ETS: Efficient Tree Search
for Inference-Time Scaling

Hooper, Coleman, et al. "ETS: Efficient Tree Search for Inference-Time Scaling.” ArXiv.org, 2025

Seobin Lee



Contents

« Background
* Method

« Experiments
» Conclusion

e Limitations



Background

 Test-time scaling is important!

o A smaller model with increased compute allocation at test time can
outperform a larger pretrained model

 How to do this?
o cf. iterative self-refinement

o Generate multiple candidate solutions and evaluate them using a scoring
criterion, either after sampling or progressively during the search, to guide
the selection toward high-quality final responses

* Best-of-N, tree search
* Typical scoring method: using a Process Reward Model (PRM)



Background

 Tree: undirected graph in which any two vertices are connected by exactly
one path




Background

* Tree search:

Beam Search

Diverse Verifier Tree Search

Math
prol—:lem

Best-of-¥

Math
problem

Use verifier
to select

N beams Spht beams into N/M

top N/M steps
Indepe.nolent subtrees

Afe A A

= Rejected by verifier = Selected by verifier O = Intermediate step O = Full solution

Use verifier to select
best step per tree

Use verifier to
seleet best
final answer

Ref: https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute



Background

 However, the problem is...

o The increased inference costs are substantial, as many trajectories must
be generated and scored before a final answer is selected



Il Background

* Then, our goal must be to extend test-time while performing floating point
operations efficiently

o No!

o The actual inference costs of search are not necessarily proportional to the
number of model calls or FLOPs

* LLM inference is typically memory bandwidth-bound

 The number of memory operations required for search is not
necessarily correlated with FLOPs



Background

* LLM inference is typically memory bandwidth-bound
o Dominant contributor: model weights, KV cache

Step 1
Q KT QK" v Attention
= Value Token 1 | ’ Token 1
s 3
& x| & - X -
= >
(1, emb_size) (emb_size, 1) (1.1 (1, emb_size) (1, emb_size)
Q KT QKT \" Attention
- Value Token 1 ‘ ’ Token 1
L@ %
= & X | £ X =
fu o
o =1
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache

Ref. https://medium.com/@)joaolages/kv-caching-explained-276520203249



Il Background

* LLM inference is typically memory bandwidth-bound
o Dominant contributor: model weights, KV cache

o For short sequence lengths, the model weights are typically the dominant
contributor to memory consumption and bandwidth

o For longer context lengths and batched inference, the KV cache becomes
the main memory bottleneck



Il Background

* For performing tree search, KV cache sharing between trajectories has a substantial
Impact on the memory consumption and bandwidth

o With two trajectories which share the KV cache for most of their previous steps,
this will require substantially fewer memory operations when performing further
generations than if each trajectory has an entirely separate KV cache state

* |f the KV cache for the sequences is too large to fit in memory, then the number of
sequences that can be run in parallel will be constrained and the search process gets
fragmented into multiple successive iterations

o |t leads to performing more memory operations for the model weights, since the
model weights need to be loaded for each fragment.

* While the KV cache state can be reused for earlier steps in the search when
generating later steps, if the memory requirements are too great, then the KV cache
for the earlier steps would be de-allocated and would need to be recomputed, which
would increase latency



Background

* Tree search:

Beam Search

Diverse Verifier Tree Search

Math
prol—:lem

Best-of-¥

Math
problem

Use verifier
to select

N beams Spht beams into N/M

top N/M steps
Indepe.nolent subtrees

Afe A A

= Rejected by verifier = Selected by verifier O = Intermediate step O = Full solution

Use verifier to select
best step per tree

Use verifier to
seleet best
final answer

Ref: https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute



Background

* The capacity to perform extensive KV-cache sharing implies that search
trajectories within the tree overlap significantly

* There exists a trade-off between promoting diverse trajectories for higher
accuracy and maximizing KV-cache reuse

* Finding the right balance in this trade-off is crucial for both efficiency and
performance



Method

« Measure the efficiency costs and benefits of retaining...
o a set of trajectories vs each separate trajectory

- Reason: the efficiency cost of retaining each trajectory depends on the
other trajectories that are retained or pruned



Method

* Reward term:
ic

Lies
2iea

SIX

. _ : exp(R;/TR) ) : : )
W; = ceil (N 5 exp(Rr/Tr) (weight of a trajectory i)

o N: the total number of continuations that need to be sampled

o R;: the reward for trajectory i computed using a PRM

o Tr: a temperature parameter that controls how balanced the sampling is
o A: the set of all trajectories

dies Wi

* We want to find a subset S c A that achieves high &=~
€A1



Method

e Cost term:
14

|Val

o V,: the set of all nodes in the tree before pruning the tree
o Vs: the set of all nodes in the tree after pruning the tree

 We want to find a subset S c A that achieves low %
A



Method

« Since we have two optimization goals:

max (Zies Wi — A @)
S \2iea Wi ’ V4]

o A, > 0 Is a hyperparameter

- Add the additional constraint that |S| = 1 to ensure that we always retain at
least one leaf node

* |s that enough?
o According to the authors, no!



Method

* |[f we naively enforce KV sharing, this will also consequently prune out diverse
trajectories which were crucial for attaining high accuracy

 Existing approaches for sampling continuations lead to many redundant or
similar continuations

o Even if some of these continuations are not exact duplicates, they can still
have a similar semantic meaning

* The objective is to preserve maximal coverage of the original semantic space
after pruning



Method

 However, we can only estimate whether retaining a given trajectory improves
coverage when considering the other trajectories that are retained

e Solution:

o Embed the last step for each sequence using a BERT model finetuned for
embedding math sentences

o Cluster these embeddings using hierarchical agglomerative clustering from
Scipy based on cosine similarity



Method

A
B —
o BC ——
BCDEE > ABCDEF

D — ‘

— DE — DEF
E
F |
Step 1 Step 2 Step 3 Step 4 Step 5

Agglomerative >

Ref: https://www.geeksforgeeks.org/hierarchical-clustering/



Method

* Diversity term:
|G|

|Cal

o C4: the total number of clusters
o (Cs: the clusters covered by the selected trajectories



Method

 Final optimization problem:

__|_Ad_

max — A
YeeaWi PV |C4l

S

(Zies Wi Vs |Cs|)

* It is an integer linear programming problem, so they leveraged the Pulp
optimization library using the CBC solver



Method

« After pruning out trajectories, how many continuations to sample from each of
the remaining trajectories determines by:

exp(R;/T
Wi’=ceil<N P(R:/Tp) )

kes €XP(Ry /Tr)



Baseline

- REBASE

o Given the question x, balance temperature T, > 0, and sampling number of
solutions N, it samples N instances of the first step for the question

« Let the sampling budget of depth O, B,, to N at initialization

o |n the i-th iteration, the PRM assigns the rewards to all the nodes at depth i

 After that, the algorithm examines whether the solutions up to depth i are
complete

« Supposing there are C; completed solutions, it updates the sampling budget
USing Bi — Bi—l — Ci

o If B; = 0, the process ends, and it obtains N solutions

- For all the nodes n; with reward R(n;) in the depth i of the tree, it calculates
the expansion width of the n; as:

- ~_exp(R(n))/Tg) )
Wj = Round (B‘ % exp(R(120)/Tr)




Baseline

- REBASE

- When the balance temperature T, is small, this method encourages more
exploitation

- When T, is large, it encourages exploration

o This method produces more diverse trajectories than standard beam
search and attains higher accuracy for the same efficiency budget defined
by FLOPs or number of model calls

o |t has substantial inference overheads due to the reduction in KV cache
sharing from sampling in a more balanced manner when deciding which
trajectories to expand



Experiments

« As mentioned previously, FLOP count is not a good metric for memory-bound
problems and may even be misleading

« Experiment:

o They profiled throughput on 100 samples from the MATHS500 test set on
NVIDIA H100 NVL GPUs, with the Lliemma-34B model and Llemma-
Reward 34B PRM each on a separate GPU

o Results were collected by running evaluation using 8 parallel threads

« |t is analogous to the attainable throughput with a batch size of 8 for
serving use-cases

o To estimate FLOPSs, they leveraged the approximation that the number of
FLOPs is proportional to the number of tokens generated, which holds for
short context length



Experiments

Correlation between Approximate Metrics and Profiled Search Runtime

Hl Runtime I FLOPs B Model Calls KV Size

4.0

3.5

3.0 1

2.5

2.0 1

1.5

Metric (Normalized to Beam Search)

Beam Search DVTS REBASE

Figure 2. Correlation between approximate efficiency metrics and profiled runtime. We report profiled Runtime as well FLOPs), number
of model calls, and total KV Cache Size (“KV Size”) as well as profiled runtime. We measure each metric for Beam Search, DVTS,
and REBASE for the Llemma-34B model with a width of 256, and we report each metric normalized to the value for Beam Search. For
Beam Search and DVTS, we retain v/ N trajectories at each step, where N is the width of the search. As can be seen, REBASE has
similar FLOPs and number of model calls compared to beam search and DVTS, but it exhibits significantly higher runtime. The increased
runtime is due to its increased KV cache size. This clearly shows that FLOPs and number of model calls are not necessarily the right
proxy metrics to use when assessing search efficiency.



Experiments

* They leveraged the open-source REBASE code for the balanced sampling
iImplementation

* They used SGLang to serve KV cache reuse



Experiments

dimensions = ["Clarity", "Originality", "Evidence"]

@function
def multi_dimensional_judge(s, path, essay):
s += system("Evaluate an essay about an image.")

Handle chat template

s += user(image(path) + "Essay:" + essay) . X

s += assistant("Sure!") and multi-modal inputs
# Return directly if it is not related Select an option with

s += user("Is the essay related to the image?") the highest probability
S += fSSlstanE(seleEt(“r*elated , choices=["yes", "no"])) Fetch result; Use Python
if s["related"] == "no": return control flow

# Judge multiple dimensions in parallel
forks = s.fork(len(dimensions))
for f, dim in zip(forks, dimensions):
f += user("Evaluate based on the following dimension:" +
dim + ". End your judgment with the word 'END'")
f 4= assistant("Judgment:" + gen("judgment", stop="END"))

Runtime optimization:
KV Cache Reuse (Sec. 3)

Multiple generation

calls run in parallel
# Merge the judgments

judgment = "\n".join(f["judgment"] for f in forks) Fetch generation results

# Generate a summary and a grade. Return in the JSON format.

s += user("Provide the judgment, summary, and a letter grade")

s += assistant(judgment + "In summary,” + gen("summary", stop=".")
+ "The grade of it is" + gen("grade"))

schema = r"\{"summary": "[\w\d\s]+\.", "grade": "[ABCD][+-]?"\}"

s += user("Return in the JSON format.")

s += assistant(gen("output”, regex=schema))

Runtime optimization: API
speculative execution (Sec. 5)

Runtime optimization: fast
constrained decoding (Sec. 4)
state = multi_dimensional_judge.run(...)

print(state["output”]) Run an SGLang program

Figure 2: The implementation of a multi-dimensional essay judge in SGLang utilizes the branch-solve-merge
prompting technique [40]. Primitives provided by SGLang are shown in red.



Experiments

* Hyperparameter
o For the proposed method:
e Tpr = 1.0
e Ay =1
* They sweeped over 4, € [1,2] and select the largest value of 1, which
doesn’t degrade accuracy by greater than 0.2%

o For the REBASE:
* Tr = 0.2 (default setting)



Experiments

 Model

o Llemma-34B model fine-tuned on Metamath along with the Liemma-34B
PRM from the REBASE paper

o Mistral-7B model fine-tuned on Metamath as well as the corresponding
Mistral-7B PRM from the Math-Shepherd paper

cf. Math-Shepherd paper: it aims to automate the data generation process
to facilitate training PRMs



Experiments

 Search width
> 16, 64, 256

> For the proposed method & REBASE:

« As in the REBASE paper, they reduced the search width each time a
retained trajectory completes

o For the beam search & DVTS:

« The label '(fixed)' indicates that 4 trajectories were retained at every

step, while '(root(N))' denotes that VN trajectories were retained at
each step, where N is the initial width of the search



Experiments

e Datasets:
- MATH500, GSM8K

» Select the final answer with weighted majority voting using the final PRM
score for each trajectory as the weight



Experiments

MATH500 GSM8K
®
521 - 89.01 o
50 A
> >, 88.5 1 ¢
|9 (@]
O 48 o
5 3 88.0
@] | &
< 46_ <
87.5
44 -
87.0
1 2 4 8 16 1 2 4 8 16
KV Cache Size (Normalized) KV Cache Size (Normalized)

ETS (Ours) —@— DVTS (Fixed) —&— Beam Search (Fixed)
—®— Rebase —&— DVTS (root(N)) —k— Beam Search (root(N))

Figure 3. Accuracy versus efficiency trade-off curves for different search strategies with the Llemma-34B model. We report results for
search widths of 16, 64, and 256 across all methods. We provide baseline results for Beam Search and DVTS (both with retaining a fixed
number of trajectories as well as VN trajectories at each step) (Snell et al., 2024; Beeching et al., 2024), as well as for REBASE (Wu
et al., 2024). Our results demonstrate how our method allows for improved efficiency relative to REBASE, while maintaining the accuracy
benefits due to retaining necessary diverse trajectories.



Experiments

Table 1. Accuracy versus KV cache size for REBASE as well as ETS. Results are provided for MATHS500 and GSMSK for the Llemma-
34B and Mistral-7B-SFT models. We report the KV cache size reduction (“KV Red.”) for each width (relative to REBASE), where higher
is better since it implies a reduction in memory consumption.

| Width=16 | Width=64 |  Width=256 |  Width=16 | Width=64 | Width=256
Method Method
| Acc. KVRed. | Acc. KVRed. | Acc. KV Red. | Acc. KVRed. | Acc. KVRed. | Acc. KV Red.
Llemma-34B Llemma-34B
REBASE | 472 1% 50.8 Ix 52.0 1% REBASE | 87.7 1% 89.0 1% 89.3 Ix
ETS | 470 12x | 512  15x | 528 18X ETS | 875 15x | 893  17x | 893 18X
Mistral-7B-SFT Mistral-7B-SFT
REBASE | 38.8 1% 434 1% 42.4 1x REBASE | 88.6 1% 89.1 1% 90.1 1%
ETS | 394  13x | 432 13x | 422  17x ETS | 883  12x | 892  1.6x | 89.6  13x

MATHS00 GSMS8K



Experiments

* They measured throughput for REBASE as well as the proposed method on
H100 NVL GPUs

o Benchmark [4,8,16,32] parallel threads and select the best configuration
for each method

 The number of parallel threads is representative for the serving
scenario with a batch size equal to the number of threads

o They ran benchmarking with the main LLM (LIemma-34Bmodel) and the
PRM each on a separate H100 NVL GPU, and for the proposed method,
theé/ clo-located the embedding model on the same GPU as the reward
mode

o Beam width: 256

o Dataset: MATH500 test set



Experiments

Table 2. Throughput for our approach relative to REBASE (Wu
et al., 2024). Results were measured on NVIDIA H100 GPUs
using the Llemma-34B model, evaluated on 100 samples from the
MATHS00 test set (with the accuracy reported for the full test set).
We report throughput improvements using a beam width of 256.
We also include the reduction in KV cache size (normalized to
REBASE), as well as the accuracy for each approach.

Method Accuracy KV Reduction | Throughput

REBASE 52.0 1 x 1 X
ETS 52.8 1.8 x 1.4 %




Experiments

 Ablation study
o Impact of the diversity term:

 For the results with only KV cache sharing term, they fix 4; = 0 and
sweep over 4, € [0.75, 1.25] selecting the largest value of 1, which
doesn’t degrade accuracy by greater than 0.2%



Experiments

Table 3. Ablation for our methodology. We include results on
MATHS500 for different beam widths with the Llemma-34B model,
and we report KV budget estimates. We compare ETS with only
applying the KV budget term in the cost model (“ETS-KV”).

Method Width=16 Width=64 Width=256
ctho Acc. KV Red. | Acc. KV Red. | Ace. KV Red.

REBASE | 472 1 50.8 1% 52.0 1%

ETS-KV | 47.2 1.3 51.4 1.3% 52.8 1.7%
ETS 47.0 1.2% 51.2 1.5 52.8 1.8 %




Conclusion

» They proposed a tree search method that balances accuracy and efficiency by
promoting KV cache sharing while preserving semantic diversity

» Unlike prior approaches, the proposed method explicitly models KV-sharing
costs, going beyond standard efficiency metrics like FLOPs

* The proposed method with beam width 256 achieves 1.8x smaller KV cache
size and 1.4x higher throughput than REBASE, with minimal accuracy
degradation and without requiring custom kernel implementations



Limitations

* For Table 3, it is only at a beam width of 256 that the diversity term shows a
clearly positive effect

* From the perspective of service providers who need to support many users
simultaneously, it is unclear whether the proposed method is practical

o This raises the question of whether the method can have meaningful
iIndustrial impact given its computational demands

* One of the known issues with beam search is that it tends to produce
repetitive responses

o Although the proposed method introduces a diversity term into the
optimization, it remains fundamentally a variant of beam search, leaving
open the question of how effectively it mitigates this inherent flaw



Thank You!



	Slide 0: ETS: Efficient Tree Search  for Inference-Time Scaling  Hooper, Coleman, et al. “ETS: Efficient Tree Search for Inference-Time Scaling.” ArXiv.org, 2025
	Slide 1: Contents
	Slide 2: Background 
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background 
	Slide 6: Background 
	Slide 7: Background 
	Slide 8: Background
	Slide 9: Background
	Slide 10: Background
	Slide 11: Background
	Slide 12: Method
	Slide 13: Method
	Slide 14: Method
	Slide 15: Method
	Slide 16: Method
	Slide 17: Method
	Slide 18: Method
	Slide 19: Method
	Slide 20: Method
	Slide 21: Method
	Slide 22: Baseline
	Slide 23: Baseline
	Slide 24: Experiments
	Slide 25: Experiments
	Slide 26: Experiments
	Slide 27: Experiments
	Slide 28: Experiments
	Slide 29: Experiments
	Slide 30: Experiments
	Slide 31: Experiments
	Slide 32: Experiments
	Slide 33: Experiments
	Slide 34: Experiments
	Slide 35: Experiments
	Slide 36: Experiments
	Slide 37: Experiments
	Slide 38: Conclusion
	Slide 39: Limitations
	Slide 40: Thank You! 

