
Jetfire : Efficient and Accurate Transformer Pretrining with
INT8 Data Flow and Per-Block Quantization

Haocheng Xi, Yuxiang Chen, Kang Zhao, KAI JUN TEH, Jianfei Chen, Jun Zhu

Presenter : Taehyeon Kim, Yongha Shin, Sanghyeon Cho

• Introduction

• Related Work

• INT8 Data Flow

• Per Block Quantization

• Linear Layer Operator

• Non-Linear Operator

• Experiments

• Conclusion

Contents

1

• Large-scale pre-trained transformer-based models e.g. GPT-4, LLAMA, PaLM

1 Introduction

A. Vaswani, “Attention is all you need” 2

• Pre-training transformers require numerous computations & high-bandwidth memory

1 Introduction

e.g. sub-layer of FP16 FFN

Matrix Multiplication

ReLU

Matrix Multiplication

Addition & Normalization

Computations : 198 FLOPs
Memory access : 72 bytes

Input 1 Weight 1 Output 1

3

• Pre-training transformers require numerous computations & high-bandwidth memory

1 Introduction

e.g. sub-layer of FP16 FFN

Matrix Multiplication

ReLU

Matrix Multiplication

Addition & Normalization

ReLU

𝐑𝐞𝐋𝐔 𝐱 = 𝐦𝐚𝐱(𝟎, 𝐱)
Negative element

Zero element

Computations : 198 + 18 = 216 FLOPs
Memory access : 72 bytes

3

• Pre-training transformers require numerous computations & high-bandwidth memory

1 Introduction

e.g. sub-layer of FP16 FFN

Matrix Multiplication

ReLU

Matrix Multiplication

Addition & Normalization

Input 2 Weights 2 Output 2

Computations : 216 + 198 = 414 FLOPs
Memory access : 72 + 72 = 144 bytes

3

• Pre-training transformers require numerous computations & high-bandwidth memory

1 Introduction

e.g. sub-layer of FP16 FFN

Matrix Multiplication

ReLU

Matrix Multiplication

Addition & Normalization

Input 1 Output 2 Output 3

𝜇0, 𝜎0
𝜇1, 𝜎1
𝜇2, 𝜎2

Computations : 414 + 162 = 576 FLOPs
Memory access : 144 + 36 = 180 bytes

3

• Fully Quantized Training (FQT) with INT8

◦ Computation : FLOP ⇒ Integer operation

◦ Memory bandwidth reduce

1 Introduction

forward forward

backward backward

input ouput

Layer 1 : W1 Layer 2 : W2 Layer 3 : W3

INT8

4

• Post-Training Quantization

◦ No speedup for training

◦ Quantization error for output

• Quantization-Aware Training

◦ focus on training accuracy, not speedup

◦ Weight still full-precision

Related Work2

Training

forward forward

backward backward

input ouput

W1 (FP16) W2 (FP16) W3 (FP16)

input ouput

W1 (INT8) W2 (INT8) W3 (INT8)

𝐐 𝐖𝟏 𝐐 𝐖𝟐 𝐐 𝐖𝟑

Inference
Jaeho Lee, “Linear quantization and advanced stuffs” 5

• Fully Quantized Training : INT8 training for CNNs

2 Related Work

6

• Direction Sensitive Gradient Clipping

• Deviation Counteractive Learning Rate
Scaling

• Gradient Vectorized Quantization

• Magnitude-aware Clipping Strategy

GW = GW1
, ⋯ GWCout

T
, GWi

= q GWi ∙
sx
127

∙
si
127

E = න

gmin

gmax

g − ොg f g p g dg

F. Zhu, arxiv:1912.12607v1 K. Zhao, “Distribution Adaptive INT8 Quantization for training CNNs”

• Fully Quantized Training : SwitchBack

2 Related Work

7

Layer

input gradient :
𝜕𝐿

𝜕𝑋

output : Y = XWT

weight gradient :
𝜕𝐿

𝜕𝑊

3 Matrix Multiplications

FP16

INT8

M. Wortsman, arxiv:2304.13013v2

• Fully Quantized Training : FP8 training with Hopper architecture

2 Related Work

8

Layer

input gradient :
𝜕𝐿

𝜕𝑋

weight gradient :
𝜕𝐿

𝜕𝑊

output : Y = XWT

Loss function :
𝐿(𝛻𝑌, 𝑋,𝑊)

FP16

FP16

FP16

FP8 (E5M2)

FP16FP16

input : X

FP8 (E4M3) (E4M3) FP8

FP8 weight : 𝐖𝐅𝐏𝟖

𝑄−1 ∙

𝑄−1 ∙

𝑄−1 ∙

𝑄 ∙

𝑄 ∙

FP8 (E5M2)

(E5M2) FP8

• Limitations on existing FQT

1. Previous FQT methods designed for CNN, low accuracy for Transformer

2. Most FQT focus on computation reduction, not data access overhead

3. Some FQT techniques (FP8) requires specialized hardware

2 Related Work

9

Quantized Dequantized

Layer

Memory
overhead

Memory
overhead

• Previous • Jetfire

INT8 Data Flow3

10

Load FP16 Store INT8

𝑄 ∙

INT8 weight

Load INT8Store FP16

𝑄−1 ∙

Load INT8

Store INT8

INT8 weight

• Reduce computation and amount of memory access

• Accelerate nonlinear operators

• Activation memory consumption and amount of communication reduced

3 INT8 Data Flow

H. Xi, arxiv:2403.12422v2 11

4 Method

1) Per Block Quantization
2) Linear Layer Operator
3) Non-Linear Layer Operator

Linear

Linear

Layer Norm

GELU

x

12

4 Method Per Block Quantization

Per Channel Quantization is advantageous for
activations
due to the presence of channel-wise outliers

Q K V

x

Attention

Linear

Layer Norm

Linear

x

Linear

Layer Norm

Xiao et al, (2022). SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models.

13

4 Method Per Block Quantization

Per Token Quantization is advantageous for gradient
due to the presence of token-wise outliers

Xi et al, (2023). Training Transformers with 4-bit Integers.

14

4 Method Per Block Quantization

𝐘 = 𝐗𝐖T

∇𝐗= ∇𝐘𝐖

INT8 numerical format must accurately support
the following three MMs of a linear layer

Q K V

x

Attention

Linear

Layer Norm

Linear

x

Linear

Layer Norm

∇𝐖= ∇𝐘
T𝐗

15

4 Method Per Block Quantization

But, using per-channel for forward pass and
per-token quantization for backward pass is not hardware-
friendly

WMMA (Warp Matrix Multiply-
Accumulate)

. +

16 x 16 x 16

𝐾

𝐗𝑖𝑘𝐖𝑘𝑗 , where 𝐗𝑖𝑘 ,𝐖𝑘𝑗 are block

𝐘 = 𝐗𝐖T,

𝐗 𝐖T

𝑆𝐗

𝐾

𝑆𝐗𝑘𝐗𝑖𝑘𝐖𝑘𝑗

∇𝐖= ∇𝐘
T𝐗

𝑆𝐗𝑘 prevents the utilization of high-speed
matrix multiplication (MM) in hardware

16

4 Method Per Block Quantization

Per-block quantization can achieve computational efficiency
and preserve accuracy at the same time

Per-block quantization

Final layer activation quant error

Per-block quantization achieved an error rate that falls
between that of per-channel and per-token quantization

17

4 Method

1) Per Block Quantization
2) Linear Layer Operator
3) Non-Linear Layer Operator

QLinear

QLinear

Layer Norm

GELU

x

18

4 Method Linear Layer Operator

Jetfire uses 3-Level Tiling of Matrix Multiplication
based on the GPU architecture

Level 1: CUDA thread block

Level 2: Quantization block

Level 3: WMMA operation

19

4 Method Linear Layer Operator

Level 1: CUDA thread block 𝐘 = 𝐗𝐖T, where 𝐗 ∈ ℝ𝑁×𝐶 ,𝐖 ∈ ℝ𝐷×𝐶 , 𝐘 ∈ ℝ𝑁×𝐷,

𝐗0𝑘

𝐖0𝑘

=

𝐘00
𝐗0𝑘

𝐖1𝑘

=

𝐘01

Block 1 Block 2

...

Level 2 GPU memory hierarchy

Global memory

Block 1

𝐗 𝐖

Shared
memory

𝐗0𝑘

𝐖0𝑘

...

Register

Thread

20

4 Method Linear Layer Operator

Level 2: Quantization block

𝐗𝑖𝑘,0 𝐖𝑗𝑘,0

𝑘

Level 3
GPU memory hierarchy

Global memory

Block 1

𝐗 𝐖

Shared
memory

𝐗𝑖𝑘

𝐖𝑗𝑘

...

Register

Thread

𝐗𝑖𝑘,1

𝐖𝑗𝑘,1

...

...

× 𝑅N

× 𝑅D

for 𝑝 𝑖𝑛 0…𝑅N − 1 do
for 𝑞 𝑖𝑛 0…𝑅D − 1 do

𝐗𝑖𝑘,𝑝 𝐖𝑗𝑘,𝑞𝐘𝑖𝑗,𝑝𝑞
+= .

𝐗𝑖𝑘,𝑝 𝐖𝑖𝑘,𝑞

21

4 Method Linear Layer Operator

Level 3: WMMA operation

𝐗𝑖𝑘,𝑝 𝐖𝑗𝑘,𝑞

GPU memory hierarchy

Global memory

Block 1

𝐗 𝐖

Shared
memory

𝐗𝑖𝑘

𝐖𝑗𝑘

...

16 × 16 16 × 16

16 × 16 16 × 16

16 × 16 16 × 16

16 × 16 16 × 16

𝐴 𝐵
𝐶 𝐷

∙
𝐴′ 𝐵′

𝐶′ 𝐷′ = 𝐴𝐴′ + 𝐵𝐶′ 𝐴𝐵′ + 𝐵𝐷′
𝐴′𝐶 + 𝐶′𝐷 𝐵′𝐶 + 𝐷𝐷′

8 x WMMA

Register

Thread

𝐗𝑖𝑘,𝑝 𝐖𝑖𝑘,𝑞

22

4 Method Linear Layer Operator

...
𝐗0𝑘

𝐖0𝑘

=

𝐘00
𝐗0𝑘

𝐖1𝑘

=

𝐘01

Block 1 Block 2

for 𝑝 𝑖𝑛 0…𝑅N − 1 do
for 𝑞 𝑖𝑛 0…𝑅D − 1 do

𝐗𝑖𝑘,𝑝 𝐖𝑗𝑘,𝑞𝐘𝑖𝑗,𝑝𝑞
+= .

for 𝑘 𝑖𝑛 0…𝑇C − 1 do

23

4 Method

1) Per Block Quantization
2) Linear Layer Operator
3) Non-Linear Layer Operator

QLinear

QLinear

QLayer Norm

QGELU

x

24

4 Method Non-Linear Layer Operator

Authors observed that non-linear operation are memory-
bounded

Precision differences in global memory read and write operations on
GLEU

GELU

INT8

INT8

GELU

FP16

FP16

GELU

FP32

FP32

25

4 Method Non-Linear Layer Operator

INT8

INT8

Non-Linear

FP32

Quantize

Dequantize

FP32

GELU, LayerNorm, Dropout, Add

INT8

INT8

Non-Linear

FP32

Quantize

Dequantize

FP32

INT8

INT8

Non-Linear

FP32

Quantize

Dequantize

FP32

...

All FP32 values are stored only in shared memory due to kernel fusion, while global
memory handles only INT8 read/write operations

Block 1 Block 2 Block 3

26

• Task
◦ Machine translation, image classification, generative model

pretraining

• Quantization
◦ INT 8: Linear layers of MLP, attention, non-linear layers (GELU,

LayerNorm, Dropout)
◦ FP 16: Multi-head attention (used FlashAttention[1])
◦ FP 32: Master copy of the weights

• Comparison method
◦ FP16: Floating point training baseline
◦ Per-tensor quantization
◦ SwitchBack

5 Experimental Settings

[1] Dao, T., Fu, D., Ermon, S., Rudra, A., and R ́e, C. Flashattention: Fast and memory-efficient exact attention with io-awareness.
Advances in Neural Information Process- ing Systems, 35:16344–16359, 2022. 27

Converged model accuracy

• Machine translation - transformer

◦ Train a transformer base model on WMT 14 En-De dataset

6 Experimental Results

28

Converged model accuracy

• Image classification – Deit

◦ Pretraining for Deit (Tiny, Small, Base) model on ImageNet1K

6 Experimental Results

29

Converged model accuracy

• Image classification – Swin transformer and ViT

◦ Pretraining for Swin (Tiny, Small, Base) model on ImageNet1K

◦ Fine-tune ViT (Base, Large) model on ImageNet1K

6 Experimental Results

30

Converged model accuracy

• Generative model pretraining– GPT2

◦ Training for GPT2 (base, medium, large) model on OpenWebText

6 Experimental Results

31

CUDA kernel and Triton kernel block size

• Block size for Triton and CUDA kernels
is crucial

◦ Large: Decrease in parallelism

◦ Small: Low utilization of bandwidth
and computational resources

• Block size of Triton: 64 × 64

• Block size of CUDA: 128 × 32 × 128

7 Ablation Study

32

Operator and End-to-End Experiments8

Linear layer & non-linear operator speedup

33

End-to-end speedup

• Show the end-to-end speedup for Jetfire method over PyTorch’s FP16

8 Operator and End-to-End Experiments

34

• Jetfire proves that full-pipeline INT8 pre-training can match FP
baselines without accuracy loss

• By storing activations, weights, and gradients in INT8, it halves
computation, memory traffic, and GPU usage

9 Conclusion

35

• Multi-Head Attention remains in FP16 via the FlashAttention kernel, so
Jetfire is not a fully INT8 end-to-end pipeline

• The experiments lack INT4 Transformer[2] baselines

• The per-block quantization scale matrix is large, leading to increased
communication overhead for scale values.

• 4-bit per block quantization may not be accurately performed in a
Transformer.

10 Limitation

[2] Xi, H., Li, C., Chen, J., & Zhu, J. (2023). Training transformers with 4-bit integers. Advances in Neural Information Processing
Systems, 36, 49146-49168. 36

Thank You!

Appendix

Appendix

