
Spring 2025

Low-precision training
EECE695D: Efficient ML Systems

Low-precision training
• Idea. Exploit low-precision for training

• Faster computation More throughput, less energy

• Reduced memory bandwidth Bigger batch

→

→

Key challenge
• The archenemy is the limited dynamic range

• Limited precision leads to over-/underflows

• FP8 (E4M3) value covers maximum 448 and minimum

• Can amplify the gradient noise

• Imprecise updates accumulate over time

• Further affects gradient, optimizer states, BN/LN statistics (quantize what?)

2−6

This week
• We take a very brief look at some notable examples:

• Early IBM work (2015)

• Binary networks (2015-2016)

• BNN, XNOR, DoReFa, eventually to BitNets

• FP16/FP8 training (2018-)

Gupta et al., (2015)

Background
• FP32 is a modern standard; old works used various precisions for DL:

• Iwata et al. (1989) uses FP24

• Hammerstrom (1990) uses 8-16bits in fixed point

• (…)

• Chen et al. (2014) observes that at least 32bit fixed point is needed
for their supercomputer

• This work. Train using 16bit fixed-point FP32 (MNIST, CIFAR-10)

• + Hardware prototyping

≈

Iwata et al., “An artificial neural network accelerator using general purpose 24 bit floating point digital signal processors,” IJCNN 1989
Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” IJCNN 1990

Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” MICRO 2014

Method
• To compute for two -bit fixed-point vectors :

• Step 1. Compute the MAC

• requires bitwidth at most

• Step 2. Convert the sum to -bit

• Round-to-nearest

• Stochastic rounding

• Gradient in DL is matmul, thus no special consideration needed

a⊤b k a, b ∈ ℝd

z =
d

∑
i=1

aibi

z 2k + 1 + log2 d

k

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Method
• Quantized many things:

• Weights

• Biases

• Activations

• Back-propagated error

• Weight update

• Bias update

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Observation
• Stochastic rounding is quite essential (MNIST+MLP example)

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Observation
• Up to 16bit fixed-point, for CIFAR-10 training

• Assign more bits for the integer bits than fraction

• Late high-precision training helps

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Binary nets

Background
• Another team at Montréal worked on early shapings of low-precision training,

with special focus on binary networks

• “Training deep neural networks with low precision multiplications”
ICLR workshop 2015

• “BinaryConnect: Training Deep Neural Networks with binary weights during
propagations”
NeurIPS 2015

• “Binarized Neural Networks”
NeurIPS 2016

• Loses scaling

• BatchNorm layers can handle these, presumably

Method
• Binarize the weight during forward, and keep high-precision weights intact

• Forward. Compute output with binarize(w)

• Stochastic rounding; applies hard sigmoid

• Backward. Compute gradients in full-precision

• Update. Update full-precision weight w

• Straight-through estimator

• Apply clipping to [-1,+1]; prevents w from growing endlessly

• Binarization noise is deemed independent and zero-mean

• cancels out eventually
Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurIPS 2015

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurIPS 2015

Observations
• Requires much longer training than full-precision

• Interestingly, advantages in generalization

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurIPS 2015

2016 work
• Binarizes both W&A

• Keeps both W&A in full-precision as well

• Uses hard-sigmoid as activation function, with additional binarization

• Gradients for activations outside [-1,+1] is set to zero

• Empirically works well, rather than being well-justified
(in fact, later works remove this; e.g., XNOR-Net, DoReFA-Net)

Hubara et al., “Binarized neural networks” NeurIPS 2016

Limitation
• Keeps track of full-precision W&A

• Much memory cost

• Requires full-precision gradient

• Weak computation advantage during backward

XNOR-Net
• Introduces scaling factor to the forward binary operation

• This change force us to update weights greater than 1, as well.

• BNN.

• XNOR-Net.

(expectation denotes averaging w.r.t. output channel)

Rastegari et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks” ECCV 2016

DoReFa-Net
• Generalizes the idea to binarizing gradients as well

• Unlike activations, gradients are unbounded (typically larger than activations)

• Thus perform quantization with normalization factors

• Here, is a uniform noise which compensates for any bias due to
gradient quantization

N(k)

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients” arXiv 2016

Further readings
• This line of work has been followed-up by BitNet, in the context of LLMs

• https://arxiv.org/abs/2310.11453

https://arxiv.org/abs/2310.11453

FP16/FP8 training

Background
• Concerns regarding “will fixed-point scale up?”

• ImageNet-scale experiments

• Applications to language modeling

• Solution. Use floating point?

FP16 Training (NVIDIA ver.)
• NVIDIA & Baidu worked on extending the idea to FP16

• Weights are also kept in FP32, but not others

• Reason. Weight updates will be too small, when multiplied with LR

Micikevicius et al., “Mixed Precision Training” ICLR 2018

FP16 Training (NVIDIA ver.)
• Also, we cannot use the same dynamic range for weights and gradients

• Many gradients have very small values

• Solution. Scale up the loss (x8), so that the gradient become larger

Micikevicius et al., “Mixed Precision Training” ICLR 2018

Further readings
• Intel concurrently studied INT16 training (ICLR 2018):

• https://arxiv.org/abs/1802.00930

https://arxiv.org/abs/1802.00930

FP8 Training (IBM ver.)
• IBM introduced FP8 format (E5M2)

• Accumulation in FP16 (E6M9); still a “master copy” of weights

• AXPY (vector addition;) done in FP16y = αx + y

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018

FP8 Training (IBM ver.)
• Observation. “Swamping” happens a lot in DL

• Losing information when adding large + small FP values

• Especially problematic if:

• Adding a lot of non-zero mean values (as the sum gradually grows)

• Some of the elements are extremely large

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018

FP8 Training (IBM ver.)
• Solution. Chunk-based accumulation

• Generate partial sums to avoid scale mismatch

• DON’T:

• a1 = a1 + a2

• a1 = a1 + a3

• a1 = a1 + a4

• DO:

• a1 = a1 + a2

• a3 = a3 + a4

• a1 = a1 + a3
Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018

FP8 Training (IBM ver.)
• Solution. Stochastic rounding

• Rounded-off values (least significant bits) give chance of rounding up,
instead of simply being truncated

• For floating-point, rounding the value is done by: x = s ⋅ 2e ⋅ (1 + m)

Round(x) =
s ⋅ 2e ⋅ (1 + ⌊m⌋ + ϵ) w . p . m − ⌊m⌋

ϵ

s ⋅ 2e ⋅ (1 + ⌊m⌋) w . p . 1 − m − ⌊m⌋
ϵ

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018

FP8 Training (IBM ver.)
• Use Chunking for GEMM, and SR for AXPY

• AXPY is done over data batches; no hierarchical aggregation doable

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018

FP8 Training (IBM ver.)
• Other details. No quantization for 1st and the last layer

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018

Follow-ups
• Later work from IBM uses E4M3 for forward and E5M2 for backward

• Works better on MobileNetV2 and Transformers
https://papers.nips.cc/paper_files/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html

• Also much discussions on BatchNorm

• Similar findings by Graphcore

• https://arxiv.org/abs/2206.02915

• See also 2023 work: https://openreview.net/forum?id=nErbvDkucY

• More discussions on loss scaling — per-tensor scaling

Sun et al., “Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks” NeurIPS 2019
Noune et al, “8-bit Numerical Formats for Deep Neural Networks,” arXiv 2022

Perez et al., “Training and inference of large language models using 8-bit floating point,” WANT workshop @ NeurIPS 2023

https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://arxiv.org/abs/2206.02915
https://openreview.net/forum?id=nErbvDkucY

Follow-ups
• NVIDIA, ARM, and Intel proposes an interchange format of E4M3 and E5M2:

• https://arxiv.org/abs/2209.05433

• Conducts extensive empirical study, showing that FP8 is stable enough

Micikevicius et al, “FP8 formats for deep learning,” arXiv 2022

https://arxiv.org/abs/2209.05433

Follow-ups
• Microsoft applies FP8 on all pipeline: including parallelism & optimizer

• https://arxiv.org/abs/2310.18313

• Precision decoupling: Reduced precision for insensitive weights

• Automatic scaling: Per-tensor scaling of loss

Peng et al., “FP8-LM: Training FP8 Large Language Models,” arXiv 2023

https://arxiv.org/abs/2310.18313

Follow-ups
• DeepSeek-V3 applies E4M3 for all ops

• Combine with fine-grained quantization (and many other details)
https://arxiv.org/abs/2412.19437

DeepSeek-AI, “DeepSeek-V3 Technical Report,” arXiv 2024

https://arxiv.org/abs/2412.19437

Takeaways
• Both families are seeing much progress nowadays

• PTQ. Any lessons to learn from SOTA techniques?

• QAT. Similar ideas applicable for QAT?

• We’ll see more in the student presentations…

That’s it for today 🙌

