
Spring 2025

Decoding & Test-time Scaling
EECE695D: Efficient ML Systems

Today
• We talk about computational issues of LLM decoding

• Pitfalls of greedy decoding

• Computation-friendly solutions

Language modeling
• Recall. Language modeling is about approximating the ground-truth

 data-generating distribution

• So that we can:

• Generate realistic samples

• Make inference

• (and so on)

̂P ≈ P(x1, x2, …, xN)

x⃗ ≈ ̂P
̂P(x | "Q. What color is an apple? A.")

LLMs
• LLM. Most modern LLMs solve this by modeling the next-token probability

• Input. A sequence

• Output. Approximation of the conditional probability

• Very easy to train with unsupervised data

• Question. Suppose that we want to draw a length- sample from .
 What should we do with this next token predictor?

x1, x2, …, xn

̂P ≈ P(xn+1 |x1:n)

L ̂P

Greedy decoding
• Naïvely, we would do greedy decoding:

• For , repeat:

• However, there are several pitfalls:

• Resorts to a single, suboptimal solution (Pt 1: test-time scaling)

• Difficult to parallelize (Pt 2: parallel decoding)

n = 1,…, L − 1

x̂n+1 = argmaxx ̂P(x | x̂1:n)

Test-time scaling

Greedy decoding

• Greedy sampling resorts to a single solution

• The argmax operation is deterministic

• Lacks diversity

• Worse, the sampled solution is not always max-prob solution

• Greedy search is mypoic

x̂n+1 = argmaxx ̂P(x | x̂1:n)

x̂ ≠ argmaxx ̂P([x1, …, xn])

Example: Myopic
• Suppose that we want to complete the sentence:

 “I have (word 1) (word 2)”

• Suppose that we have:

,

• The max-prob solution is: “an apple,” w.p. 30%.

• Greedy decoding will find something that starts with “a”

̂P("a" | "I have") = 0.7 ̂P("an" | "I have") = 0.3
̂P("pear" | "I have a") = ̂P("cherry" | "I have a") = ̂P("banana" | "I have a") = 1/3

̂P("apple" | "I have an") = 1

Random sampling
• One thing we can try is simply random sampling:

• If the logits have been , then:

• Can also do temperature scaling:

• Diverse, but very suboptimal in many cases

z1, …, zK

P(x̂n+1 = k) =
exp(zk)

∑K
i=1 exp(zi)

P(x̂n+1 = k) =
exp(zk /τ)

∑K
i=1 exp(zi/τ)

Advanced sampling
• Advanced methods narrow down the options before sampling

• Top-k. At each step, sample among top-K options only

• Nucleus. Choose top tokens such that cumulative prob exceeds some p

[0.30, 0.25, 0.12, 0.11, ⋯]

Top-k: Select 3

Nucleus: (0.30+0.25+0.12+0.11) > p > (0.30+0.25+0.12)

Test-time scaling
• One find higher-prob solution with a higher chance, using more samples

• Uses extra computation (thus called test-time scaling)

• A simple scaling method: Best-of-N

• Sample sample sequences independently (w/ any sampling scheme)

• Select the highest-probability one

•

• Take a majority vote of final answers, if applicable

Note. Sampling can be done in parallel, thus scalable in terms of latency

N

log ̂P("word 1") + log ̂P("word 2" | "word 1") + ⋯

Test-time scaling
• One can replace “select the highest-probability” with reward models

• Trained verifiers

• Example. “Let’s verify step-by-step” (Lightman et al., 2024)

• Collected human feedback on the quality of the reasoning process,
to train an evaluation model

Lightman et al., “Let’s verify step-by-step,” ICLR 2024

Fine-grained verification schedule

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Parallel vs. Sequential

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Recent lessons
• Test-time scaling seems to be very powerful

• Under certain scenarios, using compute for test-time scaling is better
than using the same compute for pretraining

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Recent lessons

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Recent lessons
• Sampling policy can replace chain-of-thought prompting

• Not using top-1 can elicit inherent chain-of-thought reasoning

Wang and Zhou., “Chain-of-Thought Reasoning without Prompting,” NeurIPS 2024

Recent lessons
• A simple yet effective method to force sequential revision—and thus use more

test-time compute—is to simply add “wait”

• called “budget forcing”

Muenninghoff et al., “s1: Simple test-time scaling,” arXiv 2025

Recent lessons
• One can compress the reasoning process by extra fine-tuning

• Example. Compressed CoT compresses the reasoning procedure into a
 sequence of continuous “contemplation” tokens

Cheng and van Durme, “Compressed Chain of Thought: Efficient Reasoning through Dense Representations,” arXiv 2024

Further readings
• A nice survey:

• https://arxiv.org/abs/2406.16838

• A neat tutorial blog post:

• https://rentry.co/samplers

https://arxiv.org/abs/2406.16838
https://rentry.co/samplers

Parallel decoding

One-by-one decoding
• LLMs operate in a sequential manner

Sample Sample Sample

• Cannot be parallelized effectively, per se.

x1 → x2 → x3 →

https://cameronrwolfe.substack.com/p/language-model-training-and-inference

Parallelizing the verification
• Idea. We can verify in parallel!

• Train a model that generate a block of tokens

• Use multiple LLMs to verify up to which token is correct

Stern et al., “Blockwise Parallel Decoding for Deep Autoregressive Models” NeurIPS 2018

GPU server 1

GPU server 2

GPU server 3

Parallelizing the verification
• Question. How do we generate multiple tokens?

• Option#1. Fine-tune additional heads

• Limitation: predicting far-future tokens may require capturing different
attention patterns

Stern et al., “Blockwise Parallel Decoding for Deep Autoregressive Models” NeurIPS 2018

Parallelizing the verification
• Option#2. Use a standalone small, autoregressive model (called “drafter”)

• Verification ensures that the results are identical as LLM

• SLM often produces better
result than LLM

• Accept if top-k

Xia et al., “Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation,” EMNLP 2023
Leviathan et al., “Fast Inference from Transformers via Speculative Decoding,” ICML 2023

Random sampling + Speculative decoding
• Leviathan et al. (2023) extends the draft-then-verify framework to the case of

generation-by-sampling

• Example

• Suppose that the drafter generates with
 the verifier generates with

• We sample from , then do:

• If : Accept the sample

• If : Reject the sample w.p.

• Resample from

Q̂(x)
̂P(x)

Q̂(x)

Q̂(x) ≤ ̂P(x)

Q̂(x) > ̂P(x) 1 − ̂P(x)/Q̂(x)

norm(max(0, ̂P(x) − Q̂(x)))

Leviathan et al., “Fast Inference from Transformers via Speculative Decoding,” ICML 2023

Further readings
• Self-speculative decoding

• https://arxiv.org/abs/2309.08168

• Consistency LLMs (Jacobi decoding)

• https://arxiv.org/abs/2403.00835

• Language modeling by Diffusion

• https://arxiv.org/abs/2502.09992

• Medusa

• https://arxiv.org/abs/2401.10774

https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2401.10774

That’s it for today 🙌

