Low-precision training

Spring 2025

Low-precision training

e |ldea. Exploit low-precision for training
e Faster computation — More throughput, less energy

e Reduced memory bandwidth — Bigger batch

sign exponent mantissa

FP16 | O | O | 1 1 0 1 1 0 0 1 0 1 OO0 1 1 =0.395264

BF1I6e | O | O | 1 1 1 1 1 | 0 1 1 0| O 1|0 1 (0 =0.394531

FPEBEAM3| O | O 1 0 1 1 0 1 =0.40625

FPEESM2| 0 | O 1 1 0 1 1 0 =0.375

Key challenge

e The archenemy is the limited dynamic range

e Limited precision leads to over-funderflows

e FP8 (E4M3) value covers maximum 448 and minimum 2°

e Can amplify the gradient noise

 Imprecise updates accumulate over time

e Further affects gradient, optimizer states, BN/LN statistics

This week

e \We take a very brief look at some notable examples:
e Early IBM work (2015)
e Binary networks (2015-2016)
e BNN, XNOR, DoReFa, eventually to BitNets
e FP16/FP8 training (2018-)

Gupta et al.,, (2015)

Background

e FP32 1s a modern standard; old works used various precisions for DL:

e |lwata et al. (1989) uses FP24
e Hammerstrom (1990) uses 8-16bits in fixed point

* ()

e Chen et al. (2014) observes that at least 32bit fixed point is needed
for their supercomputer

e This work. Train using 16bit fixed-point ~ FP32

 + Hardware prototyping

lwata et al., “An artificial neural network accelerator using general purpose 24 bit floating point digital signal processors,” [IJCNN 1989
Hammerstrom, “A VLS| architecture for high-performance, low-cost, on-chip learning,” [IJCNN 1990
Chen et al, “DaDianNao: A Machine-Learning Supercomputer,” MICRO 2014

Method

e o compute a'b for two k-bit fixed-point vectors a,b € |

e Step 1. Compute the MAC

d
=1

e Zrequires bitwidth at most 2k + 1 + log, d

o Step 2. Convert the sum to k-bit
e Round-to-nearest
e Stochastic rounding

e Gradient in DL 1s matmul, thus no special consideration needed

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Method

e Quantized many things:
e Weights
e Blases
e Activations
e Back-propagated error
 Weight update

e Bias update

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Observation

e Stochastic rounding is quite essential (MNIST+MLP example)

Rlound Eo nealrest, VIVL = 116 5 ﬁoundlto nealrest, V\IIL = 1§
1 = FL14 —5—
S Q FL10 —&—
= 0.1 - > FL 8 —5—
- S . o Float ——
o _ SS=ES =5 3] [
g 0.01 - - 2
a B e wn
= S -
0.001 % -
i S==S===3)
0.0001 ' ' . ' —=
(a) 0 5 10 15 20 25 30 (b) O 5 10 15 20 25 30
Training epoch Training epoch
Stclachastlic rou?ding,'WL =|1 6 4 . Sltochasltic rourl1ding, YVL = 1'6
FL14 —e—
S < FL10 —e—
- 2 FL 8 —o—
o S Float
£)
T 2
— =
[1 | | | | |
(c) 0 5 10 15 20 25 30 (d) O 5 10 15 20 25 30
Training epoch Training epoch

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Observation

 Up to 16bit fixed-point, for CIFAR-10 training
e Assign more bits for the integer bits than fraction

e |Late high-precision training helps

2 . | I; [| | 0 [e eeee | | | [|
18 : _ o, nuwd Round to nearest, FL 14 -------
' : 45 SR Stochastic rounding, FL 14
1.6 S - Stochastic rounding, FL 12
— 1 4 t.:" . - \ ‘ Float
e) ey O\O 40 — .
o 12 -~
O
8 1 \\\] (lt) 35 i
- +—
§ 08 - S oA T g; 30
= o6} —~ SR Wi
04 L N o5 KX) w 'V‘
0.2 _
| | | | | 20 | | | | |
(a) 0 20 40 60 80 100 120 (b) 0 20 40 60 80 100 120
Training epoch Training epoch

Suyog et al., “Deep Learning with Limited Numerical Precision,” ICML 2015

Binary nets

Background

e Another team at Montréal worked on early shapings of low-precision training,
with special focus on binary networks

 “Training deep neural networks with low precision multiplications”
ICLR workshop 2015

e “BinaryConnect: Training Deep Neural Networks with binary weights during
propagations”
NeurlPS 2015

e “Binarized Neural Networks”
NeurlPS 2016

e Loses scaling

e BatchNorm layers can handle these, presumably

Method

 Binarize the weight during forward, and keep high-precision weights intact
e Forward. Compute output with binarize(w)
e Stochastic rounding; applies hard sigmoid
e Backward. Compute gradients in full-precision
 Update. Update full-precision weight w
e Straight-through estimator
o Apply clipping to [-1,+1]; prevents w from growing endlessly

e Binarization noise Is deemed independent and zero-mean

e cancels out eventually

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurlPS 2015

Algorithm 1 SGD training with BinaryConnect. C' is the cost function for minibatch and the func-
tions binarize(w) and clip(w) specify how to binarize and clip weights. L 1s the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w;_1 (weights) and b;_; (biases),
and learning rate 7.
Ensure: updated parameters w; and b;.
1. Forward propagation:
wp «— binarize(w;_1)
For k = 1 to L, compute a; knowing a;_1, wp and b;_1
2. Backward propagation:

Initialize output layer’s activations gradient aCL
For k = L to 2, compute 885 - knowing 5 8C and wy

3. Parameter update:

8(7 oC o OC
Compute 57~ and z~=— knowing 7= and a1
5C
Wi — chp(wt 1= N5e,)

oC
by «— by_1 — Now, ;

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurlPS 2015

Observations

 Requires much longer training than full-precision

e Interestingly, advantages in generalization

TRAINING CURVES

25.00%

20.00%

15.00%

10.00%

2.00%

VALIDATION ERROR RATE (%)

0 20 100 150 200 250 300 350 400 450 200
EPOCH
— — STOCHASTICBINARYCONNECT — —NOREGULARIZER — —DETERMINISTICBINARYCONNECT

Courbariaux et al., “BinaryConnect: Training Deep Neural Networks with binary weights during propagations” NeurlPS 2015

e Binarizes both W&A

e Keeps both WE&A in full-precision as well

2016 work

e Uses hard-sigmoid as activation function, with additional binarization

e Gradients for activations outside [-1,+1] is set to zero

e Empirically works well, rather than being well-justified

s

0.8 1

0.0 A

0.4 1

U.2

0.0 4

- Hard Sigmoid

Sigmoid

0

d 10

{ 0.25 4

{ 0.20 1

0.15 -

0.10 -+

| 0.0 ¢

C 0.00 4

F

Sigmoid

. = Hard Sigmoid

. | \.

0

10

Hubara et al., “Binarized neural networks” NeurlPS 2016

Limitation
o Keeps track of full-precision W&A
e Much memory cost

 Requires full-precision gradient

e Weak computation advantage during backward

XNOR-Net

e Introduces scaling factor to the forward binary operation

 This change force us to update weights greater than 1, as well.

* BNN. Forward: r, = sign(r;)
Backward: g’i = gri]lmlgl-

 XNOR-Net. Forward: r, = sign(r;) X Ep(|r;)
Backward: 5:2 = 88:0

Rastegari et al, “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks” ECCV 2016

DoReFa-Net

 Generalizes the iIdea to binarizing gradients as well

e Unlike activations, gradients are unbounded

 Thus perform quantization with normalization factors

- d)
fﬁ(dr) = 2 maxg(|dr|) quantizek[zmaxs(‘drr') | ; - N (k)] — 1)

e Here, N(k) is a uniform noise which compensates for any bias due to
gradient quantization

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients” arXiv 2016

Further readings

e This line of work has been followed-up by BitNet, in the context of LLMs
e https://arxiv.org/abs/2310.11453

https://arxiv.org/abs/2310.11453

FP16/FP8 training

Background

e Concerns regarding “will fixed-point scale up?”
 ImageNet-scale experiments

e Applications to language modeling

e Solution. Use floating point?

 NVIDIA & Baidu worked on extending the idea to FP16

FP16 Training (NVIDIA ver.)

e Weights are also kept in FP32, but not others

e Reason. Weight updates will be too small, when multiplied with LR

[floachaIf

W

> Weights LR

)

Activations —

Activation Grad BWD-Actv Weights
Activation Grad

Weight Grad Fi16 (BWD Welght Activations
t Activation Grad

F16{ FWD e Activations

Master-Weights (F32)

F32 {Welght Updatew| F32 -> Updated Master-Weights

25.0%

20.0%

-
"
o
4

Percentage of total gradients
=
o
o
2

5.0%

0.0%

Weight Gradient

- Become zero in FP16

-40

-30

-20 -10 0
Exponent value

Micikevicius et al., “Mixed Precision Training” ICLR 2018

Percentage of all activation gradient values

64

16

1/4
1/8
1/16
1/32
1/64
1/128
1/256

1/512

FP16 Training (NVIDIA ver.)

e Also, we cannot use the same dynamic range for weights and gradients

e Many gradients have very small values

» Solution. Scale up the loss (x8), so that the gradient become larger

FP16 Representable range

Become zero in FP16 FP16 denorms

5

0 -75-60-45-40 -38-36-34-32-30 -28-26-24-22-20-18-16-14 -12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16

log,(magnitude)

5.0
4.5
4.0 -
3.5 -
30 -
—F32
—— Mixed precision, loss scale 1
’ s — Mixed Precision, loss scale 128
0K 500K

3.1

30

29 .

e
/'NJ ki

'h'u

Ll g |6y AT

2.8
2.7

26
1,250K 1,350K 1,450K 1,550K 1,650K 1,750K 1,850K 1,950K

1,000K 1,500K 2,000K

Figure 5: bigLSTM training perplexity

Micikevicius et al., “Mixed Precision Training” ICLR 2018

Further readings

* Intel concurrently studied INT16 training (ICLR 2018):
e https://arxiv.org/abs/1802.00930

https://arxiv.org/abs/1802.00930

FP8 Training (IBM ver.)

e |IBM introduced FP8 format (E5M2)
e Accumulation in FP16 (E6GM9); still a “master copy” of weights

o AXPY (vector addition; y = ax + y) done in FP16

weight decay

' _FP8 FP8 '
ivationt — — ivationt*2 || === e -- -
Activation’ — ? E — Activation : o o I
: | FP16 .
Fpg Forward GEMM : ! 6'9 FP16, Weight
R L £ | welght | Gradient

Wweightt—™—™_ 1 __ _A#F¥:Regularization
FP8
f = -] - —————— *momentum learning rate
| FP16 ' —
, _FP8 FP8 | |

Errort < Z — Errort+1 FP16 FP16 |
: kward | Momentum ||:p15 :
________DBackward GEMM , Gradient r .

|

AXPY: Momentum

) EN N R | R K
 ppg P16 FP8 FPg | FP16 | ‘
Weight Gradient! «—— ch - , FP16 FP16! '

> Weight
: Gradient GEMM | (a) AXPY: Weight update i ’ (b)
— S em» sw» swe swn ewn e e eww ewn ewn ewn swe eenm ewn ewe e e 'L-_-_-_-_-_-_-_-_-_-_-_-

Figure 2: A diagram showing the precision settings for (a) three GEMM functions during forward
and backward passes, and (b) three AXPY operations during a standard SGD weight update process.

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018

FP8 Training (IBM ver.)

e Observation. “Swamping” happens a lot in DL
e Losing information when adding large + small FP values
e Especially problematic If:
e Adding a lot of non-zero mean values

e Some of the elements are extremely large

0 . dl d2 T dm—p dm p+1 dt—l dt
+ 0 . 0 0 v 0 €1 €9 .o et_(m_p)
0 dl d2 dm—p fm p+1 °°° ft—l ft

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018

e Solution. Chunk-based accumulation

FP8 Training (IBM ver.)

e Generate partial sums to avoid scale mismatch

e DON'T:
e al=al+ a2
e al=al+ a3
e al=al + a4
e DO:
e al=al+ a2
e ad=a3 +a4d
e al=al + a3

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018

FP8 Training (IBM ver.)

e Solution. Stochastic rounding

* Rounded-off values (least significant bits) give chance of rounding up,
Instead of simply being truncated

e For floating-point, rounding the value x = s - 2° - (1 + m) is done by:

m— |m]

s-2°-(1+|m|l+e) w.p.
Round(x) = :

s-2¢-(1 + |m]|) w.p. 11—

m— |m]

€

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018

FP8 Training (IBM ver.)

e Use Chunking for GEMM, and SR for AXPY

 AXPY Is done over data batches; no hierarchical aggregation doable

[——
—
--—----_

18000 ChunkSize=8 SR——»
16000 L ol

o 14000
12000
10000
38000
6000
4000
2000

0 ! l ! ! l | | l l I
(b) 16 4096 8176 12256 16336

Accumulation Length

Accumulation Valu

Wang et al,, “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018

FP8 Training (IBM ver.)

e Other details. No quantization for Ist and the last layer

100 _ 100 100
—FP32 Baseline —FP32 Baseline —FP32 Baseline
=—Wui: FFd, Ace: Fr10, Update: FP16 —Mult: FP8, Acc: FP16, Update: FP16 —Mult: FP8, Acc: FP16, Update: FP16
80 80
= = <
= 60 ‘8’ 60 <
o - O
2 £ Cifarl0 ResNet | ©
w (11 w
¥ 40 % 40 b
Q Q Qo
= — =
20 20
0 0 20
20 40 60 _ 80 100 120 5 10 15 20 25 30 35 40 45
Epoch
100 100 :
—FP32 Baseline —FP32 Baseline —FP32 Baseline
90 —Mult: FP8, Acc: FP16, Update: FP16 90 —Mult: FP8, Acc: FP16, Update: FP16 —Muit: FP8, Acc: FP16, Update: FP16
80 80 _
= 70 < 70 <
o S c
= 60 4 60 L]
B 50 B 50 [
o
- - =

40

*I BN50_DNN *I ResNet18

20 5 10 15 20 < 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Epoch Epoch Epoch

Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers” NeurlPS 2018

Follow-ups

e [ater work from IBM uses E4AMS3 for forward and E5M2 for backward

e \Works better on MobileNetV2 and Transformers

https://papers.nips.cc/paper_files/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html

e Also much discussions on BatchNorm
e Similar findings by Graphcore
e https://arxiv.org/abs/2206.02915

e See also 2023 work: https://openreview.net/forum?id=nErbvDkucY

* More discussions on loss scaling — per-tensor scaling

Sun et al., “Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks” NeurlPS 2019

Noune et al, “8-bit Numerical Formats for Deep Neural Networks,” arXiv 2022
Perez et al., “Training and inference of large language models using 8-bit floating point,” WANT workshop @ NeurlPS 2023

https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://arxiv.org/abs/2206.02915
https://openreview.net/forum?id=nErbvDkucY

Follow-ups

 NVIDIA, ARM, and Intel proposes an interchange format of EAM3 and ESM2:
e https://arxiv.org/abs/2209.05433

e Conducts extensive empirical study, showing that FP8 is stable enough

126M BF16 1.3B BF16 5B BF 16 22B FP16 1758 BF16
e 126MFP8 == e=1 3B FP8 e a= 55 FP3 o e)78 FP8 e «=1/56 FP8
' =
i i !
n
)
1
AN
s - -
AR -~ - =
..]_J
a iy
2 W
S
ohn
AR
= | i P
A Uttt T
F \\"_nn,,.,. —— T ceccceceew.
‘\J --------------
e TS, ccccc———-

% of Training

Figure 1: Training loss (perplexity) curves for various GPT-3 models. x-axis i1s normalized number of iterations.

Micikevicius et al, “FP8 formats for deep learning,” arXiv 2022

https://arxiv.org/abs/2209.05433

Follow-ups

e Microsoft applies FP8 on all pipeline: including parallelism & optimizer

e https://arxiv.org/abs/2310.18313

* Precision decoupling: Reduced precision for insensitive weights

e Automatic scaling:

20 40 60 80 100 0 20 40

60 80 100

4.00

3.75 44
wn a
2 3.50
- 3.25 -
g’ 3.00 -
£ 2,751
©
= 2.50 4
2.25

2.00

Per-tensor scaling of loss

0

5 10 15 20 25 30 35 40

Billions of Tokens Billions of Tokens Billions of Tokens
(a) GPT-7B (b) GPT-13B (c) GPT-175B
HS Lambada BoolQ PIQA COPA Winogrande Arc-C Arc-E ODbQA Avg
GPT-7B model zero-shot performance

BF16 61.3 61.4 61.2 75.0 79.0 58.5 32.9 59.7 364 584
FP8 60.0 61.8 62.0 74.2 78.0 59.8 32.9 58.7 346 58.0

GPT-13B model zero-shot performance
BF16 64.8 64.9 63.4 75.9 82.0 61.0 35.2 61.5 40.6 61.0
FP8 64.1 63.4 63.9 76.2 81.0 61.6 34.9 61.3 36.8 60.4

Peng et al

. "FP8-LM: Training FP8 Large Language Models,” arXiv 2023

https://arxiv.org/abs/2310.18313

Follow-ups

e DeepSeek-V3 applies EAM3 for all ops

 Combine with fine-grained quantization (and many other details)
https://arxiv.org/abs/2412.19437

To FP8
Fprop / Wgrad \

\ To FP8 To BF16 { J O Weight

(Input) o z Gradient
BF16 _ FP32 _ FP32 FP32 7o
BF16

. To FP8 [Master 10 FP32 [Optimizer

[Weight } | Weight } | States

Gradient | Gradient |

__FP32 J BF16

DeepSeek-Al, “DeepSeek-V3 Technical Report,” arXiv 2024

https://arxiv.org/abs/2412.19437

Takeaways

e Both families are seeing much progress nowadays

* PTQ. Any lessons to learn from SOTA techniques?

e QAT. Similar ideas applicable for QAT?

e We'll see more In the student presentations...

That's it for today (-

