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Today
• We talk about computational issues of LLM decoding 

• Pitfalls of greedy decoding 

• Computation-friendly solutions



Language modeling
• Recall. Language modeling is about approximating the ground-truth 

            data-generating distribution 

 

• So that we can: 

• Generate realistic samples            

• Make inference                               

• (and so on)

̂P ≈ P(x1, x2, …, xN)

x⃗ ≈ ̂P
̂P(x | "Q. What color is an apple? A.")



LLMs
• LLM. Most modern LLMs solve this by modeling the next-token probability 

• Input.      A sequence  

• Output.   Approximation of the conditional probability 

 

• Very easy to train with unsupervised data 

• Question. Suppose that we want to draw a length-  sample from . 
                   What should we do with this next token predictor?

x1, x2, …, xn

̂P ≈ P(xn+1 |x1:n)

L ̂P



Greedy decoding
• Naïvely, we would do greedy decoding: 

• For , repeat: 

 

• However, there are several pitfalls: 

• Resorts to a single, suboptimal solution                  (Pt 1: test-time scaling)  

• Difficult to parallelize                                                  (Pt 2: parallel decoding)

n = 1,…, L − 1

x̂n+1 = argmaxx ̂P(x | x̂1:n)



Test-time scaling



Greedy decoding
 

• Greedy sampling resorts to a single solution 

• The argmax operation is deterministic 

• Lacks diversity 

• Worse, the sampled solution is not always max-prob solution 

 

• Greedy search is mypoic

x̂n+1 = argmaxx ̂P(x | x̂1:n)

x̂ ≠ argmaxx ̂P([x1, …, xn])



Example: Myopic
• Suppose that we want to complete the sentence: 

                 “I have (word 1) (word 2)” 

• Suppose that we have: 

,         

 

 

• The max-prob solution is: “an apple,” w.p. 30%. 

• Greedy decoding will find something that starts with “a”

̂P("a" | "I have") = 0.7 ̂P("an" | "I have") = 0.3
̂P("pear" | "I have a") = ̂P("cherry" | "I have a") = ̂P("banana" | "I have a") = 1/3

̂P("apple" | "I have an") = 1



Random sampling
• One thing we can try is simply random sampling: 

• If the logits have been , then: 

 

• Can also do temperature scaling: 

 

• Diverse, but very suboptimal in many cases

z1, …, zK

P(x̂n+1 = k) =
exp(zk)

∑K
i=1 exp(zi)

P(x̂n+1 = k) =
exp(zk /τ)

∑K
i=1 exp(zi/τ)



Advanced sampling
• Advanced methods narrow down the options before sampling 

• Top-k.       At each step, sample among top-K options only 

• Nucleus.   Choose top tokens such that cumulative prob exceeds some  p

[0.30, 0.25, 0.12, 0.11, ⋯]

Top-k: Select 3

Nucleus: (0.30+0.25+0.12+0.11) > p > (0.30+0.25+0.12)



Test-time scaling
• One find higher-prob solution with a higher chance, using more samples 

• Uses extra computation (thus called test-time scaling) 

• A simple scaling method: Best-of-N 

• Sample  sample sequences independently      (w/ any sampling scheme) 

• Select the highest-probability one 

•  

• Take a majority vote of final answers, if applicable 

 
Note. Sampling can be done in parallel, thus scalable in terms of latency

N

log ̂P("word 1") + log ̂P("word 2" | "word 1") + ⋯



Test-time scaling
• One can replace “select the highest-probability” with reward models 

• Trained verifiers 

• Example. “Let’s verify step-by-step” (Lightman et al., 2024) 

• Collected human feedback on the quality of the reasoning process, 
to train an evaluation model

Lightman et al., “Let’s verify step-by-step,” ICLR 2024



Fine-grained verification schedule

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025



Parallel vs. Sequential

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025



Recent lessons
• Test-time scaling seems to be very powerful 

• Under certain scenarios, using compute for test-time scaling is better 
than using the same compute for pretraining

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025



Recent lessons

Snell et al., “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025



Recent lessons
• Sampling policy can replace chain-of-thought prompting 

• Not using top-1 can elicit inherent chain-of-thought reasoning

Wang and Zhou., “Chain-of-Thought Reasoning without Prompting,” NeurIPS 2024



Recent lessons
• A simple yet effective method to force sequential revision—and thus use more 

test-time compute—is to simply add “wait” 

• called “budget forcing”

Muenninghoff et al., “s1: Simple test-time scaling,” arXiv 2025



Recent lessons
• One can compress the reasoning process by extra fine-tuning 

• Example. Compressed CoT compresses the reasoning procedure into a 
                  sequence of continuous “contemplation” tokens

Cheng and van Durme, “Compressed Chain of Thought: Efficient Reasoning through Dense Representations,” arXiv 2024



Further readings
• A nice survey: 

• https://arxiv.org/abs/2406.16838 

• A neat tutorial blog post: 

• https://rentry.co/samplers

https://arxiv.org/abs/2406.16838
https://rentry.co/samplers


Parallel decoding



One-by-one decoding
• LLMs operate in a sequential manner 

Sample   Sample   Sample   

• Cannot be parallelized effectively, per se.

x1 → x2 → x3 →

https://cameronrwolfe.substack.com/p/language-model-training-and-inference



Parallelizing the verification
• Idea. We can verify in parallel! 

• Train a model that generate a block of tokens 

• Use multiple LLMs to verify up to which token is correct

Stern et al., “Blockwise Parallel Decoding for Deep Autoregressive Models” NeurIPS 2018

GPU server 1

GPU server 2

GPU server 3



Parallelizing the verification
• Question. How do we generate multiple tokens? 

• Option#1. Fine-tune additional heads 

• Limitation: predicting far-future tokens may require capturing different 
attention patterns 

Stern et al., “Blockwise Parallel Decoding for Deep Autoregressive Models” NeurIPS 2018



Parallelizing the verification
• Option#2. Use a standalone small, autoregressive model (called “drafter”) 

• Verification ensures that the results are identical as LLM 

• SLM often produces better 
result than LLM 

• Accept if top-k

Xia et al., “Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation,” EMNLP 2023 
Leviathan et al., “Fast Inference from Transformers via Speculative Decoding,” ICML 2023



Random sampling + Speculative decoding
• Leviathan et al. (2023) extends the draft-then-verify framework to the case of 

generation-by-sampling 

• Example 

• Suppose that the drafter generates with  
                         the verifier generates with  

• We sample from , then do: 

• If :         Accept the sample 

• If :         Reject the sample w.p.  

• Resample from 

Q̂(x)
̂P(x)

Q̂(x)

Q̂(x) ≤ ̂P(x)

Q̂(x) > ̂P(x) 1 − ̂P(x)/Q̂(x)

norm(max(0, ̂P(x) − Q̂(x)))

Leviathan et al., “Fast Inference from Transformers via Speculative Decoding,” ICML 2023



Further readings
• Self-speculative decoding 

• https://arxiv.org/abs/2309.08168 

• Consistency LLMs (Jacobi decoding) 

• https://arxiv.org/abs/2403.00835 

• Language modeling by Diffusion 

• https://arxiv.org/abs/2502.09992 

• Medusa 

• https://arxiv.org/abs/2401.10774

https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2401.10774


That’s it for today 🙌


