Decoding & Test-time Scaling

Spring 2025

Today

 We talk about computational issues of LLM decoding
e Pitfalls of greedy decoding

e Computation-friendly solutions

Language modeling

 Recall. Language modeling is about approximating the ground-truth
data-generating distribution

A\

P~ P(X{,X, ..., Xy)

e So that we can:

A\

e Generate realistic samples X ~ P

 Make inference ﬁ(X | "Q. What color is an apple? A.")

e (and so on)

LLMs

e LLM. Most modern LLMs solve this by modeling the next-token probabillity

e Input. A sequenceX;,X,,...,X

n

e Qutput. Approximation of the conditional probabillity

A\

P P(Xn+1 |X1:n)

e Very easy to train with unsupervised data

e Question. Suppose that we want to draw a length-L sample from P.
What should we do with this next token predictor?

Greedy decoding

* Naively, we would do greedy decoding:

e Forn=1,...,L — 1, repeat:

N\

X, ., = argmax, P(x|X;.,)

* However, there are several pittalls:
e Resorts to a single, suboptimal solution

e Difficult to parallelize

Test-time scaling

Greedy decoding

A\

X, ., = argmax, P(x|X;.,)
e Greedy sampling resorts to a single solution
e The argmax operation is deterministic

e |Lacks diversity

e Worse, the sampled solution is not always max-prob solution
X # argmax, P([X;,...,X])

e Greedy search is mypoic

Example: Myopic

e Suppose that we want to complete the sentence:

“I have (word 1) (word 2)”

e Suppose that we have:
ﬁ("a" | "l have") = 0.7, IA’("an" | "l have") = 0.3
IA’("pear" 1"l have a") = }A’("Cherry" 1"l have a") = IA’("banana" |“l have a") = 1/3

P(‘apple’|"l have an’) = 1

e The max-prob solution is: “an apple,” w.p. 30%.

e Greedy decoding will find something that starts with “a”

Random sampling

e One thing we can try is simply random sampling:

e If the logits have been z,, ..., Zg, then:
n exp(z;)
PX =k = —p———
Zi=1 eXp(Zi)
e Can also do temperature scaling:
A exp(z,/7)
P(Xn+1 — k) — K—
Zi=1 eXp(Zi/T)

e Diverse, but very suboptimal in many cases

Advanced sampling

 Advanced methods narrow down the options before sampling

e Top-k. At each step, sample among top-K options only

* Nucleus. Choose top tokens such that cumulative prob exceeds some p
Top-k: Select 3

/\
0.30, 025, 0.12, 0.11, -]

Test-time scaling

 One find higher-prob solution with a higher chance, using more samples

» Uses extra computation (thus called test-time scaling)

e A simple scaling method: Best-of-N

e Sample N sample sequences independently (w/ any sampling scheme)
e Select the highest-probabillity one
e log P("word 1") + log P("word 2" | "word 1") + -+

e Take a majority vote of final answers, if applicable

Test-time scaling

e One can replace “select the highest-probability” with reward models
e Tralned verifiers

 Example. “Let’s verify step-by-step” (Lightman et al., 2024)

e Collected human feedback on the quality of the reasoning process,
to train an evaluation mode|

The denominator of a fraction is 7 less than 3 times the numerator. If the fraction is equivalent to 2/5, what is the numerator of
the fraction? (Answer: ‘ 14)

() () @ Let's call the numerator x.
) () @ So the denominator is 3x-7.
() (=) & We know that x/(3x-7) = 2/5.

) () @& So 5x = 2(3x-7).

Lightman et al,, “Let’s verify step-by-step,” ICLR 2024

Fine-grained verification schedule

Best-of-N Beam Search Lookahead Search

L]] e | j m— | |] | — | 1
= | m— | m— | L | — | | s—| _—_— —_— — — | —_— I
I I Beam search, b_ut at each steg l
I Generate N full solutions, Select the top-N samples I rollout k-steps in advance, using
selecting the best one with the I I at each step using the I the PRM value at the end of the I
. I verifier . PRM » rollout to represent the value for
Question | Question . J Question | the current step |

: \\ ’ I \ :
: /‘ \ d P t / :
u ‘ \ \ PRh';vgaIue ‘ .
N / Rollout back to \ .
. \ \ k-steps step .
- - — __— —/— e l— .
N Iy (A :
o i I] []
. - e - e -— - o
Continue Search from
the top-N options

r I :I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

@ | . :

) - ~ ~ ~ ~
. — - - —
: < < ¢ ¢ :

Select the best final answer using the verifier Select the best final answer using the verifier e e m ke e s EEEEEe e
Key: r - —I
I | = Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier = Rejected by verifier
)

Snell et al,, “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Parallel Sampling

Q: If4daps =7
yaps, and 5
yaps = 3 baps,
how many daps
equal 42 baps?

— LM

Sequential Revisions

Q: If4daps =7
yaps, and 5
yaps = 3 baps,
how many daps
equal 42 baps?

Parallel vs. Sequential

A: So 7/4 yap/dap ... J

A: We have 4 dap... J

A: If 7/4 yaps/dap ... J

LM proposes answers
independently, in
parallel

LM proposes a sequence of revisions, each
conditioned on previous revisions

TP e W Wowray

Snell et al,, “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Using Revision Model + Verifier at -

Inference Time

I
I | = Apply Verifier = Selected by verifier

= Rejected by verifier

Parallel Best-of-N

-~
@

| p—

Question

Verifier
selects
the best
answer

Sequential Revisions

Verifier selects
the best answer

Question

Combining Sequential / Parallel

—
- ~
—

— — it . — ~
(| (a1 (1 (a1 .
1 | . 1 | 1 | [\
N AN A A . A | - Verifier
| , . selects the
Verifier selects the best - = best answer |
Question answer within each chain Ir O : across chains
VD . 4
(al (o1 (a1l [/
[. 1 | 1 | . 1 | [/7
o - X~ — o ,/
~ ~ - -

o — -

Recent lessons

e Jest-time scaling seems to be very powerful

 Under certain scenarios, using compute for test-time scaling is better
than using the same compute for pretraining

Question: Exchanging pretraining and test-time compute

Suppose a model was pre-trained with X FLOPs. Assume that we plan to run Y FLOPs of inference
with this model. If we want to improve performance by increasing the total FLOPs budget by a
factor of M (i.e., M(X + Y) total FLOPs across both pretraining and inference), should we spend
our FLOPs on increased pretraining compute or on additional test-time compute?

Snell et al,, “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

MATH Difficulty Level Accuracy (%)

100

80

60

40

20

Recent lessons

Comparing Test-time and Pretraining Compute

Revisions

Il I

I I
I

Proportional to Inference FLOPs

% Pretraining Compute

PRM Search

ii — i [[- 1
X
> 80
©
> -2
3 D
< 60 5
E 1
O L3 2
= =)
> 40 O
= =
O 0O
=)
0O 20 i
=
<
= -5

Proportional to Inference FLOPs

a@» Test-time Compute === R>>1 —== R~=1 - R <<

Snell et al,, “Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters,” ICLR 2025

Recent lessons

Sampling policy can replace chain-of-thought prompting

 Not using top-1can elicit inherent chain-of-thought reasoning

Question in standard QA format

Q: | have 3 apples, my dad has 2
more apples than me, how many
apples do we have in total?

A:
\\\\/Language

model

~

Decoding step 0 Continue greedy decoding

/5 apples X
top-1: 5 ”//I have 3 apples, my dad has 2 more apples than me, so he
top-2: | — has 5 apples. 3+5=8. We have 8 apples in total. v

top-3: We ——__ We have 5 apples in total. X

top-4. You —
top-5: The H\ You have 3 apples, your dad has 2 more apples than you,
' \so he has 5 apples. 3+5=8. You have 8 apples in total. /

The answeris 5. X

uncertain certain

Wang and Zhou,, “Chain-of-Thought Reasoning without Prompting,” NeurlPS 2024

Recent lessons

A simple yet effective method to force sequential revision—and thus use more

test-time compute—is to simply add “wait”

e called “budget forcing”

(How many r in raspberry?

Question)

ﬁet's break down the process of counting the letter 'r'in the\

word "raspberry" ...
* First letter: 'r' - Thisisan 'r', count = 1.

* Seventh letter: 'r' - Thisis an 'r', count = 2.

The number of 'r's in "raspberry" is 2.

* Second letter: 'a' - Not an 'r', count remains 1 ...
* Sixth letter: 'e' - Not an 'r', count remains 1.

* Eighth letter:'y' - Not an 'r', count remains 2 ...

Walit, let's re-read the question carefully. It asks "How many r
in raspberry?" ...*r-a-s-p-b-e-r-r-y...*First'r'...*

Qecond 'r'...*Third 'r' ... Count =3 ... Reasoning tracy

the word. Final Answer: The final answer is

C/Iy initial answer of 2 was incorrect due to a ©

3

uick reading of
Response

Muenninghoff et al,, “sl: Simple test-time scaling,” arXiv 2025

Recent lessons

e One can compress the reasoning process by extra fine-tuning

e Example. Compressed CoT compresses the reasoning procedure into a
sequence of continuous “contemplation” tokens

/

play. If each game lasts for 2 hours, how many hours will Jerry spend at the field watching his daughters play and practice altogether?

~

Jerry's two daughters play softball on different teams. They each have 8 games this season. Each team practices 4 hours every game they

N\ J
@ Hours spent on games Hours spent on practice
- ~ e Each daughter plays 8 games. e Each team practices 4 hours for Total hours:
: e Each game lasts 2 hours every game e Total time for games and
Naive CoT e So for one daughter: * One daughter players 8 games, so practice: IJ
> 8 games x 2 hours per game = 16 :'> she practices: 8 games x 4 hours :> 32 hours for games + 64
hours per game | per game = 32 hours of practice. | hours for practice = 96 4 Jerry will)
e Since Jerry has two daughters: e For both daughters: total hours
16 hours per daughter x 2 = e 32 hours per daughter x 2 = 64 spend 96
32 hours for games hours of practice hours at the
. field.)

llama

CCoT

)

L
L

Cheng and van Durme, “Compressed Chain of Thought: Efficient Reasoning through Dense Representations,” arXiv 2024

[OOOQO]J] »

[{,ooooom - [/ooooo]l] A

Further readings

A nice survey:

e https://arxiv.org/abs/2406.16838

e A neat tutorial blog post:

e https://rentry.co/samplers

https://arxiv.org/abs/2406.16838
https://rentry.co/samplers

Parallel decoding

One-by-one decoding

e |LMs operate in a sequential manner

Sample X; — Sample X, — Sample x; —

e Cannot be parallelized effectively, per se.

Time Step #1 Time Step #2 Time Step #3

sat

T

Decoder-Only
Architecture

1

T

the

dog

Fums SEEs TEmE MEmN SEmm SEmm mmw S

down

|

Decoder-Only
Architecture

T

Final Generated Output

1

<EOS>

T

Decoder-Only
Architecture

!

T

T

dog

sat

down

dog

sat

down

PEE SEES SEEE GEEN SEEE NN GEEN SEEE GESN SEES SEES SEE SNES O SENE GEMe Sams MmO mmm W

https://cameronrwolfe.substack.com/p/language-model-training-and-inference

e |dea. We can verify in parallel!

Parallelizing the verification

e Train a model that generate a block of tokens

e Use multiple LLMs to verify up to which token is correct

Predict

I saw dog rnde| 1n the bus
—— * GPU server1
I Saw dog rnde| 1n v A
. — GPU server 2 executed
I Saw dog ride ' in the v > in parallel
GPU server 3
. . /—'\
I saw dog ride ' 1In the| car X y
I saw dog ride 1n the

Stern et al., “Blockwise Parallel Decoding for Deep Autoregressive Models” NeurlPS 2018

Parallelizing the verification

e Question. How do we generate multiple tokens?

o Option#1. Fine-tune additional heads

e Limitation: predicting far-future tokens may require capturing different
attention patterns

71 P2 ps Apply the original
@ /@ @ vocabulary projection
(\ (/ T / \ Add k output layers

\ Add a hidden layer

Original decoder output

Stern et al., “Blockwise Parallel Decoding for Deep Autoregressive Models” NeurlPS 2018

Parallelizing the verification

o Option#2. Use a standalone small, autoregressive model (called “drafter”)

e Verification ensures that the results are identical as LLM

e SLM often produces better
result than LLM

e Accept If top-k

Y4 Vs

"""""""""" ?"'""-- D ™ P A e R
f shared i ! distinct ‘ ‘ I i
\ attention) ' attention i

" Transformer Block | i Transformer Block R
_ . Ji=1 \. L aw=m” ;_’,::—‘-{‘_j}(‘*"’ Ji=1
. Transformer Block h & Transformer Block
_) i =1 _ o ; ;:2;::::::”’*\(:\\\5 J =1
t 1 t
Vi Y2 yi Y2 [M] [M] [M]
(a) Blockwise Decoding (b) Spec-Drafter

Xia et al., “Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation,” EMNLP 2023
Leviathan et al., “Fast Inference from Transformers via Speculative Decoding,” ICML 2023

Random sampling + Speculative decoding

e Leviathan et al. (2023) extends the draft-then-verify framework to the case of
generation-by-sampling

e Example

e Suppose that the drafter generates with Q(X)
the verifier generates with P(X)

e We sample from Q(X), then do:
o |f Q(X) < IS(X)I Accept the sample
e IfO(x) > P(x): Reject the sample w.p. 1 — P(x)/O(x)

e Resample from norm(max(0,P(x) — Q(X)))

Leviathan et al,, “Fast Inference from Transformers via Speculative Decoding,” ICML 2023

Further readings

Self-speculative decoding

o https://arxiv.org/abs/2309.08168

Consistency LLMs (Jacobi decoding)
e https://arxiv.org/abs/2403.00835

Language modeling by Diffusion

e https://arxiv.org/abs/2502.09992

Medusa

e https://arxiv.org/abs/240110774

https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2401.10774

That's it for today (-

