotes the number of elements in R. Especially if the elements of R follow a normal

distribution, Equation 7 holds for ¢ = ——(—Y—‘Ogﬁ‘,?;f,"(j‘””.

Especially, if the elements of R follows a normal distribution, we have

E [max(|R|)] < o1/21og (size(R))

(IR,
0| e

E [max(|R])] e 2
<o+/2log (size(R)) |\ a:eZR J

size(R)

2size( R)

1

S\/log e ) g (IRl - \/Size(m]

™
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SVDQuant

s The problem of minimizing ||I7I7 — L1L2||F can be solved by Singular Value

Decomposition (SVD).

—  Minimize |W — Ly L, ||, => Maximize ||L; Ll ¢

I4lly = [543 = rraceTA) = [T 02(a),

where g;(A) is i-th singular value of A.

= Given SVD of W = UZV, the optimal solution is L; = UX.,.and L, =V,
— By removing dominant values, the magnitude of the residual R is dramatically reduced,

as IRllp = [0 g2

0 7k 14k 21k
Weight Group Index

POSTERPCH (d) |W|=|W- diag(d)|

o (A), compared to ||W|| \/me{mn} o (A)

After SVD

Weight Value
=
=
=
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(e) [R| = |W—L,L,|
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Nunchaku:
Fusing Low-rank And Low-bit Branch Kernels

m Although the low-rank branch introduces negligible computation in theory, running it
as a separate branch incurs large latency overhead.

500 . \ peememesesmesesereseesaseseasacaeean
1 1 i
1 y X
— 400 o P XL,
= B DownProj. 1 XL L,
> 300 [0 Up Proj. .
= B 4-bit Computes
o 200 - 4-Bit Compute
= E Quantize ! 1 X -'—b antize
= 100 : = Or: ‘x‘anQR E
1 1l
0 [ Fused Kernel 1 Fused Kernel 2
| . S __________
Naive Nunchaku (Ours) ' Shared Input Shared Output
(a) Latency Breakdown on QKYV projection ' (b) Nunchaku Kernel Fusion

Figure 6: (a) Naively running low-rank branch with rank 32 will introduce 57% latency overhead due to extra
read of 16-bit inputs in Down Projection and extra write of 16-bit outputs in Up Projection.

— Because the input and output activation sizes remain unchanged, shifting bottleneck from
computation to memory access.

— For example, Up projection for QKV projection is much slower since its output exceeds the
available L2 cache, resulting in the extra DRAM load and store operations.
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Nunchaku:
Fusing Low-rank And Low-bit Branch Kernels

s Author eliminate these extra memory access and halving the number of kernel calls
by fusing.
— 1. Down projection(L) shares the same input as quantization kernel => Fusing
— 2. Up projection(L,) shares the same output as the 4-bit computational kernel => Fusing

500 U ,  pemmsmessecescsesesesssssecsssssesees
1 ! :
o ' )“(L
7 200 L —=—+
el B DownProj. XLL,
> 300 [0 Up Proj. .
= B 4-bit Computes
o 200 . 4-Bit Compute
= antize ! P
5 [ Quantiz ' 1x-—> Quantize —|—|-> Op.s, ”QQ 2 3
100 1 CreR%R S '
1 '
0 ' Fused Kernel 1 Fused Kernel 2
I e ——— * —
Naive Nunchaku (Ours) :Sharcd Input Shared Output
(a) Latency Breakdown on QKYV projection ' (b) Nunchaku Kernel Fusion

Figure 6: (a) Naively running low-rank branch with rank 32 will introduce 57% latency overhead due to extra
read of 16-bit inputs in Down Projection and extra write of 16-bit outputs in Up Projection.

m As aresult, low-rank branch adds only 5¥10% latency.
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Experimental Setup

. Models : FLUX1 |  PixArt-Z | SANA SDXL SDXL-Turbo
« Datasets : COCO Captions 2024 — for Calibration
MJIHQ-30K — 5K prompts for benchmarking
sDCI — 5K prompts for benchmarking
« Comparison : NF4 ViDiT-Q MixDQ TensorRT SVDQuant (ours)
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Baselines Comparison

s PTQ-based Quantization Methods

Category

NF4

ViDiT-Q

MixDQ

TensorRT

Precision

W4

WB8AS8

WA4A8

WB8AS8

Core Technique

NormalFloat: nonlinear normal dis
tribution-based 4-bit

Token-level quantization + s
moothing

16-bit for initial tokens + 4-bi
t for the rest

Percentile-based calibration
+ smoothing

Very low memory usage, strong w

Strong for text alignment and

Minimal performance loss,

Optimized for production, fas

Strengths . . i imizi i .
g eight preservation token outliers maX|m|2|ng f:ompressmn t inference, stable
efficiency
Fixed activation precision (needs F | Limited memory savings due | Performance varies by sente | Hard to customize, only activ
Weaknesses . . . .
P16 etc.) to 8-bit usage nce length, complex logic ation is quantized
Use Cases FLUX.1 PixArt-2 SDXL-Turbo SDXL, LLaMA

rPOSTELCH
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Models Comparison

s Diffusion Transformer & UNet based Models

Estimated Memory

Model Parameters (B) Architecture Step Type (FP16) Use Case
. . . High-fidelity generatio
FLUX.1 12B DiT (Large) multi-step 22.2 GiB n, LoRA support
. DiT , o Compact model,
PiXArt-2 0.6B (Compact PixArt variant) multi-step 273 GiB alignment-sensitive
. . . Real-time generation,
SANA 0.6B Linear DiT 1-step <4 GiB
low-latency
LDM . o o High-quality baseline
SDXL 2.6B (multi-step) multi-step (~30) 6~7 GiB diffusion
SDXL-Turbo ~1B Optimized SDXL 1~2 steps 4~5 GiB Latency-critical,

(1~2 steps)

real-time image gen

rPOSTELCH
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Visual Quality Results

FLUX.1-dev BF16 NF4 W4Al6 Our INT W4A4 Our NVFP W4A4  FLUX.1-schnell BF16 NF4 W4A16 Our INT W4A4 Our NVFP W4A4 MJHQ sDCI
Image Reward: 0.953 Image Reward: 0.910 Image Reward: 0.935 Image Reward: 0.937 } | Reward: 0.968 Image Reward: 0.943 Image Rew 0.951 Image Reward: 0.968 .

Backbone  Model Precision Method Quality Similarity Quality Similarity

FID () IR(1) LPIPS(}) PSNR(t) FID(l) IR(1) LPIPS(])} PSNR({)

BF16 - 203 0.953 - - 248 102 - -
FLux.1  INTW8AS Ours 204 0948  0.089 27.0 247 102 0106 249
: -dev W4A16 NF4 206 0910 0272 19.5 249 098  0.292 18.2
e ks Sasi it i Prompt: bohemian maximalist interior design, outdoor patio with a <. i - i - d i i
Do Tesagine (he it coplo loten cresed by 4] o (el ALTOREN stunning view of the tropical beach, dappled lighting, rattan swinglng chair, (50 Steps)  INTW4A4  Ours 199 0935 0223 21.0 242 101 0240 19.7
o e A S bty wicker overhead, lush plants and a garden library filled with books. NVFP W4A4 Ours 204 0.937 0.208 214 24.7 1.01 0.218 20.2
[ f T IF ~ (5 -

i 4 : : BF16 - 192 0938 - - 208 0932 - -
FLUx.| INT W8AS Ours 192 0966  0.120 22.9 207 0975 0.133 213
-schnell W4A16 NF4 189 0943 0257 18.2 207 0953 0.263 17.1
(4 Steps)  INT W4A4 Ours 183 0951  0.258 18.3 201 0979 0260 172
; AL NVFP W4A4  Ours 190 0968  0.227 19.0 205 0979 0226 18.1

Prompt: no gravity, weightless, underwater in a dense thick kelp forest, surrealism with elements of Prompt: A smiling woman planting tomato seedlings in her permaculture garden, sunny day, a
abstraction and Rococo whimsy full length photography . profile of beautiful young woman, long greenhouse in the background, retro modern styling, highly realistic with a cinematic background blur, FP16 - 16,6  0.944 - - 248 0.966
hair with a long flowing silk and organza dress, underwater surrounded by thick kelp + Focal point and angle evoking a filmic perspective, Photography, DSLR with a 35mm prime lens at 2.8 DiT

(a) FLUX.1-dev : (b) FLUX.1-schnell INTWSAR  ViDIT-Q 157 0944  0.137 225 235 0974 0.163 204
PixArt-LFPI6  ViDI-QINTW4AS  OurINTW4A4  OurNVFPW4A4 | SDXL-Turbo FPI6  MixDQINTW4AS  OurINTW4A4  Our NVFP W4A4 PixArt.y,  INT WBAS Ours 163 0955  0.109 23.7 242 0969 0129 21.8
Image Reward: 0.944  Image Reward: 0.573 Image Reward: 0.878 Image Reward: 0.940 ; Image Reward: 0.845 Image Reward: 0.708 Image Reward: 0.816 Image Reward: 0.832 (20 Steps)  [NT W4AS VIDIT-Q 373 0.573 0611 12.0 40.6 0.600 0.629 112
; k ’ N ™ INT W4A4  VIDIT-Q 412 -227  0.854 6.44 425 228 0838 6.70
: INT W4Ad  Ours 192 0878 0323 17.6 259 0918 0352 16.5
: NVFP W4A4  Ours 16.6 0940  0.271 185 229 0971 0298 17.2

: BF16 - 206 0952 - - 299 0847 - -
SANA  INT W4A4 RTN 20,5 0894 0339 15.3 286 0807 0371 13.8
Prompt: a 12 year old orphan boy wizard with tattered clothes. South American ancient green jungle flower white, -1.6B LT e v (Ol 1930935 0220 g 281 0846 0242 Ao
clothing. Night sky with falling stars. Hyper realistic, cinematic lighting fe ce, d, detailed, photo (20 Steps) NVFP W4A4 RTN 19.7 0.932 0.237 17.3 29.0 0.829 0.265 15.6
I = NVFP W4A4  Ours 200 0955 0477 19.0 293 0846  0.196 17.3

FP16 - 243 0.845 - - 247 0.705 - -
: INTWSAR  MixDQ 241 0834  0.147 21.7 250 0690  0.157 216
: spxL  INT W8A8 Ours 243 0.845  0.100 24.0 248 0701 0110 237
X ‘Turbo  INTW4A8  MixDQ 277 0708  0.402 15.7 259 0610 0415 15.7
Prompt: hummingbird flying near a flower. 4 ultra realistic ray tracing dynamic lighting | Prompt: cyberpunk city sunset drone shot (48leps)  INTW4A4  MixDQ 353 -226  0.685 1.0 373 228 0686 113
(©) PixArt-X : (d) SDXL-Turbo - INT W4A4  Ours 246 0816  0.262 18.1 260 0671 0272 18.0
UNet NVFP W4A4  Ours 244 0832 0.231 189 252 0.688 0238 18.9

) o ) ) _ FP16 - 166 0729 - - 225 0573 - -
Figure 7: Qu:l]ltfltl\’e visual results on MJTHQ. Image Reward is calculated over the entire ddtdset..On FLUX.1 ox.  INTWEAS TensorRT 202 0591 0247 0 254 0453 0065 17
models, our 4-bit models outperform the NF4 W4A 16 baselines, demonstrating superior text alignment and (30 Stepsy  INTWBAS  Ours 166 0718  0.119 26.4 224 0574 0429 259
closer similarity to the 16-bit models. For instance, NF4 misses the swinging chair in the top right example. INT W4A4  Ours 206 0601 0288 210 262 0477 0307 207
On PixArt-3 and SDXL-Turbo, our 4-bit results demonstrate noticeably better visual quality than VIDIT-Q’s NVFP W4A4  Ours 183 0.640  0.250 21.8 239 0502 0.261 21.7

and MixDQ’s W4AS results.
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Integrate with LoRA

Integrate with LORA (Low-Rank Adaptation)

* No re-quantization required for LORA integration.

« Maintains 16-bit image quality across five LORA styles, from Realism to Anime and
Yarn Art. W'=W + AW =W + AB (LORA)

Realism LoRA  Ghibsky Illustration LoRA A € R™*TLoRA B € RTLoRAXT ... py b, & min(m,n)

Anime LoRA

W = L,L, + R (SVDQuant)

FLUX.1-dev

BF16 A €L, L, e R"7*™, R =residual

XW ~ XL1L, + Q(X)Q(R)
Our INT4 - XW = X(L1L, + AB) + Q(X)Q(R)

- rankr’ =1+ 1,p4

Figure 9: Our 4-bit model seamlessly integrates with off-the-shelf LoRAs without requiring requantization.
When applying LoRAs, it matches the image quality of the original 16-bit FLUX.1-dev. See Appendix F for
the text prompts.
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Ablation Study

Ablation Study

* Naive quantization and SVD only show severe degradation in 4-bit.

* SVDQuant improves quality by decomposing weights and quantizing only the residual Smoothing

» Low-rank branch absorbs outliers, achieving near-FP16 quality

PixArt-XZ: FP16
Image Reward: 0.931

SVD Only Naive Quantization Smoothing
Image Reward: -2.18  Image Reward: -1.12  Image Reward: 0.508

RN

LoRC Ours w/o Smoothing Ours
i Image Reward: -0.965  Image Reward: 0.690  Image Reward: 0.878

s ‘L.' $ '\# f

2

Prompt: recipe image, angry crab sallad, in salvador dali style photographed by david lachapelle, eerie,
rennaisance colors, award winning recipe on white background

Figure 10: Ablation study of SVDQuant on PixArt-. The rank of the low-rank branch is 64. Image Reward is
measured over 1K samples from MJHQ. Our results significantly outperform the others, achieving the highest
image quality by a wide margin.

rPOSTELCH
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Figure 5: First 64 singular values

of W, W, and R. The first 32
singular values of W exhibit a
steep drop, while the remaining
values are much more gradual.
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Increasing Rank

Increasing Rank

« Higher rank(r) improves image quality, with Image Reward increasing from 0.787(r=16) to 0.859(r=64).

* However, model size and latency overhead grow significantly, reaching 11.3% size and 8.8% latency at rank 64.

 Rank 32 was chosen as a middle-ground trade-off in the paper

SVDQuant Rank=16 SVDQuant Rank=32 SVDQuant Rank=64

AR ERLG Image Reward: 0.787 Image Reward: 0.829  Image Reward: 0.859

Model Size Overhead

Prompt: award winning photography of a beautiful medic smiling

Figure 18: Increasing the rank r of the low-rank branch in SVDQuant can enhance image quality, but it also

leads to higher parameter and latency overhead.
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Memory save and speedup

Memory save and speedup

« Up to 3.6x model size and 3.5x memory reduction compared to BF16 models.
« 3.0~10.1x latency speedup across RTX 4090 and RTX 5090.
» Outperforms NF4 (W4A16) in both efficiency and speed, while preserving quality.

B BFl6 B NF4 (W4A16) B SVDQuant INT4/NVEP4 (W4A4)

24 28 700 2000

500
375
250
125

525
350
175

0

1500
1000
500

0
BFl6 NF4 INT4 BF16 NF4 INT4 BF16 NF4 NVFP4

(c) Single Step Latency (d) Single Step Latency (c) Single Step Latency
on Desktop 4090 (ms) on Laptop 4090 (ms) on Desktop 5090 (ms)

INT4
/INVFP4 /INVFP4

(a) Model Size (GiB) (b) DiT Inference Memory (GiB)

INT4

BFle NF4 BFl6 NF4

Figure 8: SVDQuant reduces the 12B FLUX.1 model size by 3.6x and cuts the 16-bit model’s memory usage
by 3.5x. With Nunchaku, our INT4 model runs 3.0x faster than the NF4 W4A 16 baseline on both desktop and
laptop NVIDIA RTX 4090 GPUs. Notably, on the laptop 4090, it achieves a total 10.1x speedup by eliminating
CPU offloading. Our NVFP4 model is also 3.1x faster than both BF16 and NF4 on the RTX 5090 GPU.
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Conclusion

SVDQuant : A 4-bit PTQ method for diffusion models

Introduces a low-rank branch to absorb outliers in weight and activations

The Nunchaku engine fuses low-rank and 4-bit branches to reduce memory and overhead

Achieves 3.5x memory reduction and 3.0 speedup on RTX4090/5090
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Limitation

« Lack of fine-grained control over quantization granularity

« Limited generality and stability of activation quantization
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Thank you
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