Optimizing Large Language Model Training Using FP4 Quantization

2025.05.12

Efficient ML

Hyeonseok Shin, SeungHyeon Kim, Yeeun Kim

Introduction

- Background
 - Why do we need low bit training?
- Related work
 - Low bit training
- Introduction
 - 4bit quantization
 - Issues in LLM quantization
 - Straight through estimator (STE)
 - Handling outliers

Background

POSTPEH

- Why do we need low bit training?
 - Time, energy, resources

https://endplan.ai

Example for LLaMA 405B (16K H100 GPUs)

Component	Category	Interruption Count	% of Interruptions
Faulty GPU	GPU	148	30.1%
GPU HBM3 Memory	GPU	72	17.2%
Software Bug	Dependency	54	12.9%
Network Switch/Cable	Network	35	8.4%
Host Maintenance	Unplanned Maintenance	32	7.6%
GPU SRAM Memory	GPU	19	4.5%
GPU System Processor	GPU	17	4.1%
NIC	Host	7	1.7%
NCCL Watchdog Timeouts	Unknown	7	1.7%
Silent Data Corruption	GPU	6	1.4%
GPU Thermal Interface + Sensor	GPU	6	1.4%
SSD	Host	3	0.7%
Power Supply	Host	3	0.7%
Server Chassis	Host	2	0.5%
IO Expansion Board	Host	2	0.5%
Dependency	Dependency	2	0.5%
CPU	Host	2	0.5%
System Memory	Host	2	0.5%

Table 5Root-cause categorization of unexpected interruptions during a 54-day period of Llama 3 405B pre-training. About 78% of unexpected interruptions were attributed to confirmed or suspected hardware issues.

Grattafiori, et al. arXiv (2024).

Related work – Low bit training

- NVIDIA's Transformer Engine (2022)
 - MXFP8
 - Block scaling
 - \circ E8M0 scaling factor

Rouhani, et al. NVIDIA (2022).

- FP8-LM: Training FP8 Large Language Model (2023)
 - Precision decoupling
 - Automatic scaling

Peng, et al. Microsoft (2023).

- Floating point
 - Sign / Exponent / Mantissa
 - 64, 32, 16, 8. 4bit

64bit = double, double precision 1 11bit 52bit 32bit = float, single precision 1 8bit 23bit 16bit = half, half precision 1 5bit 10bit https://blogs.nvidia.com

- Floating point
 - Sign / Exponent / Mantissa
 - 64, 32, 16, 8. 4bit

- Format (Ex. FP4)
 - E1M2 / E2M1 / E3M0

• FP4 quantization

POSTPEH

WANG, Ruizhe, et al. arXiv : 2501.17116 (2025)

7

• FP4 quantization

• Straight through estimator

Bengio, et al. arXiv (2013).

Issues in LLM quantization – Straight through estimator

Differentiable soft quantization (DSQ, 2019)

Gong, Ruihao, et al. ICCV (2019).

- Stochastic differentiable quantization (SDQ, 2022)
 - Differentiable bit-width parameter (DBP)
 - Gumbel-softmax

(a) Proposed Stochastic Differentiable Quantization (SDQ)

Huang, Xijie, et al. ICML (2022).

Hyperbolic tangent function

Closer to rounding function as training progresses

10

Issues in LLM quantization – Straight through estimator

Differentiable soft quantization (DSQ, 2019)

Hyperbolic tangent function

Closer to rounding function as training progresses

Gong, Ruihao,et al. ICCV (2019).

- Stochastic differentiable quantization (SDQ, 2022)
 - Differentiable bit-width parameter (DBP)
 - Gumbel-softmax

Strongly dependent on learnable quantization parameters

Proposed Solution: Differentiable gradient estimator (DGE)

Issues in LLM quantization – Handling outliers

- Outlier in activation for quantization
 - Input activations of a linear layer in LLaMa-65B

Issues in LLM quantization – Handling outliers

• Outlier in activation for quantization

T P

13

e.g.) [-4,4] tensor distribution

[w/o outlier] Max magnitude: 5 MSE: 0.04

[w/ outlier] Max magnitude: 30 MSE: 3.18

→ Mapping most elements to zero
 → Increased MSE

SmoothQuant

Xiao, et al. ICML (2023).

Per-channel smoothing factor s

 \rightarrow Conflict with the computation structure

QuaRot

- Hadamard transformation
- \rightarrow Rely on offline pre-processing
- \rightarrow Incompatible with pretraining task

Ashkboos, et al. NeurIPS (2024).

Methodology

- Differentiable gradient estimator (DGE)
- Outlier clamping and compensation (OCC)

Concept

A gradient correction term derived from a differentiable approximation of the quantization function.

Hard
 x = β: Non-differentiable
 Others: f'=0

STE

For all x: f'=1

Concept

A gradient correction term derived from a differentiable approximation of the quantization function.

DGE

$$f(x) = \delta \cdot \left(1 + \operatorname{sign}(x - \frac{\delta}{2}) \cdot |x - \frac{\delta}{2}|^{\frac{1}{k}}\right)$$

δ: Quantization intervalk: Degree of approximation

k 1: Close to hard quantization function

Concept

A gradient correction term derived from a differentiable approximation of the quantization function.

Applying to E2M1 quantization
 E2M1 range: [-6, 6]

Concept

A gradient correction term derived from a differentiable approximation of the quantization function.

• E2M1 quantizaition derivative

$$f'(x) = \frac{1}{k} \cdot |x - \frac{\delta}{2}|^{\frac{1}{k}-1}$$

Preventing excessively large gradient values

 \rightarrow Clipping magnitude of f' at 3.0

Concept

A gradient correction term derived from a differentiable approximation of the quantization function.

• E2M1 quantizaition derivative

$$f'(x) = \frac{1}{k} \cdot |x - \frac{\delta}{2}|^{\frac{1}{k}-1}$$

Preventing excessively large gradient values

 \rightarrow Clipping magnitude of f' at 3.0

Forward → Hard quantization function Backward → DGE quantization function

Concept

Select the top k% largest elements by magnitude and clamp them.

$$Y_c = \operatorname{clamp}(Y, \max = \alpha, \min = 1 - \alpha)$$

α: Quantile (Pre-defined)

POSTECH

Concept

Select the top k% largest elements by magnitude and clamp them.

$$Y_c = \operatorname{clamp}(Y, \max = \alpha, \min = 1 - \alpha)$$

α: Quantile (Pre-defined)

Concept

Select the top k% largest elements by magnitude and clamp them.

- Compensation for clamped outliers
 - $\circ~$ Add a sparse outlier matrix after FP4 MM

Concept

Select the top k% largest elements by magnitude and clamp them.

LLaMA 1.3B, 30,000 training iter.

SIM, MSE, SNR between high-precison MM activation tensors and FP4 MM activation tensors

CLAMP	Сомр	QUANTILE	S ім↑	$MSE\downarrow$	$SNR\uparrow$
×	_		92.19%	0.1055	8.31
\checkmark	×	99.9	98.83%	0.0366	14.25
\checkmark	\checkmark	99.9	99.61%	0.0245	15.31
\checkmark	\checkmark	99	100%	0.0099	18.38
\checkmark	\checkmark	97	100%	0.0068	20.88

High quantile \rightarrow Low cost, High quantization error Low quantile \rightarrow High cost, Low quantization error

Concept

Select the top k% largest elements by magnitude and clamp them.

LLaMA 1.3B, 30,000 training iter.

SIM, MSE, SNR between high-precison MM activation tensors and FP4 MM activation tensors

CLAMP	Сомр	QUANTILE	Ѕім↑	$MSE\downarrow$	$\mathbf{SNR}\uparrow$
×			92.19%	0.1055	8.31
\checkmark	×	99.9	98.83%	0.0366	14.25
\checkmark	\checkmark	99.9	99.61%	0.0245	15.31
\checkmark	\checkmark	99	100%	0.0099	18.38
\checkmark	\checkmark	97	100%	0.0068	20.88

▲ Clamping \rightarrow ⓒ Better SIM, MSE, SNR

Concept

Select the top k% largest elements by magnitude and clamp them.

LLaMA 1.3B, 30,000 training iter.

SIM, MSE, SNR between high-precison MM activation tensors and FP4 MM activation tensors

CLAMP	Сомр	QUANTILE	S ім↑	$MSE\downarrow$	$SNR\uparrow$
×		—	92.19%	0.1055	8.31
\checkmark	×	99.9	98.83%	0.0366	14.25
\checkmark	\checkmark	99.9	99.61%	0.0245	15.31
\checkmark	\checkmark	99	100%	0.0099	18.38
\checkmark	\checkmark	97	100%	0.0068	20.88

▲ Compensation \rightarrow ⓒ Better SIM, MSE, SNR

Concept

Select the top k% largest elements by magnitude and clamp them.

LLaMA 1.3B, 30,000 training iter.

SIM, MSE, SNR between high-precison MM activation tensors and FP4 MM activation tensors

CLAMP	Сомр	QUANTILE	S ім↑	$MSE\downarrow$	$\mathbf{SNR}\uparrow$
×	_	_	92.19%	0.1055	8.31
\checkmark	×	99.9	98.83%	0.0366	14.25
\checkmark	\checkmark	99.9	99.61%	0.0245	15.31
\checkmark	\checkmark	99	100%	0.0099	18.38
\checkmark	\checkmark	97	100%	0.0068	20.88

▲ Lower Quantile \rightarrow ⓒ Better SIM, MSE, SNR

Concept

Select the top k% largest elements by magnitude and clamp them.

LLaMA 1.3B, 30,000 training iter.

SIM, MSE, SNR between high-precison MM activation tensors and FP4 MM activation tensors

CLAMP	Сомр	QUANTILE	Sім↑	$MSE\downarrow$	$\mathbf{SNR}\uparrow$
×	_		92.19%	0.1055	8.31
\checkmark	×	99.9	98.83%	0.0366	14.25
\checkmark	\checkmark	99.9	99.61%	0.0245	15.31
\checkmark	\checkmark	99	100%	0.0099	18.38
\checkmark	\checkmark	97	100%	0.0068	20.88

▲ Note: Trade-off between computational efficiency and numerical accuracy

Cost

Select top k% largest magnitude elements \rightarrow By sort algorithm!

```
sorted_tensor = torch.sort(input, dim=0).values
lower_index = int((1 - clip_threshold) * sorted_tensor.size(0))
upper_index = int(clip_threshold * sorted_tensor.size(0))
```

```
lower_bound = sorted_tensor[lower_index:lower_index+1, :]
upper_bound =
sorted_tensor[upper_index:upper_index+1, :]
```

```
output = torch.clamp(input, min=lower_bound,
max=upper_bound)
```


Cost

Select top k% largest magnitude elements \rightarrow By sort algorithm!

Torchsort Benchmark: CUDA

Constant time complexity

^(C) But percentage of computation per iteration **not mentioned in the paper**

- Experiment setup
- Main results
- Ablation studies

Experiment setup

A : Activation tensor (sequence length × input channels) \rightarrow Token-wise quantization

W : Weight tensor (input channels × output channels)

→ Channel-wise quantization

- Experiment setup
- GeMM operation

Source : Nvidia

Validation with Nvidia H-series GPUs' FP8 Tensor Cores

 $\ensuremath{\textcircled{\odot}}$ Including the range of representation of FP4

- Mixed-precision training
- 1) Gradient communication in FP8 format
 - ☺ Reducing bandwidth usage
- 2) Mixed-precision Adam optimizer

☺ Conserving GPU memory

Value (Parameter)	Stored format
Gradients first-order moments of Adam optimizer	FP8
second-order moments of Adam optimizer	FP16
Remaining operations (comprising a smaller computational portion)	FP16 or BF16

Experiment setup

Evaluate the proposed FP4 training framework across language models of various size

- LLaMA 2 model (Primary model architecture)
 - 1) The training \rightarrow From scratch using the **DCLM dataset**
 - 2) Parameter for proposed method
 - 3) Input sequences / batch size

- -> From scratch using the DCLIVI dataset
- \rightarrow k = 5 (for **differentiable gradient estimator**)
- $\rightarrow \alpha$ = 0.99 (as the activation clamp and compensation quantile)
- \rightarrow 2048 tokens / 2048

• Main results

LLaMA models (1.3B, 7B, and 13B) trained with BF16 and FP4 precision

☺ As a result, **FP4 ≒ BF16 learning curves**

• Main results

Zero-shot evaluation for downstream tasks between BF16 models and FP4 models

Model Size	Precision	Average	PiQA	Hellaswag	ObQA	Arc-C	Arc-E	BoolQ	LogiQA	SciQ	Lambada
1 2D	BF16	53.23	71.11	50.80	36.60	36.69	68.60	57.83	30.26	83.30	43.84
1.3В	FP4(Ours)	53.13	70.89	50.82	36.20	36.86	67.47	58.23	29.49	83.90	44.30
7D	BF16	53.87	71.22	52.03	37.40	38.99	67.47	60.55	27.65	85.00	44.56
/ B	FP4(Ours)	54.42	71.87	52.97	38.40	39.85	67.97	62.20	27.96	84.70	43.88
12D	BF16	54.44	72.80	53.56	38.60	38.82	67.97	57.40	29.65	86.30	44.87
13B	FP4(Ours)	54.95	73.78	54.12	39.60	39.68	67.89	55.90	30.88	85.80	46.89

○ zero-shot performance of FP4 ≒ zero-shot performance of BF16

→ In-context learning ability preserved , i.e., solve problems in context

Ablation study

4

3

0

LLaMA 1.3B model, trained with 10B tokens from a subset of the DCLM dataset (batch 256) BF16(baseline), MS-AMP, Transformer-Engine FP8, directly-casted FP4, and **our FP4 method**

2

Precision

- ✓ W4A4 : Quantizing both weight and activation to FP4
- ✓ W4A4 +DGE+OCC : Proposed FP4 quantization method
- ✓ MS-AMP FP8, Transformer-Engine FP8: Existing FP8 method

 \odot Proposed FP4 \rightarrow Showing comparable training loss curves to FP8 methods during pretraining

10

8

6

Billion tokens

• Ablation study

LLaMA 1.3B model, trained with 10B tokens from a subset of the DCLM dataset (batch 256)

- ✓ W4A8 : Weight-only 4-bit quantization
 - W4A8 +DGE (k= __) \rightarrow DGE method with hyperparameter k (k : Parameter that controls the degree of approximation)

▲ Larger k → Better quantization-function modeling ⊗ Correction-term instability (Trade-off)

 \bigcirc k = 5 \rightarrow Optimal final performance

Ablation study

LLaMA 1.3B model, trained with 10B tokens from a subset of the DCLM dataset (batch 256)

- W8A4 : Activation-only 4-bit quantization
- W8A4 +OCC (α = ___) \rightarrow OCC method with quantile α

 $(\alpha : Predefined threshold for quantile searching and clamping)$

 \blacktriangle Direct FP4 activation quantization \rightarrow Curve divergence

 \checkmark

A Higher $\alpha \rightarrow$ Increased representation ability of model

 $\odot \alpha = 0.99 \rightarrow$ Comprehensive computational performance

• Ablation study

LLaMA 1.3B model, trained with 10B tokens from a subset of the DCLM dataset (batch 256)

Granularity

▲ Token-wise activation quantization · Channel-wise weight quantization

 \otimes **Coarse-grained** activation quantization \rightarrow Propagation of quantization precision loss to the entire output

POSTECH

Conclusion

Conclusion

FP4 pre-training framework for modern Large Language Models (LLMs)

Overcoming the challenges of limited dynamic range and quantization precision in 4-bit formats

Differentiable gradient estimator (DGE)

③ Differentially **feasible approximation method** to make gradients flow well for **weights**

Outlier clamping and compensation (OCC)

^(C) Proposed method to **reduce losses** due to outliers in **activation** quantization

Limitations

Limitations

• Limited Training token (< 100B)

- Original LLaMA training token \rightarrow 2 trillion tokens
- Large-token regime validation: required

ℬ Scaling risks

→ Model collapse · overfitting risk · generalization failure

FISHMAN, Maxim, et al. arXiv : 2409.12517 (2024)

POSTECH

Limitations

- Limited model scope
 - Experiments exclude Vision Transformers & outlier-prone LLMs
 - Generality validation hindered
- Unquantified sparse-path overhead in OCC
 - Runtime · energy · memory costs unmeasured, i.e. torch.sort + sparse GeMM
 - Time-complexity analysis absent
- Hyper-parameter (k, α) search cost
 - Empirical tuning across models → High overhead
 - Sensitivity analysis lacking
- No real-hardware evaluation
 - FP4 computation: Simulation-only
 - End-to-end cost reduction : Quantification unavailable

Thank you

Appendix

- Experiment setup
 - LLaMA 2 model (Primary model architecture)

Learning rate

→ Warm-up and cosine decay schedule

Maximum learning rate: 0.0003, weight decay: 0.1				
Warm-up Increasing learning rate during the first 5% step				
Cosine decay The remaining 90% step is cosine decay				

** Hyper-parameters

→ Consistent across precision settings

