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• Test-time scaling is important!

◦ A smaller model with increased compute allocation at test time can 
outperform a larger pretrained model

• How to do this?

◦ cf. iterative self-refinement

◦ Generate multiple candidate solutions and evaluate them using a scoring 
criterion, either after sampling or progressively during the search, to guide 
the selection toward high-quality final responses

• Best-of-N, tree search

• Typical scoring method: using a Process Reward Model (PRM)
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• Tree: undirected graph in which any two vertices are connected by exactly 
one path



• Tree search:

4 Background

Ref: https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute



• However, the problem is…

◦ The increased inference costs are substantial, as many trajectories must 
be generated and scored before a final answer is selected
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• Then, our goal must be to extend test-time while performing floating point 
operations efficiently

◦ No!

◦ The actual inference costs of search are not necessarily proportional to the 
number of model calls or FLOPs

• LLM inference is typically memory bandwidth-bound

• The number of memory operations required for search is not 
necessarily correlated with FLOPs
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• LLM inference is typically memory bandwidth-bound

◦ Dominant contributor: model weights, KV cache

7 Background 

Ref: https://medium.com/@joaolages/kv-caching-explained-276520203249



• LLM inference is typically memory bandwidth-bound

◦ Dominant contributor: model weights, KV cache

◦ For short sequence lengths, the model weights are typically the dominant 
contributor to memory consumption and bandwidth

◦ For longer context lengths and batched inference, the KV cache becomes 
the main memory bottleneck
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• For performing tree search, KV cache sharing between trajectories has a substantial 
impact on the memory consumption and bandwidth 
◦ With two trajectories which share the KV cache for most of their previous steps, 

this will require substantially fewer memory operations when performing further 
generations than if each trajectory has an entirely separate KV cache state

• If the KV cache for the sequences is too large to fit in memory, then the number of 
sequences that can be run in parallel will be constrained and the search process gets 
fragmented into multiple successive iterations

◦ It leads to performing more memory operations for the model weights, since the 
model weights need to be loaded for each fragment.

• While the KV cache state can be reused for earlier steps in the search when 
generating later steps, if the memory requirements are too great, then the KV cache 
for the earlier steps would be de-allocated and would need to be recomputed, which 
would increase latency
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• Tree search:
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Ref: https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute



• The capacity to perform extensive KV-cache sharing implies that search 
trajectories within the tree overlap significantly

• There exists a trade-off between promoting diverse trajectories for higher 
accuracy and maximizing KV-cache reuse

• Finding the right balance in this trade-off is crucial for both efficiency and 
performance
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• Measure the efficiency costs and benefits of retaining…

◦ a set of trajectories vs each separate trajectory 

◦ Reason: the efficiency cost of retaining each trajectory depends on the 
other trajectories that are retained or pruned
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• Reward term:
σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖

◦ 𝑊𝑖 = ceil 𝑁
exp Τ𝑅𝑖 𝑇𝑅

σ𝑘∈𝐴 exp Τ𝑅𝑘 𝑇𝑅
 (weight of a trajectory 𝑖)

◦ 𝑁: the total number of continuations that need to be sampled

◦ 𝑅𝑖: the reward for trajectory 𝑖 computed using a PRM

◦ 𝑇𝑅: a temperature parameter that controls how balanced the sampling is

◦ 𝐴: the set of all trajectories

• We want to find a subset 𝑆 ⊂ 𝐴 that achieves high 
σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖
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• Cost term:
𝑉𝑆
|𝑉𝐴|

◦ 𝑉𝐴: the set of all nodes in the tree before pruning the tree

◦ 𝑉𝑆: the set of all nodes in the tree after pruning the tree

• We want to find a subset 𝑆 ⊂ 𝐴 that achieves low 
𝑉𝑆

𝑉𝐴
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• Since we have two optimization goals:

max
𝑆

σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖
− 𝜆𝑏

𝑉𝑆
|𝑉𝐴|

◦ 𝜆𝑏 > 0 is a hyperparameter

◦ Add the additional constraint that 𝑆 ≥ 1 to ensure that we always retain at 
least one leaf node

• Is that enough? 

◦ According to the authors, no!
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• If we naively enforce KV sharing, this will also consequently prune out diverse 
trajectories which were crucial for attaining high accuracy

• Existing approaches for sampling continuations lead to many redundant or 
similar continuations

◦ Even if some of these continuations are not exact duplicates, they can still 
have a similar semantic meaning

• The objective is to preserve maximal coverage of the original semantic space 
after pruning
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• However, we can only estimate whether retaining a given trajectory improves 
coverage when considering the other trajectories that are retained 

• Solution:

◦ Embed the last step for each sequence using a BERT model finetuned for 
embedding math sentences

◦ Cluster these embeddings using hierarchical agglomerative clustering from 
Scipy based on cosine similarity
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Ref: https://www.geeksforgeeks.org/hierarchical-clustering/



• Diversity term:
𝐶𝑆
|𝐶𝐴|

◦ 𝐶𝐴: the total number of clusters

◦ 𝐶𝑆: the clusters covered by the selected trajectories
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• Final optimization problem:

max
𝑆

σ𝑖∈𝑆𝑊𝑖

σ𝑖∈𝐴𝑊𝑖
− 𝜆𝑏

𝑉𝑆
𝑉𝐴

+ 𝜆𝑑
𝐶𝑆
|𝐶𝐴|

• It is an integer linear programming problem, so they leveraged the Pulp 
optimization library using the CBC solver 
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• After pruning out trajectories, how many continuations to sample from each of 
the remaining trajectories determines by:

𝑊𝑖′ = ceil 𝑁
exp Τ𝑅𝑖 𝑇𝑅

σ𝑘∈𝑆 exp Τ𝑅𝑘 𝑇𝑅
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• REBASE

◦ Given the question 𝑥, balance temperature 𝑇𝑏 > 0, and sampling number of 
solutions 𝑁, it samples 𝑁 instances of the first step for the question

• Let the sampling budget of depth 0, 𝐵0, to 𝑁 at initialization

◦ In the 𝑖-th iteration, the PRM assigns the rewards to all the nodes at depth 𝑖
• After that, the algorithm examines whether the solutions up to depth 𝑖 are 

complete 

• Supposing there are 𝐶𝑖 completed solutions, it updates the sampling budget 
using 𝐵𝑖 ← 𝐵𝑖−1 − 𝐶𝑖
◦ If 𝐵𝑖 = 0, the process ends, and it obtains 𝑁 solutions

• For all the nodes 𝑛𝑗 with reward 𝑅(𝑛𝑗) in the depth 𝑖 of the tree, it calculates 
the expansion width of the 𝑛𝑗 as:

𝑊𝑗 = Round 𝐵𝑖
exp 𝑅(𝑛𝑗)/𝑇𝑅

σ𝑘 exp 𝑅(𝑛𝑘)/𝑇𝑅
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• REBASE

◦ When the balance temperature 𝑇𝑏 is small, this method encourages more 
exploitation 

◦ When 𝑇𝑏 is large, it encourages exploration 

◦ This method produces more diverse trajectories than standard beam 
search and attains higher accuracy for the same efficiency budget defined 
by FLOPs or number of model calls

◦ It has substantial inference overheads due to the reduction in KV cache 
sharing from sampling in a more balanced manner when deciding which 
trajectories to expand

23 Baseline



• As mentioned previously, FLOP count is not a good metric for memory-bound 
problems and may even be misleading

• Experiment: 

◦ They profiled throughput on 100 samples from the MATH500 test set on 
NVIDIA H100 NVL GPUs, with the Llemma-34B model and Llemma-
Reward 34B PRM each on a separate GPU

◦ Results were collected by running evaluation using 8 parallel threads 

• It is analogous to the attainable throughput with a batch size of 8 for 
serving use-cases

◦ To estimate FLOPs, they leveraged the approximation that the number of 
FLOPs is proportional to the number of tokens generated, which holds for 
short context length
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• They leveraged the open-source REBASE code for the balanced sampling 
implementation

• They used SGLang to serve KV cache reuse
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• Hyperparameter

◦ For the proposed method: 

• 𝑇𝑅 = 1.0

• 𝜆𝑑 = 1

• They sweeped over 𝜆𝑏 ∈ [1,2] and select the largest value of 𝜆𝑏 which 
doesn’t degrade accuracy by greater than 0.2%

◦ For the REBASE:

• 𝑇𝑅 = 0.2 (default setting) 
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• Model

◦ Llemma-34B model fine-tuned on Metamath along with the Llemma-34B 
PRM from the REBASE paper

◦ Mistral-7B model fine-tuned on Metamath as well as the corresponding 
Mistral-7B PRM from the Math-Shepherd paper 

cf. Math-Shepherd paper: it aims to automate the data generation process 
to facilitate training PRMs
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• Search width

◦ 16, 64, 256

◦ For the proposed method & REBASE:

• As in the REBASE paper, they reduced the search width each time a 
retained trajectory completes 

◦ For the beam search & DVTS:

• The label '(fixed)' indicates that 4 trajectories were retained at every 

step, while '(root(N))' denotes that 𝑁 trajectories were retained at 
each step, where 𝑁 is the initial width of the search
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• Datasets:

◦ MATH500, GSM8K

• Select the final answer with weighted majority voting using the final PRM 
score for each trajectory as the weight
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• They measured throughput for REBASE as well as the proposed method on 
H100 NVL GPUs

◦ Benchmark [4,8,16,32] parallel threads and select the best configuration 
for each method

• The number of parallel threads is representative for the serving 
scenario with a batch size equal to the number of threads

◦ They ran benchmarking with the main LLM (Llemma-34Bmodel) and the 
PRM each on a separate H100 NVL GPU, and for the proposed method, 
they co-located the embedding model on the same GPU as the reward 
model

◦ Beam width: 256

◦ Dataset: MATH500 test set
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• Ablation study

◦ Impact of the diversity term:

• For the results with only KV cache sharing term, they fix 𝜆𝑑 = 0 and 
sweep over 𝜆𝑏 ∈ [0.75, 1.25] selecting the largest value of 𝜆𝑏 which 
doesn’t degrade accuracy by greater than 0.2%
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• They proposed a tree search method that balances accuracy and efficiency by 
promoting KV cache sharing while preserving semantic diversity

• Unlike prior approaches, the proposed method explicitly models KV-sharing 
costs, going beyond standard efficiency metrics like FLOPs

• The proposed method with beam width 256 achieves 1.8× smaller KV cache 
size and 1.4× higher throughput than REBASE, with minimal accuracy 
degradation and without requiring custom kernel implementations
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• For Table 3, it is only at a beam width of 256 that the diversity term shows a 
clearly positive effect

• From the perspective of service providers who need to support many users 
simultaneously, it is unclear whether the proposed method is practical

◦ This raises the question of whether the method can have meaningful 
industrial impact given its computational demands

• One of the known issues with beam search is that it tends to produce 
repetitive responses

◦ Although the proposed method introduces a diversity term into the 
optimization, it remains fundamentally a variant of beam search, leaving 
open the question of how effectively it mitigates this inherent flaw
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