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Improvement of recent LLMs inference performance

▪ Problem of LLM
▪ Large Language model (LLM) gains outstanding performance in recent studies, but it has 

clear limitation on complex inference.

▪ Simply scaling up the model size is inefficient from latency, memory, computational 
complexity perspective.
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Improvement of recent LLM inference performance

▪ Overcome the limitation
▪ Test-time compute is one of the solution of these problems.

▪ o1 model of OpenAI has proven usefulness of test-time compute

▪ It gives outstanding performance than original models.
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[R1] GPT-o1, OpenAI, 2024
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Optimal architecture for test-time compute

▪ Disadvantage of test-time compute
▪ In transformer architecture, High memory usage and slow inference, Due to their long 

sequence length.

▪ This is especially noticeable in transformer structures where a lot of cost is required in the 
inference step.
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Optimal architecture for test-time compute

▪ Subquadratic models
▪ Faster, less memory usage than transformer, which is foundation model of LLMs

▪ Inefficient well-trained subquadratic models. → distillation

▪ Mamba is well-known subquadratic model.
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What the author do?

▪ Problems and solutions summary
▪ Test time compute needs long context → Use subquadratic model

▪ Lack of well-trained subquadratic model → Distill transformer to subquadratic model
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Chain of Thought (CoT)

▪ Step-by-step inference
▪ Not compute the result directly, but implement the flow of thought

▪ Show good performance some specific tasks
▪ Mathematical problem

▪ Logical determination

▪ Analysis of complex sentence

II. Background
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Chain of Thought (CoT)

II. Background
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[R1] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837.
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Chain of Thought (CoT)

II. Background

12

▪ Various prompt example
▪ Arithmetic (green)

▪ Common sense (orange)

▪ Symbolic reasoning (blue)

▪ Features
▪ Step-by-steps response

▪ Generates longer sequence than 
original cases

[R1] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837.
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Test time compute with CoT

▪ Using more resource in inference step
▪ Generate different result of CoTs

▪ Select proper response various stratage
▪ majority voting

▪ Using learnable reward models for each CoTs

▪ Disadvantage
▪ Generate longer CoT sequences than normal cases 
→ Require high cost and memory usage 

II. Background

13



Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

Subquadratic model

▪ Transformer
▪ Self-attention mechanism, which is main reason of performance of Transformer architecture, 

refer all tokens in each steps.

▪ Its computational complexity is 𝑂(𝐿2) for input sequence of length L.

▪ Subquadratic computational complexity
▪ Less than 𝑂(𝐿2) computational complexity for input sequence of length L

→ Better than transformer to adopt Test-time compute

II. Background
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Subquadratic model

▪ Mamba [R2]
▪ One of the highlighted subquadratic architecture of LLM

▪ State Space Model (SSM) based recurrence model

II. Background
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[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).
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SSM block of Mamba

▪ Update state vector and discretize

II. Background

16

[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).
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SSM block of Mamba

▪ Remove Linear Time-Invariant (LTI) constraint to SSM
▪ Matrix A contributes major performance of SSM, but it has LTI constraints.

▪ Using High-order Polynomial Projection Operators (HiPPO)

▪ Construct recent token more precisely than first token. 

II. Background
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[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).
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SSM block of Mamba

▪ Selectiveness
▪ Fusion of H3 and Gated MLP

II. Background
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[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).
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Distillation

▪ Definition
▪ Transfer the knowledge large model to small model.

▪ Efficient compression of LLMs

▪ Cross-architecture distillation
▪ Transformer to RNN[R3], Linear Attention[R4], SSM[R5] etc.

▪ In this paper, the author distill the knowledge transformer to mamba.

II. Background
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[R3] Kasai, Jungo, et al. "Finetuning pretrained transformers into rnns." arXiv preprint arXiv:2103.13076 (2021).

[R4] Zhang, Michael, et al. "The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry." ICLR, 2024

[R5] Wang, J., Paliotta, D., May, A., Rush, A., and Dao, T. “The mamba in the llama: Distilling and accelerating hybrid models.” NeurIPS, 2025
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MOHAWK: Distill Llama to Mamba

▪ MOHAWK is composed of three stages:

III. Method

21

Matrix 
orientation

Weight transfer
&

Knowledge 
distillation

Hidden state 
alignment
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Sequence transformation & matrix mixer

III. Method
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▪ Definition 1: Sequence transformation
▪ Sequence transformation refers to parameterized map on some sequence

▪ i.e. sequence transformation combine tokens at various time steps

▪ Definition 2: Matrix mixer
▪ Some sequence transformation can be represented by Y = MX

▪ In this case, 𝑀 is called as matrix mixer 

▪ In a attention mechanism, Softmax(QKT) is a matrix mixer

Matrix mixer



Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

Causal variants of sequence transformation

III. Method
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▪ Definition 3: Causal variants of sequence transformation

▪ By multiplying a lower triangular matrix filled with 1s (L), we can get casual variants of 
sequence transformation. That is, if we multiply L to the attention matrix, we can get causal 
variants of attention matrix.
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Relation between Mamba-2 & causal linear attention

▪ Mamba-2 is a time-varying state-space model, and defined as follow:

III. Method
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▪ Fixing 𝑨𝒕 = 𝑰 results in the formulation of causal linear attention with 
the matrices 𝑩, 𝑪 representing the projections of the key and the query, 
respectively. 
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Why Mamba-2 can be the causal linear attention?

▪ Mamba-2 is a time-varying state-space model, and defined as follow:

▪ If we unroll the state update with 𝒉𝟎 = 𝟎, we can get ...

III. Method
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Same function with causal masking
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Why Mamba-2 can be the causal linear attention?

▪ In linear attention, by using kernel-mapping, the output is calculated as 
follow :

III. Method
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▪ By computing 𝒚𝒕 = 𝑪𝒕
T𝒉𝒕 with previously unrolled results, we can get
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Why Mamba-2 can be the causal linear attention?

III. Method
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Attention mechanism Mamba-2 SSM

𝑘𝑒𝑟𝑛𝑒𝑙𝑖𝑧𝑒𝑑 𝑘𝑒𝑦𝑖 = 𝜙(𝑊𝑘𝑥𝑖) 𝐵𝑖𝑥𝑖

𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑊𝑣𝑥𝑖 (Intrinsically included in 𝐵𝑖)

𝑘𝑒𝑟𝑛𝑒𝑙𝑖𝑧𝑒𝑑 𝑞𝑢𝑒𝑟𝑦𝑡 = 𝜙(𝑊𝑞𝑥𝑡) 𝐶𝑡

▪ In summarize, attention mechanism’s query, key, value matrices can be 
mapped into Mamba-2 SSM as below:

Please refer to Katharopoulos et al. & Bick et al. for more detailed explanation
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Distillation Llama into Llamba

III. Method
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▪ Goal: Distillation Llama to Llamba, which means Llama model replacing its 
attention to Mamba-2 SSMs.

Mamba-2 Teacher: LlamaStudent: Llamba

Mamba-2 SSM
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MOHAWK Stage 1: Matrix Orientation

III. Method
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▪ Goal: Align each student SSM block’s SSM to its teacher’s attention matrix.

▪ Key insight: Matching mixing matrices first, to ensure the student mirrors 
the teacher’s long-range range information flow before any hidden-state 
alignment

Loss of stage 1:
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Distillation Llama into Llamba

III. Method
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▪ Goal: Align each student SSM block’s SSM to its teacher’s attention matrix.

Loss of stage 1:

Mamba-2 Teacher: LlamaStudent: Llamba

Mamba-2 SSM
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MOHAWK Stage 2: Hidden-State Alignment

III. Method
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▪ Goal: Bring the student’s internal representations in each mixer block into 
close agreement with the teacher’s output of attention block.

Copy & Train

Mamba-2 SSM
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MOHAWK Stage 3: Weight transfer & End-to-End KD

III. Method
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▪ Goal: Finalize the student by 

▪ (a) inheriting compatible teacher weights

▪ (b) training on final outputs so that its predictions match the teacher’s 
over a small corpus.

Lamba

LLaMA
Logit

Logit
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Experimental Results
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Experimental Results Overview

▪ Authors tried to show..
(1) Inference speedup of distilled models is better!

(2) This speedup can result in better scaling for a given inference time budget!

IV. Experimental Results

34
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Inference Time Results

▪ Experiment protocols
▪ Dataset: MATH and GSM8K

▪ Realistic setup that matches the prompt and CoTs length

▪ Varying batch size, tasks of generating 512 tokens from a prompt with 512 tokens

▪ Prefilling time is not included.
▪ It depends on the given prompt

▪ Only interested in the time to generate multiple completions given one prompt

▪ Done on a single NVIDIA H100 GPU

IV. Experimental Results
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Inference Time Results

▪ Faster generation of distilled models
▪ Distilled models were faster than Llama baselines.

▪ MambaInLlama models are slightly faster than Llamba
▪ Smaller SSM state size: MambaInLlama(16) < Llamba(64)

IV. Experimental Results

36

Up to ×3.7 faster Up to ×4.2 faster

Out-of-memory 
error on baseline
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Results on Reasoning Tasks

▪ Experiment Protocol
▪ Teacher models: Llama-3.2-1B-Instruct & 3B-Instruct

▪ Distilled Mamba Students: MambaInLlama-1B & 3B, Llamaba-1B & 4B

▪ 500 sample subset of MATH and GSM8K

▪ Evaluated coverage and accuracy

IV. Experimental Results
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Results on Reasoning Tasks

▪ Experiment Protocol
▪ Coverage vs Accuracy

▪ Coverage: Probability that the generated set contains the correct answer(upper bound)

▪ Accuracy: Probability that the selected answer is correct (final output quality)

IV. Experimental Results

38

Poor CoverageGood Coverage

Generated Set

Selection
e.g. log-likelihood, 
reward model, etc.

Cannot derive a 
correct answer
Can derive a 

correct answer!
Correct

Wrong

Coverage:
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Results on Reasoning Tasks

▪ Distilled Models can Cover like Teachers
▪ “Does distilled model can generate meaningful results?”

▪ Previous distilled models: could not achieve similar coverage with teachers…

▪ Observed scaling of coverage as: 
▪ (a) a function of time budget, (b) the number of generation k increases

IV. Experimental Results
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Similar coverage with teachers 
∴ Distilled model has an ability to 
generate remarkable candidates

Generate correct answer fast
∴ Overall Pareto front for 
coverage is dominated by 

distilled models

* Time budget: faster models can generate more candidates
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Results on Reasoning Tasks

▪ Distilled Models Achieve Competitive Accuracy Under Fixed Time
▪ Selection methods

▪ Majority voting: Selects the most frequently occurring final answer 

▪ Weighted Best-of-N: Selects the answer with the highest score based on a reward model or 
evaluation function. (In this paper, Llama-3.1-8B-based reward model)

IV. Experimental Results

40

Large time budget: 
Teacher models dominate

Small time budget: 
Distilled models dominate

Larger distilled 
model(still being faster!) 

can provide better 
accuracy
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Result Analysis

▪ Larger Students are Better than Smaller Teachers
▪ 3B Subquadratic models are faster than 1B Transformer models

▪ Proposed MambaInLlama-3B and Llamba-4B model outperforms Llama-1B baseline, in 
terms of coverage and accuracy while being faster

IV. Experimental Results

41
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Result Analysis

▪ Smaller Models have possibility to achieve better accuracy
▪ Smaller models have great coverage, but gap between larger in accuracy test.

▪ Smaller models have the ability to generate the correct answer → Developing better 
reward model can be helpful

▪ For the tasks that coverage matters most(e.g. easily verifiable coding, mathematical proofs), 
smaller models can be preferred

IV. Experimental Results

42

MATH coverage MATH accuracy

MambaInLlama 1B vs 3B
Small Gap

MambaInLlama 1B vs 3B
Large Gap



Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

Supervised Fine-Tuning

▪ SFT improves the models significantly
▪ While distillation effectively transfers knowledge from the teacher model, SFT further 

refines and aligns the model’s capabilities

▪ With SFT, subquadratic architectures can surpass teachers!

IV. Experimental Results
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High improvement in 
accuracy!
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Conclusion
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Conclusion
▪ Investigated whether lower-complexity models can leverage their superior generation 

throughput to outperform similarly sized Transformers

▪ Focused on reasoning tasks to scale test-time computation

▪ In fixed memory and computation source, proposed models achieve better coverage and 
accuracy for most time budgets compared to Transformers

▪ The paper highlights the potential of Mamba and other attention alternatives

V. Conclusion
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Limitation and Future Research

▪ Lack of proposed method
▪ Propose new distilling method, Develop better reward model, …

▪ Need to compare with existing KD models
▪ What is the exact limitation of existing models?

▪ What is the difference between the existing models and proposed models?

▪ Need to analyze the reason of improvement
▪ Why the Mamba model is superior?

▪ Why was the proposed model able to achieve this performance?

V. Conclusion
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Chanhee Lee, Yongjun Kim, Jiwoo Kim
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Thank You!
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