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Introduction
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Reasoning

▸A fundamental aspect of human cognition 

and problem-solving

▸Enables fast adaptation and transfer to 

new tasks

▸Cornerstone of advanced LLMs

▸A critical step toward Artificial General 

Intelligence (AGI)
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Role of reasoning Current Challenge

▸Math problem solving and code generation 

benefit from abundant structured data

▸But:

- Logical deduction

- Scientific inference

- Symbolic reasoning

suffer from sparse, fragmented supervision    

signals

✔ It becomes crucial to identify training data that is rich in diverse reasoning patterns

while also being scalable to obtain.

[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.



Why Existing Methods Fall Short

▸Relevant reasoning signals are often  

implicit

▸Intertwined with noisy information 

✔ Suboptimal
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Text-to-code generation

▸It requires the generation of code specific 

syntax

▸This limitation makes it difficult to 

generalize to non-code tasks

✔ Also faces challenges

Conventional continual pre-training

Proposed method

▸Transforming raw code files into executable functions and framing a straightforward task 

▸Given a function and a textual query, the model predicts either the output from a given 

input or the input from a given output

[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.
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Proposed method

Function + Query

Input → Predict Output (CoT)

Output → Predict Input (CoT)

OR

▸ The prediction is expressed as a Chain-of-Thought 

(CoT) in natural language

▸By collecting and transforming functions from diverse 

sources, the resulting data captures a variety of 

foundational reasoning skills

▸Helps internalize core reasoning skills more effectively

[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

- logic flow orchestration 

- state-space exploration 

- recursive decomposition 

- decision-making



Input/Output Prediction as a Pretraining Stage

▸Positioned before general instruction tuning

▸Intermediate step to enhance the reasoning abilities of the base model
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Our code input/output prediction learning 

Data Collection Process

▸Responses generated by prompting 

DeepSeek-V2.5 

▸Highly scalable:

- Sample hundreds of inputs per function

- Execute each funtion to collect ground-

truth outputs

Prompt Format

▸Each prompt includes:

-A function

-A textual query

-A given input or output

[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.



CODEI/O & CODEI/O++

▸Collected 450K+ functions from multiple sources

▸For each function, multiple input-output pairs are generated by executing the code

▸CoTs (Chain-of-Thoughts) are synthesized for these I/O pairs

✔ Result: 3.5 million training samples → CODEI/O data
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CODEI/O Data

Refinement Process: CODEI/O++

▸Leverages the verifiable nature of code: All predictions are verified by executing the code

▸Incorrect predictions are revised by DeepSeek-V2.5 again (multi-turn revision)

✔ Resulting in: CODEI/O++, which further improves model performance

[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.



Consistent & Generalized Reasoning

▸Validated on 4 base models (sizes: 7B to 30B)

▸Assessments across 14 different benchmarks, including: 

- Code-related, logic, symbolic, mathematical & numerical, scientific, commonsense
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Validation

Compared to Strong Data Baselines

▸OpenMathInstruct2, OpenCoderSFT-Stage1, WebInstruct, High-quality raw code

✔ Higher average scores across all base models

✔ More balanced performance across most benchmarks:

- CODEI/O offers consistent improvements across nearly all benchmarks.

✔ “ Balanced and generalizable reasoning abilities ”

[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.



Code I/O
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Overview of dataset construction

Step 1 Step 2 Step 3 Step 4

CODE I/O
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Step 1: Collecting raw code files

To obtain diverse reasoning patterns, codes should be obtained from various sources.

- Raw code sources to construct CODE I/O are as below:

1) CodeMix: In-house raw python code for pre-training the LLM (DeepSeek).

2) PyEdu-R: Python codes for complex reasoning tasks on STEM or logic puzzles.

3) Other well-known Github public repositories/online platforms.

In total, approximately 810.5K raw codes were obtained.

CODE I/O : Dataset Construction
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Step 2: Transforming to a unified format

The collected raw codes often lack structure, contain irrelevant parts.

➔ An LLM(DeepSeek-V2.5) was utilized for the pre-processing.

The formatted data have 4 parts.

1) Cleaned reference code (with main entrypoint function)

• Non-essential code parts are filtered (e.g. print, plot)

• Main entrypoint function: overall logic of the raw code

2) Natural language query

• Problem statement for the main entrypoint function.

3) Input/output format description

4) Input random generator

CODE I/O : Dataset Construction 
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Raw code example
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Step 3: Input/output pair collection

- Using the cleaned reference code & the input random generator, obtain 

Input/output value pairs for each code.

- While data collection, the cases below are excluded:

1) The reference code has randomness (Input/output pairs should be 

deterministic)

2) Too much runtime is required

3) Input/output structure is too complicated

4) The reference code fails to run

After filtering out, 3.5M instances were obtained from 454.9K raw code files.

(50% for input prediction, 50% for output prediction)

CODE I/O : Dataset Construction 
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Step 4: Building samples for input-output prediction

- Using the collected instances, generate labels for the dataset.

- The label should contain two components:

1) Reasoning flow in natural language (CoT).

2) Predicted input(output) value from the given output(input) value.

- Obtaining labels with fixed templates would be reliable. However, this approach has 

critical limitations.

1) Cannot build deterministic reverse functions for all codes.

2) The label style sticks, which would harm the generalization ability.

➔ Due to the limitations, labels are fully generated by the LLM (DeepSeek-V2.5).

CODE I/O : Dataset Construction 
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output prediction label Input prediction label
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Step 4: Building samples for input-output prediction

- To enhance the dataset quality, multi-turn approach was also applied.

- When the LLM predicts a wrong input/output value at 1st turn, human feedback 

is added to the prompt at the 2nd turn.

- The human feedback contains:

1) Whether the predicted answer is correct

2) Corresponding output of the wrong prediction in the 1st turn (only if the input 

prediction was wrong)

- The human feedback does not contain the ground truth value.

Human feedback example 

CODE I/O : Dataset Construction 
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Step 4: Building samples for input-output prediction

- Utilizing the LLM, two types of datasets were generated.

#1: CODE I/O [Single-turn dataset]

Prompt contains: 

1) Cleaned reference code

2) A query

3) An input & output structure description

4) An input(or output) value

Label contains:

1) Turn 1 response from DeepSeek-V2.5

#2: CODE I/O++ [Multi-turn dataset]

Prompt contains:

Same as CODE I/O

Label contains:

1) Turn 1 response from DeepSeek-V2.5

2) Turn 1 feedback from human

3) Turn 2 response from DeepSeek-V2.5

4) Turn 2 feedback from human

CODE I/O++



Experiments
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Base models: 4 types of LLMs are selected for experiments

Coder Models

• Qwen 2.5 7B Coder

• DeepSeek v2 Lite Coder

General-purpose Models

• LLaMA 3.1 8B

• Gemma 2 27B

Experiment Setups
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Training procedure: two-step fine-tuning approach

Step 0) Prepare the baseline model

Step 1) Fine-tune by CODE I/O(++)

Step 2) Fine-tune by an extra instruction tuning dataset

*Instruction tuning dataset:

- Contains instruction/answer pairs from various domains & languages.

- Relatively smaller size than CODE I/O(++).

- Lets the model to acquire intent from the prompt.

Experiment Setups
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To test whether CODE I/O can give general reasoning ability to LLMs, various evaluation 

benchmarks were used for the test:

1) DROP: Numerical reasoning

2) WinoGrande: Commonsense reasoning

3) GSM8K: Basic arithmetic

4) MATH: Complex math reasoning

5) MMLU-STEM: Multiple-choice quizzes in STEM domain
6) LeetCode-O: Code output prediction

7) BBH: Challenging tasks for LLM models (logical deduction, boolean, …)

8) GPQA: Multiple-choice quizzes requiring deep domain knowledge (biology, chemistry, …)

9) CruxEval: Input/output prediction in python codes

10) ZebraGrid: Logic reasoning
11) KorBench: Logic reasoning

12) LiveBench: Logic reasoning & mathematics

Experiment Setups

BLUE : Math

GREEN: Code

RED: Logic reasoning

PURPLE: Deep domain knowledge
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To compare CODE I/O(++) to other works, four datasets were selected as comparison.

• WebInstruct (WI) (11.6M): Large instruction-tuning dataset mined from the Internet

• OpenMathInstruct-2 (OMI2) (14.0M): Dataset focused on math-problem solving

• OpenCoder-SFT-Stage-1 (OC-SFT-1) (4.2M): QA dataset generated from code data 

• Python-Edu (PyEdu) (7.7M): Raw python code dataset

(For similar size as CODE I/O, 3.5M subsets of WI and OMI2 were used for 

experiments.)

Experiment Setups
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1) CODE I/O(++) shows consistent improvements on various benchmarks.
➔ CODE I/O improved general-purpose reasoning ability.

2) CODE I/O(++) gives better performance than raw code dataset (PyEdu).
➔ Training on less structured data is suboptimal.

High perf. Low perf.

Experiments - results
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3) CODE I/O ++ outperforms CODE I/O.
➔ Multi-turn revision improved dataset quality and reasoning ability of the model.

High perf. Low perf.

Experiments - results



Analysis
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Input/Output Prediction

• Input and output prediction by training on each separately

• I. Pred. only : training only with input prediction data

• O. Pred. only : training only with output prediction data

• The scores are generally similar
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Input/Output Prediction

• Input and output prediction by training on each separately

• I. Pred. only : training only with input prediction data

• O. Pred. only : training only with output prediction data

• Incorporating both input-output predictions can lead to more balanced 

performance !
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Rejection Sampling

• Rejection sampling : Filtering incorrect responses 
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Rejection Sampling

• Rejection sampling : Filtering incorrect responses 

→ Remove 50% of the training data (w/o wrong)

• This results in a general performance drop, suggesting a loss of data diversity
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Rejection Sampling

• Rejection sampling : Filtering incorrect responses 

→ Remove 50% of the training data

• There is no significant benefit when using a subset dataset that only uses 50% of 

the CodeI/O (~50% subset)
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Rejection Sampling

• wrong → gt : Replacing all incorrect responses with ground-truth answers through 

code execution

• It still has no advantages
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Ablation Study : Rejection Sampling

• wrong → gt : Replacing all incorrect responses with ground-truth answers through 

code execution

• It still has no advantages

• To maintain performance balance, we retain all incorrect responses !
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

[2] Yue, Xiang, et al. "Mammoth2: Scaling instructions from the web." NeurIPS, 2024.

Effect of Different Synthesis Model

• WebInstruct (WI) : Dataset refined by Qwen-72B or Mixtral-22Bx8

• WI-DS25 : Dataset refined by DeepSeek-V2.5
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Effect of Different Synthesis Model

• WebInstruct (WI) : Dataset refined by Qwen-72B or Mixtral-22Bx8
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

[2] Yue, Xiang, et al. "Mammoth2: Scaling instructions from the web." NeurIPS, 2024.

Effect of Different Synthesis Model

• WebInstruct (WI) : Dataset refined by Qwen-72B or Mixtral-22Bx8

• WI-DS25 : Dataset refined by DeepSeek-V2.5
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Scaling Effect of CodeI/O

• How CodeI/O scales with varying amounts of training data
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Scaling Effect of CodeI/O

• How CodeI/O scales with varying amounts of training data

• Just increasing the number of training samples → Clear benefit !

41



[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Scaling Effect of CodeI/O

• How CodeI/O scales with varying amounts of training data

• Increasing the ratio of input-output pairs → Generally benefit !
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Different Data Format

• How to best arrange the query, reference code, CoT in training samples
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Different Data Format

• How to best arrange the query, reference code, CoT in training samples

• Prompt (Q+Code) + Response (CoT) → Best performance !
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Different Data Format

• How to best arrange the query, reference code, CoT in training samples

• Prompt (Q+Code) + Response (CoT) → Best performance !

• Without CoT, performance drops
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Multi-turn Revision

• Extension revision to a second turn to evaluate further improvements

• Most correct responses are predicted in the initial turn

• About 10% of incorrect responses corrected in the first-turn revision
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Multi-turn Revision

• Extension revision to a second turn to evaluate further improvements

• Most correct responses are predicted in the initial turn

• About 10% of incorrect responses corrected in the first-turn revision
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Multi-turn Revision

• However, the second turn yields significantly fewer corrections

• Minimal gains or even performance drops
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Multi-turn Revision

• However, the second turn yields significantly fewer corrections

• Minimal gains or even performance drops → Using single-turn revision !
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

The Necessity of Two Stage Training

• Experiments about the necessity of a separate training stage with CodeI/O data

• All two-stage variants outperform single-stage training
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The Necessity of Two Stage Training

• Experiments about the necessity of a separate training stage with CodeI/O data

• All two-stage variants outperform single-stage training
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Analysis Summary

• To maintain performance balance, we retain all incorrect responses and 

incorporate both input-output predictions, not knowledge distillation from an 

advanced model

• Scaling the number of samples or the ratio of I/O helps capturing and learning 

complex logic flow

• Including CoT and two-stage training lead higher performance
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Learning about Code Execution

• Most related work focus solely on the code execution output prediction task itself

• Other works also utilize code execution to improve code generation abilities
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Learning about Code Execution

• Most related work focus solely on the code execution output prediction task itself

• Other works also utilize code execution to improve code generation abilities
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

[2] Ding, Yangruibo, et al. "Cycle: Learning to self-refine the code generation." Proceedings of the ACM on Programming Languages, 2024.

[3] Ni, Ansong, et al. "Next: Teaching large language models to reason about code execution." arXiv, 2024.

Learning about Code Execution

• Most related work focus solely on the code execution output prediction task itself

• Other works also utilize code execution to improve code generation abilities

→ Predict diverse code input-output and demonstrate efficacy in general 

reasoning abilities, not code-specific task !
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Inference Time Scaling

• Inference-time scaling : Encouraging models to generate ultra-long reasoning 

process to solve problems through large-scale reinforcement learning
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

[2] Jaech, Aaron, et al. "Openai o1 system card." arXiv, 2024.

[3] Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv, 2025.

Inference Time Scaling

• Inference-time scaling : Encouraging models to generate ultra-long reasoning 

process to solve problems through large-scale reinforcement learning

⇒ CodeI/O is orthogonal to this method and can provide a better basis to 

further incentivize the reasoning abilities of LLMs
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[1] Li, Junlong, et al. "CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv, 2025.

Conclusion

• Introducing CodeI/O to improve the reasoning abilities of LLMs by training them to 

predict code inputs and outputs in pure CoTs

• This approach can enhance general reasoning abilities, including symbolic, 

logical, mathematical, and commonsense reasoning
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Limitation

• Inherent limitations in the diversity and accuracy of the DeepSeek

• CodeI/O++ is introduced as an advanced dataset with multi-turn revision, but experiment 

shows that multi-turn revision is not significant

• No such verification when generating labels for input prediction and output prediction 

stages

• Evaluation problem : Multiple valid inputs can produce the same output → Correct input 

prediction is labeled as wrong prediction

• Despite claims of general reasoning, the model’s performance is insufficient and needs 

deeper evaluation
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