
ETS: Efficient Tree Search
for Inference-Time Scaling

Hooper, Coleman, et al. “ETS: Efficient Tree Search for Inference-Time Scaling.” ArXiv.org, 2025

Seobin Lee

• Background

• Method

• Experiments

• Conclusion

• Limitations

1 Contents

• Test-time scaling is important!

◦ A smaller model with increased compute allocation at test time can
outperform a larger pretrained model

• How to do this?

◦ cf. iterative self-refinement

◦ Generate multiple candidate solutions and evaluate them using a scoring
criterion, either after sampling or progressively during the search, to guide
the selection toward high-quality final responses

• Best-of-N, tree search

• Typical scoring method: using a Process Reward Model (PRM)

2 Background

3 Background

• Tree: undirected graph in which any two vertices are connected by exactly
one path

• Tree search:

4 Background

Ref: https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute

• However, the problem is…

◦ The increased inference costs are substantial, as many trajectories must
be generated and scored before a final answer is selected

5 Background

• Then, our goal must be to extend test-time while performing floating point
operations efficiently

◦ No!

◦ The actual inference costs of search are not necessarily proportional to the
number of model calls or FLOPs

• LLM inference is typically memory bandwidth-bound

• The number of memory operations required for search is not
necessarily correlated with FLOPs

6 Background

• LLM inference is typically memory bandwidth-bound

◦ Dominant contributor: model weights, KV cache

7 Background

Ref: https://medium.com/@joaolages/kv-caching-explained-276520203249

• LLM inference is typically memory bandwidth-bound

◦ Dominant contributor: model weights, KV cache

◦ For short sequence lengths, the model weights are typically the dominant
contributor to memory consumption and bandwidth

◦ For longer context lengths and batched inference, the KV cache becomes
the main memory bottleneck

8 Background

• For performing tree search, KV cache sharing between trajectories has a substantial
impact on the memory consumption and bandwidth
◦ With two trajectories which share the KV cache for most of their previous steps,

this will require substantially fewer memory operations when performing further
generations than if each trajectory has an entirely separate KV cache state

• If the KV cache for the sequences is too large to fit in memory, then the number of
sequences that can be run in parallel will be constrained and the search process gets
fragmented into multiple successive iterations

◦ It leads to performing more memory operations for the model weights, since the
model weights need to be loaded for each fragment.

• While the KV cache state can be reused for earlier steps in the search when
generating later steps, if the memory requirements are too great, then the KV cache
for the earlier steps would be de-allocated and would need to be recomputed, which
would increase latency

9 Background

• Tree search:

10 Background

Ref: https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute

• The capacity to perform extensive KV-cache sharing implies that search
trajectories within the tree overlap significantly

• There exists a trade-off between promoting diverse trajectories for higher
accuracy and maximizing KV-cache reuse

• Finding the right balance in this trade-off is crucial for both efficiency and
performance

11 Background

• Measure the efficiency costs and benefits of retaining…

◦ a set of trajectories vs each separate trajectory

◦ Reason: the efficiency cost of retaining each trajectory depends on the
other trajectories that are retained or pruned

12 Method

• Reward term:
σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖

◦ 𝑊𝑖 = ceil 𝑁
exp Τ𝑅𝑖 𝑇𝑅

σ𝑘∈𝐴 exp Τ𝑅𝑘 𝑇𝑅
 (weight of a trajectory 𝑖)

◦ 𝑁: the total number of continuations that need to be sampled

◦ 𝑅𝑖: the reward for trajectory 𝑖 computed using a PRM

◦ 𝑇𝑅: a temperature parameter that controls how balanced the sampling is

◦ 𝐴: the set of all trajectories

• We want to find a subset 𝑆 ⊂ 𝐴 that achieves high
σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖

13 Method

• Cost term:
𝑉𝑆
|𝑉𝐴|

◦ 𝑉𝐴: the set of all nodes in the tree before pruning the tree

◦ 𝑉𝑆: the set of all nodes in the tree after pruning the tree

• We want to find a subset 𝑆 ⊂ 𝐴 that achieves low
𝑉𝑆

𝑉𝐴

14 Method

• Since we have two optimization goals:

max
𝑆

σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖
− 𝜆𝑏

𝑉𝑆
|𝑉𝐴|

◦ 𝜆𝑏 > 0 is a hyperparameter

◦ Add the additional constraint that 𝑆 ≥ 1 to ensure that we always retain at
least one leaf node

• Is that enough?

◦ According to the authors, no!

15 Method

• If we naively enforce KV sharing, this will also consequently prune out diverse
trajectories which were crucial for attaining high accuracy

• Existing approaches for sampling continuations lead to many redundant or
similar continuations

◦ Even if some of these continuations are not exact duplicates, they can still
have a similar semantic meaning

• The objective is to preserve maximal coverage of the original semantic space
after pruning

16 Method

• However, we can only estimate whether retaining a given trajectory improves
coverage when considering the other trajectories that are retained

• Solution:

◦ Embed the last step for each sequence using a BERT model finetuned for
embedding math sentences

◦ Cluster these embeddings using hierarchical agglomerative clustering from
Scipy based on cosine similarity

17 Method

18 Method

Ref: https://www.geeksforgeeks.org/hierarchical-clustering/

• Diversity term:
𝐶𝑆
|𝐶𝐴|

◦ 𝐶𝐴: the total number of clusters

◦ 𝐶𝑆: the clusters covered by the selected trajectories

19 Method

• Final optimization problem:

max
𝑆

σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖
− 𝜆𝑏

𝑉𝑆
𝑉𝐴

+ 𝜆𝑑
𝐶𝑆
|𝐶𝐴|

• It is an integer linear programming problem, so they leveraged the Pulp
optimization library using the CBC solver

20 Method

• After pruning out trajectories, how many continuations to sample from each of
the remaining trajectories determines by:

𝑊𝑖′ = ceil 𝑁
exp Τ𝑅𝑖 𝑇𝑅

σ𝑘∈𝑆 exp Τ𝑅𝑘 𝑇𝑅

21 Method

• REBASE

◦ Given the question 𝑥, balance temperature 𝑇𝑏 > 0, and sampling number of
solutions 𝑁, it samples 𝑁 instances of the first step for the question

• Let the sampling budget of depth 0, 𝐵0, to 𝑁 at initialization

◦ In the 𝑖-th iteration, the PRM assigns the rewards to all the nodes at depth 𝑖
• After that, the algorithm examines whether the solutions up to depth 𝑖 are

complete

• Supposing there are 𝐶𝑖 completed solutions, it updates the sampling budget
using 𝐵𝑖 ← 𝐵𝑖−1 − 𝐶𝑖
◦ If 𝐵𝑖 = 0, the process ends, and it obtains 𝑁 solutions

• For all the nodes 𝑛𝑗 with reward 𝑅(𝑛𝑗) in the depth 𝑖 of the tree, it calculates
the expansion width of the 𝑛𝑗 as:

𝑊𝑗 = Round 𝐵𝑖
exp 𝑅(𝑛𝑗)/𝑇𝑅

σ𝑘 exp 𝑅(𝑛𝑘)/𝑇𝑅

22 Baseline

• REBASE

◦ When the balance temperature 𝑇𝑏 is small, this method encourages more
exploitation

◦ When 𝑇𝑏 is large, it encourages exploration

◦ This method produces more diverse trajectories than standard beam
search and attains higher accuracy for the same efficiency budget defined
by FLOPs or number of model calls

◦ It has substantial inference overheads due to the reduction in KV cache
sharing from sampling in a more balanced manner when deciding which
trajectories to expand

23 Baseline

• As mentioned previously, FLOP count is not a good metric for memory-bound
problems and may even be misleading

• Experiment:

◦ They profiled throughput on 100 samples from the MATH500 test set on
NVIDIA H100 NVL GPUs, with the Llemma-34B model and Llemma-
Reward 34B PRM each on a separate GPU

◦ Results were collected by running evaluation using 8 parallel threads

• It is analogous to the attainable throughput with a batch size of 8 for
serving use-cases

◦ To estimate FLOPs, they leveraged the approximation that the number of
FLOPs is proportional to the number of tokens generated, which holds for
short context length

24 Experiments

25 Experiments

• They leveraged the open-source REBASE code for the balanced sampling
implementation

• They used SGLang to serve KV cache reuse

26 Experiments

27 Experiments

• Hyperparameter

◦ For the proposed method:

• 𝑇𝑅 = 1.0

• 𝜆𝑑 = 1

• They sweeped over 𝜆𝑏 ∈ [1,2] and select the largest value of 𝜆𝑏 which
doesn’t degrade accuracy by greater than 0.2%

◦ For the REBASE:

• 𝑇𝑅 = 0.2 (default setting)

28 Experiments

• Model

◦ Llemma-34B model fine-tuned on Metamath along with the Llemma-34B
PRM from the REBASE paper

◦ Mistral-7B model fine-tuned on Metamath as well as the corresponding
Mistral-7B PRM from the Math-Shepherd paper

cf. Math-Shepherd paper: it aims to automate the data generation process
to facilitate training PRMs

29 Experiments

• Search width

◦ 16, 64, 256

◦ For the proposed method & REBASE:

• As in the REBASE paper, they reduced the search width each time a
retained trajectory completes

◦ For the beam search & DVTS:

• The label '(fixed)' indicates that 4 trajectories were retained at every

step, while '(root(N))' denotes that 𝑁 trajectories were retained at
each step, where 𝑁 is the initial width of the search

30 Experiments

• Datasets:

◦ MATH500, GSM8K

• Select the final answer with weighted majority voting using the final PRM
score for each trajectory as the weight

31 Experiments

32 Experiments

33 Experiments

• They measured throughput for REBASE as well as the proposed method on
H100 NVL GPUs

◦ Benchmark [4,8,16,32] parallel threads and select the best configuration
for each method

• The number of parallel threads is representative for the serving
scenario with a batch size equal to the number of threads

◦ They ran benchmarking with the main LLM (Llemma-34Bmodel) and the
PRM each on a separate H100 NVL GPU, and for the proposed method,
they co-located the embedding model on the same GPU as the reward
model

◦ Beam width: 256

◦ Dataset: MATH500 test set

34 Experiments

35 Experiments

• Ablation study

◦ Impact of the diversity term:

• For the results with only KV cache sharing term, they fix 𝜆𝑑 = 0 and
sweep over 𝜆𝑏 ∈ [0.75, 1.25] selecting the largest value of 𝜆𝑏 which
doesn’t degrade accuracy by greater than 0.2%

36 Experiments

37 Experiments

• They proposed a tree search method that balances accuracy and efficiency by
promoting KV cache sharing while preserving semantic diversity

• Unlike prior approaches, the proposed method explicitly models KV-sharing
costs, going beyond standard efficiency metrics like FLOPs

• The proposed method with beam width 256 achieves 1.8× smaller KV cache
size and 1.4× higher throughput than REBASE, with minimal accuracy
degradation and without requiring custom kernel implementations

38 Conclusion

• For Table 3, it is only at a beam width of 256 that the diversity term shows a
clearly positive effect

• From the perspective of service providers who need to support many users
simultaneously, it is unclear whether the proposed method is practical

◦ This raises the question of whether the method can have meaningful
industrial impact given its computational demands

• One of the known issues with beam search is that it tends to produce
repetitive responses

◦ Although the proposed method introduces a diversity term into the
optimization, it remains fundamentally a variant of beam search, leaving
open the question of how effectively it mitigates this inherent flaw

39 Limitations

Thank You!

	Slide 0: ETS: Efficient Tree Search for Inference-Time Scaling Hooper, Coleman, et al. “ETS: Efficient Tree Search for Inference-Time Scaling.” ArXiv.org, 2025
	Slide 1: Contents
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Background
	Slide 7: Background
	Slide 8: Background
	Slide 9: Background
	Slide 10: Background
	Slide 11: Background
	Slide 12: Method
	Slide 13: Method
	Slide 14: Method
	Slide 15: Method
	Slide 16: Method
	Slide 17: Method
	Slide 18: Method
	Slide 19: Method
	Slide 20: Method
	Slide 21: Method
	Slide 22: Baseline
	Slide 23: Baseline
	Slide 24: Experiments
	Slide 25: Experiments
	Slide 26: Experiments
	Slide 27: Experiments
	Slide 28: Experiments
	Slide 29: Experiments
	Slide 30: Experiments
	Slide 31: Experiments
	Slide 32: Experiments
	Slide 33: Experiments
	Slide 34: Experiments
	Slide 35: Experiments
	Slide 36: Experiments
	Slide 37: Experiments
	Slide 38: Conclusion
	Slide 39: Limitations
	Slide 40: Thank You!

