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Improvement of recent LLMs inference performance
* Problem of LLM

= Large Language model (LLM) gains outstanding performance in recent studies, but it has
clear limitation on complex inference.

= Simply scaling up the model size is inefficient from latency, memory, computational
complexity perspective.
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Improvement of recent LLM inference performance

= Overcome the limitation

» Test-time compute is one of the solution of these problems.
= 01 model of OpenAl has proven usefulness of test-time compute
= |t gives outstanding performance than original models.
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Optimal architecture for test-time compute

= Disadvantage of test-time compute

= |In transformer architecture, High memory usage and slow inference, Due to their long
sequence length.

= This is especially noticeable in transformer structures where a lot of cost is required in the
inference step.

DeepSeek-R1-Zero average length per response during training
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Figure 3 | The average response length of DeepSeek-R1-Zero on the training set during the RL
process. DeepSeek-R1-Zero naturally learns to solve reasoning tasks with more thinking time.
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Optimal architecture for test-time compute

= Subquadratic models
= Faster, less memory usage than transformer, which is foundation model of LLMs

= |nefficient well-trained subquadratic models. > distillation
= Mamba is well-known subquadratic model.

Inference throughput on A100 80GB (prompt length 2048)
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What the author do?

* Problems and solutions summary
= Test time compute needs long context > Use subquadratic model
= Lack of well-trained subquadratic model - Distill transformer to subquadratic model
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Background
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ll. Background

Chain of Thought (CoT)

= Step-by-step inference
= Not compute the result directly, but implement the flow of thought

= Show good performance some specific tasks
= Mathematical problem
= Logical determination
= Analysis of complex sentence

Simple LLM approach

B > ) H

~\/s -

CoT -- towards more human reasoning
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ll. Background

Chain of Thought (CoT)

Standard Prompting Chain-of-Thought Prompting
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
k J do they have?

o

A: The answer is 27. x

answer is 9.

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

[R1] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837 .
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ll. Background

Chain of Thought (CoT)

Q: Roger has 5 tennis balls. He buys Q: How many keystrokes are needed Q: Sammy wanted to go to where the u Va rl o u S p ro m pt exa m p Ie
2 more cans of tennis balls. Each can || to type the numbers from 1 to 500? people were. Where might he go?
has 3 tennis balls. How many tennis Answer Choices: (a) 1156 (b) 1392 (c) 1480 Options: (a) race track (b) populated areas . .
balls does he have now? (d) 1562 (e) 1788 (c) desert (d) apartment (e) roadblock [ | A Il t h m et| C (g ree n)
A: -
" ( )
s oms - Common sense (orange
_ )\ answers o) S0 the answer s o = Symbolic reasoning (blue)
- Yl - Would ink i Q: The concert was scheduled to be Q: Is the following sentence | F
gat:rg or o- Touid @ pearsink i on 06/01/1943, but was delayed by plausible? "Joao Moutinho caught the eat u re S
one day to today. What is the date 10 screen pass in the NFC
A days ago in MM/DD/YYYY? championship. ] Ste p - by_ Ste ps res po n S e
| So the
answer s 10 of = Generates longer sequence than
So the answer is 05/23/1943. answer is no. T
L PN original cases

Q: Take the last letters of the words

Human: How would you bring me
something that isn't a fruit? in “Lady Gaga" and concatenate the coin. Shalonda does not flip the

Q: Acoin is heads up. Maybelle flips

them. coin. Is the coin still heads up?
Plan: 1. find(energy bar) 2.

A
pick(energy bar) 3. find(user) 4. So the answer

gi(energy bar) 5. done(). _/ k _/ lLlsm

Figure 3: Examples of (input, chain of thought, output) triples for arithmetic, commonsense, and
symbolic reasoning benchmarks. Chains of thought are highlighted. Full prompts in Appendix G.

answer is ya.

[R1] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837 .
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ll. Background

Test time compute with CoT

= Using more resource in inference step
= Generate different result of CoTs
= Select proper response various stratage
= majority voting
= Using learnable reward models for each CoTs
= Disadvantage

» Generate longer CoT sequences than normal cases
= Require high cost and memory usage

Best-of-¥ H Beam Search ' Diverse Verifier Tree Search

Math
problem

Split beams into N/M
independent subtrees

= Rejected by verifier = Selected by verifier <> = Intermediate step O = Full solution

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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ll. Background

Subquadratic model

= Transformer

= Self-attention mechanism, which is main reason of performance of Transformer architecture,
refer all tokens in each steps.

= |ts computational complexity is O(L*) for input sequence of length L.

= Subquadratic computational complexity
= Less than 0(L?) computational complexity for input sequence of length L
- Better than transformer to adopt Test-time compute

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners 14



ll. Background

Subquadratic model

= Mamba [R2]

= One of the highlighted subquadratic architecture of LLM
= State Space Model (SSM) based recurrence model

Input Output
(sequence) (sequence)
State Space Model
r\} — (SSM) —> r\/

State equation h'(t) = Ah(t) + Bx(t)
Output equation y(t) = Ch(t) + Dx(t)

[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners 15



ll. Background

SSM block of Mamba

= Update state vector and discretize

state State

State updat How the current How the input Output RTT——
state evolves over influences the state Bt Faan Slakas
e the output
¥
¥
c
— 3§
x
; N B ) 0\
(oL L ] 3 ot Bl e - (CRE)
X S 1 :
(£) — B ] I !
n Uy e Upe+1 u
Input
Continuous-time Recurrent Convolutional

v Local information
v Paralleflizable training

v Unbounded context
v Efficient inference

V' Continuous data
v Irregular sampling

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

How the input
directly influences the
output

[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).
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ll. Background

SSM block of Mamba

= Remove Linear Time-Invariant (LTl) constraint to SSM
= Matrix A contributes major performance of SSM, but it has LTI constraints.
= Using High-order Polynomial Projection Operators (HiPPO)
= Construct recent token more precisely than first token.

HiPPO Matrix
1/2 1/2 : A
f(zn 3= ’I) (2k g ’]) z;faeéglt’ll‘;;wg below the 0 0 o
. . 1 0
HiPPO Matrix Ank * n+ 1 the diagonal 0 k
k O _ z?faegrg:lrglng above the L 3 0
1 3 5
n
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ll. Background

SSM block of Mamba

= Selectiveness
= Fusion of H3 and Gated MLP

N A A

: | : | Lingar .
SSM SSM projection
# @3 @IP (CD Sequence
transformation
Conv Conv
| | ®  (acwationr
. | \ / \ ] / \ / \ [ / multiplication)
H3 ® Gated MLP — Mamba

[R2] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752 (2023).
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ll. Background

Distillation

= Definition
= Transfer the knowledge large model to small model.
= Efficient compression of LLMs

= Cross-architecture distillation
= Transformer to RNNJ[R3], Linear Attention[R4], SSM[R5] etc.
= |n this paper, the author distill the knowledge transformer to mamba.

Instance Relations

0=

Distillation
Loss

i

lInstam:e Relations

Data ==

[R3] Kasai, Jungo, et al. "Finetuning pretrained transformers into rnns." arXiv preprint arXiv:2103.13076 (2021).
[R4] Zhang, Michael, et al. "The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry." ICLR, 2024
[R5] Wang, J., Paliotta, D., May, A., Rush, A., and Dao, T. “The mamba in the llama: Distilling and accelerating hybrid models.” NeurlPS, 2025

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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l1l. Method
MOHAWK: Distill Llama to Mamba
= MOHAWK is composed of three stages:

-

Matrix
orientation

N

o\

Hidden state
alignment

~

/

4 N

Weight transfer
&
Knowledge
distillation

- /
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l1l. Method
Sequence transformation & matrix mixer

= Definition 1: Sequence transformation
= Sequence transformation refers to parameterized map on some sequence
= j.e. sequence transformation combine tokens at various time steps

= Definition 2: Matrix mixer
= Some sequence transformation can be represented by Y = MX
= |In this case, M is called as matrix mixer
= |n a attention mechanism, Softmax(QK?') is a matrix mixer

d

— o
n
Embedding
size
. dq n
dy=d,
nnnnnn T T
of tokens n X wk n K 1
[ nputs J n

Matrix mixer
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l1l. Method
Causal variants of sequence transformation

= Definition 3: Causal variants of sequence transformation

» By multiplying a lower triangular matrix filled with 1s (L), we can get casual variants of
sequence transformation. That is, if we multiply L to the attention matrix, we can get causal

variants of attention matrix.

e 0 0

(Y91 (¥ 0
Lo Sl}i‘lmax(QKT) » |31 Q32 Q3

| (X1 Xpy.0 Xpp:.3
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[Il. Method
Relation between Mamba-2 & causal linear attention

= Mamba-2 is a time-varying state-space model, and defined as follow:

ht L1 — Atht -+ Bt.‘ﬂt
Y — Cth,t

= Fixing A; = I results in the formulation of causal linear attention with
the matrices B, C representing the projections of the key and the query,
respectively.

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners 24



ll. Method

Why Mamba-2 can be the causal linear attention?

= Mamba-2 is a time-varying state-space model, and defined as follow:

hy — a; hiy_1 + By 2y,
yr = C, hy.

= If we unroll the state update with hy = 0, we can get ...

hi = ay hiy_y + Byxy =

Same function with causal masking

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners 25



ll. Method

Why Mamba-2 can be the causal linear attention?

* In linear attention, by using kernel-mapping, the output is calculated as
follow :

:II.

ye = o(q) Z@ﬁ[ﬁ:e)ve

= By computing y; = C;rht with previously unrolled results, we can get

i .

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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l1l. Method
Why Mamba-2 can be the causal linear attention?

* In summarize, attention mechanism’s query, key, value matrices can be
mapped into Mamba-2 SSM as below:

Attention mechanism Mamba-2 SSM
kernelized key; = ¢ (W, x;) B;x;
value; = W, x; (Intrinsically included in B;)
kernelized query, = ¢(W,x;) o

Please refer to Katharopoulos et al. & Bick et al. for more detailed explanation
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[Il. Method
Distillation Llama into Llamba

= Goal: Distillation Llama to Llamba, which means Llama model replacing its
attention to Mamba-2 SSMs.

h )
é Ml{P MLP
SSM RMSNorm RMSL\Iorm
Al x[8]c
. o
@ |
Attention
Conv "
\ | /\ !/’ RMSNorm RMSNorm
A
' !
Input Input
Mamba-2 Student: Llamba Teacher: Llama
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l1l. Method
MOHAWK Stage 1: Matrix Orientation

= Goal: Align each student SSM block’s SSM to its teacher’s attention matrix.

t t r
M"Y = softmax(Q,K,) Y= Ci Z( 11 flj) Biz; = ) C ( H Aj ) B; ;.

=1 jg=14+1 =1 J=1+1

sl

_'LI ()

Loss of stage 1: Lomatric = || ﬂf}l.]fu;} _ ﬁ.f}‘q:'[zu_i.}||;

= Key insight: Matching mixing matrices first, to ensure the student mirrors
the teacher’s long-range range information flow before any hidden-state
alignment
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[Il. Method
Distillation Llama into Llamba

= Goal: Align each student SSM block’s SSM to its teacher’s attention matrix.

. i) rS5) 2
Loss of stage 1:  Lumatrix = || My "(ue) — M7 (w)||;
£ N MLP MLP
® T r
= RMSNorm RMSANorm
A X| Bl
@j Attention ]
Conv A
|
\ A —
Input Input
Mamba-2 Student: Llamba Teacher: Llama
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ll. Method
MOHAWK Stage 2: Hidden-State Alignment

= Goal: Bring the student’s internal representations in each mixer block into
close agreement with the teacher’s output of attention block.

min ||AttnBlock(u) — StudentMixerBlockg (u)||2

@
T Copy & Train
— —
MLP < MLP
RMsLorm < RMSLorm
- > .
T
Attention
RMSNorm |« RMSItIorm
Inlut InIut
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ll. Method
MOHAWK Stage 3: Weight transfer & End-to-End KD

= Goal: Finalize the student by
= (a) inheriting compatible teacher weights

= (b) training on final outputs so that its predictions match the teacher’s
over a small corpus.

Logit I _
1l N
Teacher Prediction

l'l'lﬂlijiﬂ I:];{D = CE (Pteﬂcher [:*B} » Pstudent {*T))

Logit

>
_lll.l

Student Prediction

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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Experimental Results
-

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

33



IV. Experimental Results

Experimental Results Overview

= Authors tried to show..
(1) Inference speedup of distilled models is better!

(2) This speedup can result in better scaling for a given inference time budget!

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

34



IV. Experimental Results

Inference Time Results

= Experiment protocols
= Dataset: MATH and GSM8K
= Realistic setup that matches the prompt and CoTs length
= Varying batch size, tasks of generating 512 tokens from a prompt with 512 tokens
= Prefilling time is not included.
= |t depends on the given prompt

= Only interested in the time to generate multiple completions given one prompt
= Done on a single NVIDIA H100 GPU

MATH System Prompt: Solve the following math problem efficiently and clearly:\n\n- For simple problems (2 steps
or fewer):\nProvide a concise solution with minimal explanation.\n\n- For complex problems (3 steps or more):\nUse this
step-by-step format:\n\n## Step 1: [Concise description]\n[Brief explanation and calculations]\n\n## Step 2: [Concise

the final answer is: $\boxed{answer}$. I hope it is correct\n\nWhere [answer] is just the final number or expression that
solves the problem.

description]\n[Brief explanation and calculations ]\n\n...\n\nRegardless of the approach, always conclude with:\n\nTherefore,

GSMBSK System Prompt: \n\nGiven the following problem, reason and give a final answer to the problem.\nYour response
should end with " The final answer is [answer]” where [answer] is the response to the problem.\nProblem:

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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IV. Experimental Results

Inference Time Results

= Faster generation of distilled models

= Distilled models were faster than Llama baselines.

= MambalnLlama models are slightly faster than Llamba
= Smaller SSM state size: MambalnLlama(16) < Llamba(64)

=L

o

Inference time [seconds)

Up to x3.7 faster

6 1

J I [lama-1B

BN Llamba-18

1 Hl MambalnLlama-18

1 16 52 fid 128 256
Batch size

(a) 1B Models.

M)

Inference time (seconds)

=
=
1

2011

o
=
1

Up to x4.2 faster

B lamas-3B8
B Llimba-4B
B MambalnLlama-3B

i 128
Batch size

(b) 3B Models.
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IV. Experimental Results

Results on Reasoning Tasks

= Experiment Protocol
= Teacher models: Llama-3.2-1B-Instruct & 3B-Instruct
= Distilled Mamba Students: MambalnLlama-1B & 3B, Llamaba-1B & 4B
= 500 sample subset of MATH and GSM8K
» Evaluated coverage and accuracy

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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IV. Experimental Results

Results on Reasoning Tasks

= Experiment Protocol

= Coverage vs Accuracy
= Coverage: Probability that the generated set contains the correct answer(upper bound)
= Accuracy: Probability that the selected answer is correct (final output quality)

Generated Set

® Selection |
Wrong e.g. log-likelihood, » Can derive a
® Correct reward model, etc. correct answer!

Good Coverage

1 # of problems (N—C'.;)
. — _ k
Coverage: pass@k = o problems ; (1 ™ )

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners



IV. Experimental Results

Results on Reasoning Tasks

= Distilled Models can Cover like Teachers

= “Does distilled model can generate meaningful results?”
= Previous distilled models: could not achieve similar coverage with teachers...@

* Time budget: faster models can generate more candidates
= Observed scaling of coverage as:

» (a) a function of time budget, (b) the number of generation k increases

Generate correct answer fast Similar coverage with teachers
.. Overall Pareto front for .. Distilled model has an ability to
coverage Is dominated by generate remarkable candidates

distilled models i -
Llama-1B (.51 ._.-"1-'” 0.5
m— Llama-38 *{-"
Llamba-18 [owrs) ;;E .6 - ._-: il: 0.6
==+ Llamba-dB (ouwrs) Z i g .
MambalnLlama-1H {owrs) E ) :E
=— NMMambalnLlama-3H [ours) 0.4 .4
o Pareto Front
0.2
7 T — T ¥ v 02 T T T T T T T T T
10 10! o0 gl 9l od g4 of  of 9T oA
Time [=econds) Number of completions (&)
{a) Scaling with time. (b) Scaling with number of completions.
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IV. Experimental Results

Results on Reasoning Tasks

= Distilled Models Achieve Competitive Accuracy Under Fixed Time
= Selection methods
= Majority voting: Selects the most frequently occurring final answer

= Weighted Best-of-N: Selects the answer with the highest score based on a reward model or
evaluation function. (In this paper, Llama-3.1-8B-based reward model)

Small time budget: Large time budget:
Distifled models dominate Teacher models dominate

¥

= (.6 1 Jesetnee,  paasssisasmms s
Llama-1B * %
= Llama-3B

Llamba-1B (ours)

0.5

== Llamba-4B {ours)

MambalnLlama-18 {ours)

hted RM accuracy

= NMMambalnLlama_;

Wiz

Majority €oting aceurad

Larger distilled
model(still being faster!)

10° 10! 10" 101

Time (seconds) Time (seconds)

can provide better
accuracy

(a) Majority voting. (b) Weighted Best-of-N.
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IV. Experimental Results

Result Analysis

= Larger Students are Better than Smaller Teachers
» 3B Subquadratic models are faster than 1B Transformer models

* Proposed MambalnLlama-3B and Llamba-4B model outperforms Llama-1B baseline, in
terms of coverage and accuracy while being faster

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
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IV. Experimental Results

Result Analysis

= Smaller Models have possibility to achieve better accuracy
= Smaller models have great coverage, but gap between larger in accuracy test.

= Smaller models have the ability to generate the correct answer — Developing better
reward model can be helpful

= For the tasks that coverage matters most(e.qg. easily verifiable coding, mathematical proofs),
smaller models can be preferred

Mambalnllama 1B vs 3B MambalnlLlama 1B vs 3B
gmall Gag bhfge Gap b

Llama-1B 15

— Llama-iB

Llama-1B

— Llama-iB

pe——— —

p . Llamba-1B (ours)
Llamba-1B (ours)

Majority voting accuracy

50 J ; .
Llamba-4B | ] z 0.0 == Llamba-4B (ours) 1.4 4
=== llamba- LTS | = AT Y
MMambalnL] 1B { 2 MambalnLlama-1B {ours)
Mambalnllama- jours| =
: =04 = MambalnLlama-3B {ours) R
= MambalnLlama-3B {ours) S
L areto Fron
==s Pareto Front
)2 (hL2
T T T — T I|
( - [ 10" 10
10t 14!

Ti ' <} Time (seconds)
e (zeconds)

MATH coverage MATH accuracy
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IV. Experimental Results

Supervised Fine-Tuning

= SFT improves the models significantly

= While distillation effectively transfers knowledge from the teacher model, SFT further
refines and aligns the model’s capabilities

= With SFT, subquadratic architectures can surpass teachers!

High improvement in

06 accuracy!
1.5 7 3
= ~ Llama-18
] ! LR —— Llama-3B
_:Er' .6 ao MambalnLlama-1H (ours)
:E = .44 —— MambalnLlama-3B (ours)
o = MambalnLlama-1B + S5FT [ours)
1.4 1 %_ 03 —— MambalnLlama-3E5 + S5FT [ours)
-
1.2 4 . . . . . . . 1.2+ . — . - . r .
2 2 2 ad 2 a afi 3 o4 b 2! 2 5 2 2 ot af o
Mumber of completions (&) Number of completions (&)
(a) Coverage. (b) Majority voting.
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V. Conclusion

Conclusion

Investigated whether lower-complexity models can leverage their superior generation
throughput to outperform similarly sized Transformers

= Focused on reasoning tasks to scale test-time computation

* |n fixed memory and computation source, proposed models achieve better coverage and
accuracy for most time budgets compared to Transformers

= The paper highlights the potential of Mamba and other attention alternatives
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V. Conclusion

Limitation and Future Research

» Lack of proposed method
= Propose new distilling method, Develop better reward model, ...

= Need to compare with existing KD models
= What is the exact limitation of existing models?
= What is the difference between the existing models and proposed models?

= Need to analyze the reason of improvement
= Why the Mamba model is superior?
= Why was the proposed model able to achieve this performance?
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Thank You!

Chanhee Lee, Yongjun Kim, Jiwoo Kim

Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

47



	Slide 1
	Slide 2
	Slide 3: Introduction
	Slide 4: Improvement of recent LLMs inference performance
	Slide 5: Improvement of recent LLM inference performance
	Slide 6: Optimal architecture for test-time compute
	Slide 7: Optimal architecture for test-time compute
	Slide 8: What the author do?
	Slide 9: Background
	Slide 10: Chain of Thought (CoT)
	Slide 11: Chain of Thought (CoT)
	Slide 12: Chain of Thought (CoT)
	Slide 13: Test time compute with CoT
	Slide 14: Subquadratic model
	Slide 15: Subquadratic model
	Slide 16: SSM block of Mamba
	Slide 17: SSM block of Mamba
	Slide 18: SSM block of Mamba
	Slide 19: Distillation
	Slide 20: Method
	Slide 21: MOHAWK: Distill Llama to Mamba
	Slide 22: Sequence transformation & matrix mixer
	Slide 23: Causal variants of sequence transformation
	Slide 24: Relation between Mamba-2 & causal linear attention
	Slide 25: Why Mamba-2 can be the causal linear attention?
	Slide 26: Why Mamba-2 can be the causal linear attention?
	Slide 27: Why Mamba-2 can be the causal linear attention?
	Slide 28: Distillation Llama into Llamba
	Slide 29: MOHAWK Stage 1: Matrix Orientation
	Slide 30: Distillation Llama into Llamba
	Slide 31: MOHAWK Stage 2: Hidden-State Alignment
	Slide 32: MOHAWK Stage 3: Weight transfer & End-to-End KD
	Slide 33: Experimental Results
	Slide 34: Experimental Results Overview
	Slide 35: Inference Time Results
	Slide 36: Inference Time Results
	Slide 37: Results on Reasoning Tasks
	Slide 38: Results on Reasoning Tasks
	Slide 39: Results on Reasoning Tasks
	Slide 40: Results on Reasoning Tasks
	Slide 41: Result Analysis
	Slide 42: Result Analysis
	Slide 43: Supervised Fine-Tuning
	Slide 44: Conclusion
	Slide 45: Conclusion
	Slide 46: Limitation and Future Research
	Slide 47: Thank You!

