
Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, E

nze Xie, Chenlin Meng, Jun-Yan Zhu, Song Han

Presented by Changhwan Sung1, Jungyu Jin1, Junho Jeong2

1Graduate School of AI, 2Electrical Engineering, POSTECH

May 21, 2025

SVDQuant: Absorbing Outliers by Low-Rank Comp
onents for 4-Bit Diffusion Models

ICLR 2025

2 / 31

Contents

1. Introduction

2. Methodology

3. Experimental results

4. Conclusion

3 / 31

Motivation

■ Diffusion models generate high-quality images but are computationally intensive.

■ As model size scales (e.g., SD 1.4 (0.8B) → SDXL (2.6B) → FLUX.1 (12B)):

Better quality.

Heavier memory.

Higher inference latency.

■ Low-bit quantization (4-bit) is promising

Goal: W4A4 Quantization.

4 / 31

Limits of Standard PTQ in Diffusion Models

■ As model size scales (e.g., SD 1.4 (0.8B) → SDXL (2.6B) → FLUX.1 (12B)):

Better quality.

Heavier memory.

Higher inference latency.

■ Unlike LLMs:

̶ LLMs are bandwidth-bound

̶ Diffusion models are compute-bound

̶ FLUX.1 (12B) vs Llama2 (13B):
FLUX.1 is over 3x heavier than Llama2

5 / 31

Prior Works

■ Q-Diffusion, PTQ4DM: 8-bit quantization.

̶ For U-Net backbone.

■ MixDQ, ViDiT-Q:

̶ Use low-bit inference engines.

̶ Show actual speedups on GPUs.

̶ ViDiT-Q: W8A8, MixDQ: W4A8

■ Most prior work:

̶ Targets only weights (W4A16)

̶ No support for both weights & activations in 4-bit

6 / 31

Existing Strategy: Smoothing

■ Shift outliers from activations to weights
̶ Scaling each channel in 𝑋 by smoothing factor 𝜆.

̶ ෠𝑋 = 𝑋 ∙ diag 𝜆 −1, ෡𝑊 = 𝑊 ∙ diag 𝜆 .

̶ 𝑌 = 𝑋 ∙ diag 𝜆 −1 ∙ 𝑊 ∙ diag 𝜆

■ For Diffusion Models, weight outlier is also critical.
̶ Looks like this:

7 / 31

4bit Quantization + Low-Rank Branch

■ High-precision branch for outliers.

̶ 16-bit low rank branch + 4-bit residual branch.

̶ 𝑌 = 𝑋 ∙ diag 𝜆 −1 ∙ 𝑊 ∙ diag 𝜆 = ෠𝑋 ∙ ෡𝑊 = ෠𝑋 ∙ 𝐿1𝐿2 + 𝑅 = ෠𝑋𝐿1𝐿2 + ෠𝑋𝑅

̶ 𝑌 ≈ ෠𝑋𝐿1𝐿2 + 𝑠𝑋𝑠𝑅𝑄 ෠𝑋 𝑄 𝑅

𝑅 =

8 / 31

Diffusion model (U-Net)

9 / 31

Diffusion model (DiT)

10 / 31

Quantization Preliminary

■ Given a tensor X, the quantization process is defined as:

𝑄𝑋 = 𝑟𝑜𝑢𝑛𝑑
𝑋

𝑠𝑋
, 𝑠𝑋 =

max 𝑋

𝑞𝑚𝑎𝑥

̶ For signed k-bit integer quantization, 𝑞𝑚𝑎𝑥 = 2𝑘−1 − 1

̶ For 4-bit floating-point quantization (E2M1), 𝑞𝑚𝑎𝑥 = 6 (1.12 ∗ 23−1)

̶ Dequantized tensor 𝑄 𝑋 = 𝑠𝑋 ⋅ 𝑄𝑋

■ For a linear layer with input 𝑋 and weight 𝑊, its computation:

𝑿𝑾 ≈ 𝑸 𝑿 𝑸 𝑾 = 𝒔𝑿𝒔𝑾 ⋅ 𝑸𝑿𝑸𝑾

■ we denote 𝑥-bit weight, 𝑦-bit activation as 𝑊𝑥𝐴𝑦.

̶ This work focus on W4A4 quantization for acceleration.

𝑄𝑋: Low-bit representation of 𝑋
𝑠𝑋: Scaling factor
𝑞𝑚𝑎𝑥: maximum quantized value

11 / 31

Quantization Preliminary

■ Traditional methods to suppress outliers include QAT and rotation.
̶ QAT requires massive computing resources.

■ Rotation is inapplicable due to the usage of adaptive normalization layers.
̶ Online rotation of both activations and weights incurs significant runtime overhead.

Rotation applied to a LLaMa-style FFN. The RMSNorm
scaling (α) has been absorbedinto the weight matrices

AdaLN

12 / 31

Problem Formulation

■ Consider a linear layer with input 𝑋 ∈ 𝑅𝑏×𝑚 and weight 𝑊 ∈ 𝑅𝑚×𝑛, Quantization
error can be defined as:

𝐸 𝑋,𝑊 = 𝑋𝑊 −𝑄 𝑋 𝑄 𝑊 𝐹

■ Proposition 4.1 (Error decomposition).
The quantization error can be decomposed as follows:

𝐸 𝑋,𝑊 ≤ 𝑋 𝐹 𝑊 −𝑄 𝑊 𝐹 + 𝑋 − 𝑄 𝑋 𝐹 𝑊 𝐹 + 𝑊 − 𝑄 𝑊 𝐹

■ To minimize the overall quantization error, we aim to optimize four terms.

13 / 31

Proof of Proposition 4.1

■ The proof of proposition use two inequalities.
̶ 1) Triangle inequality: 𝑨 + 𝑩 𝐹 ≤ 𝑨 𝐹 + 𝑩 𝐹

̶ 2) Cauchy-Schwarz Inequality: 𝑨𝑩 𝐹 ≤ 𝑨 𝐹 𝑩 𝐹

14 / 31

SVDQuant

■ SVDQuant 1) first migrates outliers from activation to weight by smoothing, and then
2) absorbs the migrated weight outliers into the low-rank branch.

■ Smooth outliers in activations using a per-channel smoothing factor 𝜆 ∈ 𝑅𝑚:
෠𝑋 = 𝑋 ⋅ 𝑑𝑖𝑎𝑔 𝜆 −1, ෡𝑊 = 𝑑𝑖𝑎𝑔 𝜆 ⋅ 𝑊

■ While the smoothed input ෠𝑋 exhibits fewer outliers, ෡𝑊 has a significant increase in
both magnitude and the presence of outliers. → raise 𝑊 −𝑄 𝑊 𝐹

Smoothing

𝜆𝑖 =
𝑚𝑎𝑥 𝑋:,𝑖

𝛼

𝑚𝑎𝑥 𝑊𝑖,:
1−𝛼

15 / 31

SVDQuant

■ Core insight is to introduce a 16-bit low-rank branch to further migrate the weight
quantization difficulty.

■ Specifically, we decompose ෡𝑊 = 𝐿1𝐿2 + 𝑅,𝑤ℎ𝑒𝑟𝑒 𝐿1 ∈ 𝑅𝑚×𝑟 , 𝐿2 ∈ 𝑅𝑟×𝑛. Then 𝑋𝑊
can be approximated as:

𝑋𝑊 = ෠𝑋 ෡𝑊 = ෠𝑋𝐿1𝐿2 + ෠𝑋𝑅 ≈ ෠𝑋𝐿1𝐿2 + 𝑄 ෠𝑋 𝑄(𝑅)

■ 𝑟 is typically set to 16 or 32, so additional parameters and computation for the low-
rank branch are negligible.
̶ However, it still requires careful system design to eliminate redundant memory access

16-bit low-rank path 4-bit residual path

16 / 31

SVDQuant

■ From reformulated equation, quantization error can be expressed as

𝐸 𝑋,𝑊 = 𝑋𝑊 −𝑄 𝑋 𝑄 𝑊 𝐹

= ෠𝑋 ෡𝑊 − (෠𝑋𝐿1𝐿2 + 𝑄 ෠𝑋 𝑄 𝑅)
𝐹
= ෠𝑋𝑅 − 𝑄 ෠𝑋 𝑄(𝑅)

𝐹
= 𝐸(෠𝑋, 𝑅)

■ Since ෠𝑋 is already free from outliers, we only need to focus on optimizing the
𝑹 𝑭 and 𝑹 −𝑸(𝑹) 𝑭.

■ Then, how to minimize terms related to 𝑅 = ෡𝑊 − 𝐿1𝐿2?

17 / 31

SVDQuant

■ Proposition 4.2 (Quantization error bound).
For any tensor 𝑹 and quantization method 𝑄 𝑹 = 𝑠𝑹𝑄𝑹. Assuming the elements of 𝑹 follow a
distribution that satisfies the following regularity condition: There exists a constant c such that

𝐸 𝑚𝑎𝑥(|𝑹|) ≤ 𝑐 ⋅ 𝐸 𝑹 𝐹 .
Then, we have

𝐸 𝑹 − 𝑄(𝑹) 𝐹 ≤
𝑐 𝑠𝑖𝑧𝑒 𝑅

𝑞𝑚𝑎𝑥
⋅ 𝐸 𝑹 𝐹 .

■ From this proposition, the quantization error is bounded by the magnitude of 𝑹.

̶ Thus, our goal is to find the optimal 𝐿1𝐿2 that minimizes 𝑹 𝐹 = ෡𝑊 − 𝐿1𝐿2 𝐹
.

18 / 31

Proof of Proposition 4.2

19 / 31

SVDQuant

■ The problem of minimizing ෡𝑊 − 𝐿1𝐿2 𝐹
can be solved by Singular Value

Decomposition (SVD).

̶ Minimize ෡𝑊 − 𝐿1𝐿2 𝐹
=> Maximize 𝐿1𝐿2 𝐹

■ Given SVD of ෡𝑊 = 𝑈Σ𝑉, the optimal solution is 𝑳𝟏 = 𝑼𝜮:,:𝒓 and 𝑳𝟐 = 𝐕:𝒓,:
̶ By removing dominant values, the magnitude of the residual R is dramatically reduced,

as 𝑹 𝐹 = σ
𝑖=𝑟+1
min{𝑚,𝑛}

𝝈𝑖
2(𝑨), compared to ෡𝑊

𝐹
= σ

𝑖=1
min{𝑚,𝑛}

𝝈𝑖
2(𝑨)

• 𝑨 𝐹 = σ𝑖
𝑚σ𝑗

𝑛𝑨𝒊𝒋
𝟐 = 𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐴) = σ

𝑖=1
min{𝑚,𝑛}

𝝈𝑖
2(𝑨),

where 𝜎𝑖(𝐴) is i-th singular value of A.

20 / 31

Nunchaku:
Fusing Low-rank And Low-bit Branch Kernels

■ Although the low-rank branch introduces negligible computation in theory, running it
as a separate branch incurs large latency overhead.

̶ Because the input and output activation sizes remain unchanged, shifting bottleneck from
computation to memory access.

̶ For example, Up projection for QKV projection is much slower since its output exceeds the
available L2 cache, resulting in the extra DRAM load and store operations.

21 / 31

Nunchaku:
Fusing Low-rank And Low-bit Branch Kernels

■ Author eliminate these extra memory access and halving the number of kernel calls
by fusing.
̶ 1. Down projection(𝐿1) shares the same input as quantization kernel => Fusing

̶ 2. Up projection(𝐿2) shares the same output as the 4-bit computational kernel => Fusing

■ As a result, low-rank branch adds only 5~10% latency.

22 / 31

Experimental Setup

• Models : FLUX.1 PixArt-𝚺 SANA SDXL SDXL-Turbo

• Datasets : COCO Captions 2024 → for Calibration

MJHQ-30K → 5K prompts for benchmarking

sDCI → 5K prompts for benchmarking

• Comparison : NF4 ViDiT-Q MixDQ TensorRT SVDQuant (ours)

23 / 31

Baselines Comparison

■ PTQ-based Quantization Methods

Category NF4 ViDiT-Q MixDQ TensorRT

Precision W4 W8A8 W4A8 W8A8

Core Technique
NormalFloat: nonlinear normal dis

tribution-based 4-bit
Token-level quantization + s

moothing
16-bit for initial tokens + 4-bi

t for the rest
Percentile-based calibration

+ smoothing

Strengths
Very low memory usage, strong w

eight preservation
Strong for text alignment and

token outliers

Minimal performance loss,
maximizing compression

efficiency

Optimized for production, fas
t inference, stable

Weaknesses
Fixed activation precision (needs F

P16 etc.)
Limited memory savings due

to 8-bit usage
Performance varies by sente

nce length, complex logic
Hard to customize, only activ

ation is quantized

Use Cases FLUX.1 PixArt-Σ SDXL-Turbo SDXL, LLaMA

24 / 31

Models Comparison

■ Diffusion Transformer & UNet based Models

Model Parameters (B) Architecture Step Type
Estimated Memory

(FP16)
Use Case

FLUX.1 12B DiT (Large) multi-step 22.2 GiB
High-fidelity generatio

n, LoRA support

PixArt-Σ 0.6B
DiT

(Compact PixArt variant)
multi-step 2~3 GiB

Compact model,
alignment-sensitive

SANA 0.6B Linear DiT 1-step <4 GiB
Real-time generation,

low-latency

SDXL 2.6B
LDM

(multi-step)
multi-step (~30) 6~7 GiB

High-quality baseline
diffusion

SDXL-Turbo ~1B
Optimized SDXL

(1~2 steps)
1~2 steps 4~5 GiB

Latency-critical,
real-time image gen

25 / 31

Visual Quality Results

26 / 31

Integrate with LoRA

𝑊′ = 𝑊 + Δ𝑊 = 𝑊 + 𝐴𝐵 (LoRA)

𝐴 ∈ 𝑅𝑚×𝑟𝐿𝑜𝑅𝐴 , 𝐵 ∈ 𝑅𝑟𝐿𝑜𝑅𝐴×𝑛 ⋯𝑟𝐿𝑜𝑅𝐴 ≪ min(𝑚, 𝑛)

෡𝑊 = 𝐿1𝐿2 + 𝑅 (SVDQuant)

⋯𝐴 ∈ 𝐿1
𝑚×𝑟, 𝐿2 ∈ 𝑅𝑟×𝑛 , R = residual

𝑋𝑊 ≈ 𝑋𝐿1𝐿2 + 𝑄 𝑋 𝑄(𝑅)

→ 𝑋𝑊 ≈ 𝑋 𝐿1𝐿2 + 𝐴𝐵 + 𝑄 𝑋 𝑄(𝑅)

→ 𝑟𝑎𝑛𝑘 𝑟′ = 𝑟 + 𝑟𝐿𝑜𝑅𝐴

Integrate with LoRA (Low-Rank Adaptation)

• No re-quantization required for LoRA integration.

• Maintains 16-bit image quality across five LoRA styles, from Realism to Anime and

Yarn Art.

27 / 31

Ablation Study
Ablation Study

• Naïve quantization and SVD only show severe degradation in 4-bit.

• SVDQuant improves quality by decomposing weights and quantizing only the residual Smoothing

• Low-rank branch absorbs outliers, achieving near-FP16 quality

28 / 31

Increasing Rank

Increasing Rank

• Higher rank(r) improves image quality, with Image Reward increasing from 0.787(r=16) to 0.859(r=64).

• However, model size and latency overhead grow significantly, reaching 11.3% size and 8.8% latency at rank 64.

• Rank 32 was chosen as a middle-ground trade-off in the paper

29 / 31

Memory save and speedup

Memory save and speedup

• Up to 3.6x model size and 3.5x memory reduction compared to BF16 models.

• 3.0~10.1x latency speedup across RTX 4090 and RTX 5090.

• Outperforms NF4 (W4A16) in both efficiency and speed, while preserving quality.

30 / 31

Conclusion

• SVDQuant : A 4-bit PTQ method for diffusion models

• Introduces a low-rank branch to absorb outliers in weight and activations

• The Nunchaku engine fuses low-rank and 4-bit branches to reduce memory and overhead

• Achieves 3.5x memory reduction and 3.0 speedup on RTX4090/5090

31 / 31

Limitation

• Lack of fine-grained control over quantization granularity

• Limited generality and stability of activation quantization

Thank you

	슬라이드 1: SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models
	슬라이드 2: Contents
	슬라이드 3: Motivation
	슬라이드 4: Limits of Standard PTQ in Diffusion Models
	슬라이드 5: Prior Works
	슬라이드 6: Existing Strategy: Smoothing
	슬라이드 7: 4bit Quantization + Low-Rank Branch
	슬라이드 8: Diffusion model (U-Net)
	슬라이드 9: Diffusion model (DiT)
	슬라이드 10: Quantization Preliminary
	슬라이드 11: Quantization Preliminary
	슬라이드 12: Problem Formulation
	슬라이드 13: Proof of Proposition 4.1
	슬라이드 14: SVDQuant
	슬라이드 15: SVDQuant
	슬라이드 16: SVDQuant
	슬라이드 17: SVDQuant
	슬라이드 18: Proof of Proposition 4.2
	슬라이드 19: SVDQuant
	슬라이드 20: Nunchaku: Fusing Low-rank And Low-bit Branch Kernels
	슬라이드 21: Nunchaku: Fusing Low-rank And Low-bit Branch Kernels
	슬라이드 22: Experimental Setup
	슬라이드 23: Baselines Comparison
	슬라이드 24: Models Comparison
	슬라이드 25: Visual Quality Results
	슬라이드 26: Integrate with LoRA
	슬라이드 27: Ablation Study
	슬라이드 28: Increasing Rank
	슬라이드 29: Memory save and speedup
	슬라이드 30: Conclusion
	슬라이드 31: Limitation
	슬라이드 32: Thank you

