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Low-precision training

e |ldea. Exploit low-precision for training
e Faster computation — More throughput, less energy

e Reduced memory bandwidth — Bigger batch

sign exponent mantissa
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Key challenge

e The archenemy is the limited dynamic range

e Limited precision leads to over-funderflows

e FP8 (E4M3) value covers maximum 448 and minimum 2°

e Can amplify the gradient noise

 Imprecise updates accumulate over time

e Further affects gradient, optimizer states, BN/LN statistics



This week

e \We take a very brief look at some notable examples:
e Early IBM work (2015)
e Binary networks (2015-2016)
e BNN, XNOR, DoReFa, eventually to BitNets
e FP16/FP8 training (2018-)



Gupta et al.,, (2015)



Background

e FP32 1s a modern standard; old works used various precisions for DL:

e |lwata et al. (1989) uses FP24
e Hammerstrom (1990) uses 8-16bits in fixed point

* ()

e Chen et al. (2014) observes that at least 32bit fixed point is needed
for their supercomputer

e This work. Train using 16bit fixed-point ~ FP32

 + Hardware prototyping

lwata et al., “An artificial neural network accelerator using general purpose 24 bit floating point digital signal processors,” [IJCNN 1989
Hammerstrom, “A VLS| architecture for high-performance, low-cost, on-chip learning,” [IJCNN 1990
Chen et al, “DaDianNao: A Machine-Learning Supercomputer,” MICRO 2014



Method

e o compute a'b for two k-bit fixed-point vectors a,b € |

e Step 1. Compute the MAC

d
=1

e Zrequires bitwidth at most 2k + 1 + log, d

o Step 2. Convert the sum to k-bit
e Round-to-nearest
e Stochastic rounding

e Gradient in DL 1s matmul, thus no special consideration needed

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Method

e Quantized many things:
e Weights
e Blases
e Activations
e Back-propagated error
 Weight update

e Bias update

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Observation

e Stochastic rounding is quite essential (MNIST+MLP example)
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Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015



Observation

 Up to 16bit fixed-point, for CIFAR-10 training
e Assign more bits for the integer bits than fraction

e |Late high-precision training helps
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Binary nets



Background

e Another team at Montréal worked on early shapings of low-precision training,
with special focus on binary networks

 “Training deep neural networks with low precision multiplications”
ICLR workshop 2015

e “BinaryConnect: Training Deep Neural Networks with binary weights during
propagations”
NeurlPS 2015

e “Binarized Neural Networks”
NeurlPS 2016

e Loses scaling

e BatchNorm layers can handle these, presumably



Method

 Binarize the weight during forward, and keep high-precision weights intact
e Forward. Compute output with binarize(w)
e Stochastic rounding; applies hard sigmoid
e Backward. Compute gradients in full-precision
 Update. Update full-precision weight w
e Straight-through estimator
o Apply clipping to [-1,+1]; prevents w from growing endlessly

e Binarization noise Is deemed independent and zero-mean

e cancels out eventually

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurlPS 2015



Algorithm 1 SGD training with BinaryConnect. C' is the cost function for minibatch and the func-
tions binarize(w) and clip(w) specify how to binarize and clip weights. L 1s the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w;_1 (weights) and b;_; (biases),
and learning rate 7.
Ensure: updated parameters w; and b;.
1. Forward propagation:
wp «— binarize(w;_1)
For k = 1 to L, compute a; knowing a;_1, wp and b;_1
2. Backward propagation:

Initialize output layer’s activations gradient aCL
For k = L to 2, compute 885 - knowing 5 8C and wy

3. Parameter update:

8(7 oC o OC
Compute 57~ and z~=— knowing 7= and a1
5C
Wi — chp(wt 1= N5e,)

oC
by «— by_1 — Now, ;

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurlPS 2015



Observations

 Requires much longer training than full-precision

e Interestingly, advantages in generalization
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Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurlPS 2015



e Binarizes both W&A

e Keeps both WE&A in full-precision as well

2016 work

e Uses hard-sigmoid as activation function, with additional binarization

e Gradients for activations outside [-1,+1] is set to zero

e Empirically works well, rather than being well-justified
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Hubara et al., “Binarized neural networks” NeurlPS 2016



Limitation
o Keeps track of full-precision W&A
e Much memory cost

 Requires full-precision gradient

e Weak computation advantage during backward



XNOR-Net

e Introduces scaling factor to the forward binary operation

 This change force us to update weights greater than 1, as well.

* BNN. Forward: r, = sign(r;)
Backward: g’i = gri]lmlgl-

 XNOR-Net. Forward: r, = sign(r;) X Ep(|r;)
Backward: 5:2 = 88:0

Rastegari et al, “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks” ECCV 2016



DoReFa-Net

 Generalizes the iIdea to binarizing gradients as well

e Unlike activations, gradients are unbounded

 Thus perform quantization with normalization factors

- d )
fﬁ(dr) = 2 maxg(|dr|) quantizek[zmaxs(‘drr') | ; - N (k)] — 1)

e Here, N(k) is a uniform noise which compensates for any bias due to
gradient quantization

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients” arXiv 2016



Further readings

e This line of work has been followed-up by BitNet, in the context of LLMs
e https://arxiv.org/abs/2310.11453



https://arxiv.org/abs/2310.11453

FP16/FP8 training



Background

e Concerns regarding “will fixed-point scale up?”
 ImageNet-scale experiments

e Applications to language modeling

e Solution. Use floating point?



 NVIDIA & Baidu worked on extending the idea to FP16

FP16 Training (NVIDIA ver.)

e Weights are also kept in FP32, but not others

e Reason. Weight updates will be too small, when multiplied with LR
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Percentage of all activation gradient values
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FP16 Training (NVIDIA ver.)

e Also, we cannot use the same dynamic range for weights and gradients

e Many gradients have very small values

» Solution. Scale up the loss (x8), so that the gradient become larger
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Figure 5: bigLSTM training perplexity

Micikevicius et al., “Mixed Precision Training” ICLR 2018



Further readings

* Intel concurrently studied INT16 training (ICLR 2018):
e https://arxiv.org/abs/1802.00930



https://arxiv.org/abs/1802.00930

FP8 Training (IBM ver.)

e |IBM introduced FP8 format (E5M2)
e Accumulation in FP16 (E6GM9); still a “master copy” of weights

o AXPY (vector addition; y = ax + y) done in FP16
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Figure 2: A diagram showing the precision settings for (a) three GEMM functions during forward
and backward passes, and (b) three AXPY operations during a standard SGD weight update process.

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018



FP8 Training (IBM ver.)

e Observation. “Swamping” happens a lot in DL
e Losing information when adding large + small FP values
e Especially problematic If:
e Adding a lot of non-zero mean values

e Some of the elements are extremely large

0 . dl d2 T dm—p dm p+1 dt—l dt
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Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018



e Solution. Chunk-based accumulation

FP8 Training (IBM ver.)

e Generate partial sums to avoid scale mismatch

e DON'T:
e al=al+ a2
e al=al+ a3
e al=al + a4
e DO:
e al=al+ a2
e ad=a3 +a4d
e al=al + a3

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018



FP8 Training (IBM ver.)

e Solution. Stochastic rounding

* Rounded-off values (least significant bits) give chance of rounding up,
Instead of simply being truncated

e For floating-point, rounding the value x = s - 2° - (1 + m) is done by:

m— |m]

s-2°-(1+|m|l+e) w.p.
Round(x) = :

s-2¢-(1 + |m]|) w.p. 11—

m— |m]

€

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018



FP8 Training (IBM ver.)

e Use Chunking for GEMM, and SR for AXPY

 AXPY Is done over data batches; no hierarchical aggregation doable
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Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018



FP8 Training (IBM ver.)

e Other details. No quantization for Ist and the last layer
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Follow-ups

e [ ater work from IBM uses E4AMS3 for forward and E5M2 for backward

e \Works better on MobileNetV2 and Transformers

https://papers.nips.cc/paper_files/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html

e Also much discussions on BatchNorm
e Similar findings by Graphcore
e https://arxiv.org/abs/2206.02915

e See also 2023 work: https://openreview.net/forum?id=nErbvDkucY

* More discussions on loss scaling — per-tensor scaling

Sun et al., “Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks” NeurlPS 2019

Noune et al, “8-bit Numerical Formats for Deep Neural Networks,” arXiv 2022
Perez et al., “Training and inference of large language models using 8-bit floating point,” WANT workshop @ NeurlPS 2023


https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://arxiv.org/abs/2206.02915
https://openreview.net/forum?id=nErbvDkucY

Follow-ups

 NVIDIA, ARM, and Intel proposes an interchange format of EAM3 and ESM2:
e https://arxiv.org/abs/2209.05433

e Conducts extensive empirical study, showing that FP8 is stable enough
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Figure 1: Training loss (perplexity) curves for various GPT-3 models. x-axis i1s normalized number of iterations.

Micikevicius et al, “FP8 formats for deep learning,” arXiv 2022


https://arxiv.org/abs/2209.05433

Follow-ups

e Microsoft applies FP8 on all pipeline: including parallelism & optimizer

e https://arxiv.org/abs/2310.18313

* Precision decoupling: Reduced precision for insensitive weights

e Automatic scaling:
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GPT-13B model zero-shot performance
BF16 64.8 64.9 63.4 75.9 82.0 61.0 35.2 61.5 40.6  61.0
FP8  64.1 63.4 63.9 76.2 81.0 61.6 34.9 61.3 36.8  60.4

Peng et al

. "FP8-LM: Training FP8 Large Language Models,” arXiv 2023


https://arxiv.org/abs/2310.18313

Follow-ups

e DeepSeek-V3 applies EAM3 for all ops

 Combine with fine-grained quantization (and many other details)
https://arxiv.org/abs/2412.19437
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DeepSeek-Al, “DeepSeek-V3 Technical Report,” arXiv 2024


https://arxiv.org/abs/2412.19437

Takeaways

e Both families are seeing much progress nowadays

* PTQ. Any lessons to learn from SOTA techniques?

e QAT. Similar ideas applicable for QAT?

e We'll see more In the student presentations...



That's it for today (-



