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Low-precision training
• Idea. Exploit low-precision for training 

• Faster computation                               More throughput, less energy 

• Reduced memory bandwidth               Bigger batch

→

→



Key challenge
• The archenemy is the limited dynamic range 

• Limited precision leads to over-/underflows 

• FP8 (E4M3) value covers maximum 448 and minimum  

• Can amplify the gradient noise 

• Imprecise updates accumulate over time 

• Further affects gradient, optimizer states, BN/LN statistics   (quantize what?)
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This week
• We take a very brief look at some notable examples: 

• Early IBM work (2015) 

• Binary networks (2015-2016) 

• BNN, XNOR, DoReFa, eventually to BitNets 

• FP16/FP8 training (2018-)



Gupta et al., (2015)



Background
• FP32 is a modern standard; old works used various precisions for DL: 

• Iwata et al. (1989) uses FP24 

• Hammerstrom (1990) uses 8-16bits in fixed point 

• (…) 

• Chen et al. (2014) observes that at least 32bit fixed point is needed 
for their supercomputer 

• This work. Train using 16bit fixed-point  FP32                       (MNIST, CIFAR-10) 

• + Hardware prototyping

≈

Iwata et al., “An artificial neural network accelerator using general purpose 24 bit floating point digital signal processors,” IJCNN 1989 
Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” IJCNN 1990 

Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” MICRO 2014



Method
• To compute  for two -bit fixed-point vectors : 

• Step 1. Compute the MAC 

  

•  requires bitwidth at most  

• Step 2. Convert the sum to -bit 

• Round-to-nearest 

• Stochastic rounding 

• Gradient in DL is matmul, thus no special consideration needed
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Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Method
• Quantized many things: 

• Weights 

• Biases 

• Activations 

• Back-propagated error 

• Weight update 

• Bias update

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Observation
• Stochastic rounding is quite essential    (MNIST+MLP example)

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Observation
• Up to 16bit fixed-point, for CIFAR-10 training 

• Assign more bits for the integer bits than fraction 

• Late high-precision training helps

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Binary nets



Background
• Another team at Montréal worked on early shapings of low-precision training, 

with special focus on binary networks 

• “Training deep neural networks with low precision multiplications” 
ICLR workshop 2015 

• “BinaryConnect: Training Deep Neural Networks with binary weights during 
propagations” 
NeurIPS 2015 

• “Binarized Neural Networks” 
NeurIPS 2016 

• Loses scaling 

• BatchNorm layers can handle these, presumably



Method
• Binarize the weight during forward, and keep high-precision weights intact  

• Forward.      Compute output with binarize(w) 

• Stochastic rounding; applies hard sigmoid 

• Backward.   Compute gradients in full-precision 

• Update.       Update full-precision weight w 

• Straight-through estimator 

• Apply clipping to [-1,+1];  prevents w from growing endlessly 

• Binarization noise is deemed independent and zero-mean 

• cancels out eventually
Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurIPS 2015



Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurIPS 2015



Observations
• Requires much longer training than full-precision 

• Interestingly, advantages in generalization

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurIPS 2015



2016 work
• Binarizes both W&A 

• Keeps both W&A in full-precision as well 

• Uses hard-sigmoid as activation function, with additional binarization 

• Gradients for activations outside [-1,+1] is set to zero 

• Empirically works well, rather than being well-justified 
(in fact, later works remove this; e.g., XNOR-Net, DoReFA-Net)

Hubara et al., “Binarized neural networks” NeurIPS 2016



Limitation
• Keeps track of full-precision W&A 

• Much memory cost 

• Requires full-precision gradient 

• Weak computation advantage during backward



XNOR-Net
• Introduces scaling factor to the forward binary operation 

• This change force us to update weights greater than 1, as well. 

• BNN. 

• XNOR-Net. 

 
(expectation denotes averaging w.r.t. output channel)

Rastegari et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks” ECCV 2016



DoReFa-Net
• Generalizes the idea to binarizing gradients as well 

• Unlike activations, gradients are unbounded   (typically larger than activations) 

• Thus perform quantization with normalization factors 

• Here,  is a uniform noise which compensates for any bias due to 
gradient quantization

N(k)

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients” arXiv 2016



Further readings
• This line of work has been followed-up by BitNet, in the context of LLMs 

• https://arxiv.org/abs/2310.11453

https://arxiv.org/abs/2310.11453


FP16/FP8 training



Background
• Concerns regarding “will fixed-point scale up?” 

• ImageNet-scale experiments 

• Applications to language modeling 

• Solution. Use floating point?



FP16 Training (NVIDIA ver.)
• NVIDIA & Baidu worked on extending the idea to FP16 

• Weights are also kept in FP32, but not others 

• Reason. Weight updates will be too small, when multiplied with LR

Micikevicius et al., “Mixed Precision Training” ICLR 2018



FP16 Training (NVIDIA ver.)
• Also, we cannot use the same dynamic range for weights and gradients 

• Many gradients have very small values 

• Solution. Scale up the loss (x8), so that the gradient become larger

Micikevicius et al., “Mixed Precision Training” ICLR 2018



Further readings
• Intel concurrently studied INT16 training (ICLR 2018): 

• https://arxiv.org/abs/1802.00930

https://arxiv.org/abs/1802.00930


FP8 Training (IBM ver.)
• IBM introduced FP8 format (E5M2) 

• Accumulation in FP16 (E6M9); still a “master copy” of weights 

• AXPY (vector addition; ) done in FP16y = αx + y

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018



FP8 Training (IBM ver.)
• Observation. “Swamping” happens a lot in DL 

• Losing information when adding large + small FP values 

• Especially problematic if: 

• Adding a lot of non-zero mean values (as the sum gradually grows) 

• Some of the elements are extremely large

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018



FP8 Training (IBM ver.)
• Solution. Chunk-based accumulation 

• Generate partial sums to avoid scale mismatch 

• DON’T: 

• a1 = a1 + a2 

• a1 = a1 + a3 

• a1 = a1 + a4 

• DO: 

• a1 = a1 + a2 

• a3 = a3 + a4 

• a1 = a1 + a3
Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018



FP8 Training (IBM ver.)
• Solution. Stochastic rounding 

• Rounded-off values (least significant bits) give chance of rounding up, 
instead of simply being truncated 

• For floating-point, rounding the value  is done by: x = s ⋅ 2e ⋅ (1 + m)

Round(x) =
s ⋅ 2e ⋅ (1 + ⌊m⌋ + ϵ) w . p . m − ⌊m⌋

ϵ

s ⋅ 2e ⋅ (1 + ⌊m⌋) w . p . 1 − m − ⌊m⌋
ϵ

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018



FP8 Training (IBM ver.)
• Use Chunking for GEMM, and SR for AXPY 

• AXPY is done over data batches; no hierarchical aggregation doable

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018



FP8 Training (IBM ver.)
• Other details. No quantization for 1st and the last layer

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurIPS 2018



Follow-ups
• Later work from IBM uses E4M3 for forward and E5M2 for backward 

• Works better on MobileNetV2 and Transformers 
https://papers.nips.cc/paper_files/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html 

• Also much discussions on BatchNorm 

• Similar findings by Graphcore 

• https://arxiv.org/abs/2206.02915 

• See also 2023 work: https://openreview.net/forum?id=nErbvDkucY 

• More discussions on loss scaling — per-tensor scaling

Sun et al., “Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks” NeurIPS 2019 
Noune et al, “8-bit Numerical Formats for Deep Neural Networks,” arXiv 2022 

Perez et al., “Training and inference of large language models using 8-bit floating point,” WANT workshop @ NeurIPS 2023

https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://arxiv.org/abs/2206.02915
https://openreview.net/forum?id=nErbvDkucY


Follow-ups
• NVIDIA, ARM, and Intel proposes an interchange format of E4M3 and E5M2: 

• https://arxiv.org/abs/2209.05433 

• Conducts extensive empirical study, showing that FP8 is stable enough

Micikevicius et al, “FP8 formats for deep learning,” arXiv 2022

https://arxiv.org/abs/2209.05433


Follow-ups
• Microsoft applies FP8 on all pipeline: including parallelism & optimizer 

• https://arxiv.org/abs/2310.18313 

• Precision decoupling:  Reduced precision for insensitive weights 

• Automatic scaling:       Per-tensor scaling of loss

Peng et al., “FP8-LM: Training FP8 Large Language Models,” arXiv 2023

https://arxiv.org/abs/2310.18313


Follow-ups
• DeepSeek-V3 applies E4M3 for all ops 

• Combine with fine-grained quantization (and many other details) 
https://arxiv.org/abs/2412.19437

DeepSeek-AI, “DeepSeek-V3 Technical Report,” arXiv 2024

https://arxiv.org/abs/2412.19437


Takeaways
• Both families are seeing much progress nowadays 

• PTQ. Any lessons to learn from SOTA techniques? 

• QAT. Similar ideas applicable for QAT? 

• We’ll see more in the student presentations…



That’s it for today 🙌


