
2025.05.07.

Computer Science and Engineering

POSTECH

Quest: Stable Training of LLMs with
1-Bit Weight and Activation

2

Introduction

▪ PTQ is the most dominant method for LLM inference quantization.

▪ PTQ: Find the optimal quantization step size based on the statistical feature of pretrained weight.

▪ QAT: Get an accurate discrete approximation of weight by optimizing parameters.

▪ For LLM Inference Quantization, PTQ is the most popularly researched scheme.

(SmoothQuant, GPTQ, AWQ, OWQ, etc…)

SmoothQuant OWQ

Lee et al., “OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models”

Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models”

3

Introduction

▪ Why PTQ and not QAT so far?

▪ Generally, PTQ is faster and shows less computation than QAT.

▪ So far, QAT shows high training costs and unstable convergence problems.

▪ Kumar et al.(2024) insist that the current SOTA QAT shows the optimal points on 8-bit quantization.

Kumar et al., “Scaling Laws for Precision”

4

Introduction

▪ Restriction of PTQ

▪ For hardware support for multiplication, both weight and activation extends down to 4-bit.

▪ However, sota PTQ method still far from recovering full accuracy on W4A4

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs ”

QuaRot: W4A4, W8A8 results

5

Introduction

▪ QAT has an apparent strength in accuracy.

▪ In the vision model, QAT outperformed the PTQ method due to its characteristics,

"learn the optimal step size that effectively reflects the input’s distribution”.

The goal of this paper:

1. Overcome the Pareto-optimal bit-width(8-bit) of LLM-QAT method.

2. Achieve the super-low bit-width (1-bit) quantization without large errors in LLM.

6

Background

▪ QAT

▪ Use ‘fake quantization’ operation to train quantization effects

Jacob et al., “Quantization and Training of Neural Networks for Efficient Integer -Arithmetic-Only Inference”

“Fake Quantization”

7

Background

▪ QAT

▪ Use ‘fake quantization’ operation to train quantization effects

▪ Clipping is not-differentiable, so use STE to get gradient.

Continuous-to-Discrete tensor fitting

Relying on STE, QAT learn the appropriate quantization

8

Background

▪ Hadamard Matrix

▪ Hadamard Matrix: Orthogonal, all elements are +1 or -1

▪ Inverse Hadamard matrix is transpose of itself

9

Background

▪ Hadamard Transformation

▪ Matmul with Hadamard Matrix, vector goes to Hadamard domain (linear transformation)

▪ Few works report that “Hadamard Transformation leads weight distribution match to Gaussian”

Suresh et al., “Distributed mean estimation with limited communication”

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs ”

10

Background

▪ Hadamard Transformation

▪ Matmul with Hadamard Matrix, vector goes to Hadamard domain (linear transformation)

▪ Few works report that “Hadamard Transformation leads weight distribution match to Gaussian”

▪ Adbantages

▪ Inverse matrix is transpose of itself -> Easy to calcultate inverse matrix

▪ Hadamard multiplication is supported by hardware

▪ Hadamard domain distributes outlier, which is quantization-friendly

11

Method

▪ Minimizing the quantization error of gradients.

▪ QAT: Approximate the discrete weight by optimizing

parameters relying on STE.

▪ However, it is difficult due to misalignment between

discrete weight’s gradient and continuous weight’s

gradient.

▪ Solution: Selective gradient masking.

▪ Big update for small quant error weight element.

▪ Small update for large quant error weight element.

▪ Update based on Discrete Mask of weight and

activation.

12

Method

▪ Forward: Hadamard Preprocessing

▪ Large quant error elements (𝑆𝑙𝑎𝑟𝑔𝑒) should be eliminated

as many as possible for stable convergence.

▪ 𝑆𝑙𝑎𝑟𝑔𝑒 is generally shown outlier values.

▪ Suppress and mitigate the outlier value by Hadamard

Transformation.

Kim et al., “HOT: Hadamard-based optimized training”

13

Method

▪ Forward: Gaussian Fitting

▪ More strongly normalize the distribution of tensor

via root mean square(RMS) normalization.

▪ Align the distribution of tensor to 𝒩 0,1 .

▪ Find the quantization step size 𝛼∗ to minimize the

L2 error resulting from 𝒩 0,1 .

14

Method

▪ Backward: Trust Gradient Estimation

▪ Element-wise product the mask resulting from the

tensor’s Gaussian Fitting with gradient.

▪ Conduct Inverse Hadamard Transformation (IHT)

▪ Return to original space from Hadamard space.

▪ Discrete mask is converted to a continuous

domain via IHT.

▪ 𝑆𝑙𝑎𝑟𝑔𝑒 elements can participate the subtle

gradient update, so can make the convergence

more stable.

15

Method

▪ Algorithm of QuEST

Hadamard Preprocessing

Gaussian Fitting

Trust Gradient Estimation

16

Experiment

▪ LLM experiment Setup

▪ Llama-family model (30M ~ 800M)

▪ Pretraining C4 dataset

▪ each model trained by (Free param * 100) token, regardless of precision

▪ Ex : 100M model : 10B tokens

▪ Optimizer : AdamW

▪ Lr scheduler : Cosine decay, 10% warm up

▪ Gradient clipping : threshold 1.0

▪ Weight decay : decoupled, 0.1

17

Experiment

▪ Comparison to Prior QAT Method.

▪ Target : PACT, LSQ

▪ 30M model, 3B token W4A4

18

Experiment

▪ Comparison to Prior QAT Method.

▪ Target : PACT, LSQ

19

Experiment

▪ LLM experiment result

▪ Llama-family model (30M, ~ 800M)

▪ Pretraining C4 dataset

▪ Demonstrate that:

▪ Stable training in W1A1

▪ W4A4 has Pareto-dominant relative to BF16

20

Experiment

▪ Scaling laws:

▪ Hoffman et al.(2022)

▪ Loss can be modeling using the following parametric form:

▪ N: number of model param

▪ D: number of training tokens

▪ A, B, E, α, β : Empirical coefficients fitted from data

21

Experiment

▪ Scaling laws

▪ To model quantized training, the original formula is

extended to account for precision P:

▪ eff(P): Effective parameter multiplier for precision PP

▪ At P=16, eff(P)=1.0 recovers the original FP16 formulation

▪ the scaling law parameters (A, B, E, α, β, eff(P)) are fitted via Huber loss regression over
observed loss values across different (N,D,P)(N,D,P) combinations.

22

Experiment

▪ Extensions to Different Formats (FP4)

▪ QuEST is extended to FP4 by replacing the uniform

rounding operation with rounding to the FP4 grid scaled to

[− 1 , 1]

▪ The trust mask is adjusted based on the widest interval in

the FP4 grid.

▪ FP4 performs slightly worse than INT4 in terms of

parameter efficiency.

▪ This may be due to higher MSE when fitting Gaussian data

under clipping

23

Experiment

▪ Extensions to Different Formats (2:4 Sparsity)

▪ QuEST also supports sparse weights.

▪ During the forward pass: sparsify → quantize.

▪ During the backward pass: apply the trust mask as usual

▪ outperforms FP4 but is slightly less efficient than INT4.

24

Experiment

▪ Other variation: weight-only-quantization

▪ train 30–200M parameter models using only weight quantization at 1–4 bits.

▪ 2-bit weights are Pareto-optimal.

▪ 1-bit weights surprisingly outperform 3-bit in some cases.

25

Experiment

▪ Hadamard Transform Ablation

▪ Training remains stable across all bitwidths.

▪ W1A1 (1-bit weights & activations) underperforms compared to BF16.

▪ W4A4 remains Pareto-optimal, suggesting the Hadamard step improves efficiency

but does not change scaling laws.

26

Experiment

▪ GPU Execution for QuEST Models (Layer wise, left)

▪ For the 800M model:

▪ Up to 1.2× speedup on the smallest layers (with Hadamard)

▪ Up to 2.4× speedup on the largest down-projection layer (without Hadamard)

▪ Hadamard overhead reaches up to 30% on the down-projection layer

▪ For the 7B model: 2.3× to 3.9× speedups due to larger compute per layer.

27

Experiment

▪ GPU Execution for QuEST Models (end to end , right)

▪ QuEST kernels demonstrate a 1.3× to 1.5× speedup over the BF16 baseline.

28

Discussion & Limitation

▪ Unclear effect of scaling after Hadamard Transform

▪ HT already mitigates outliers; further Gaussian scaling may yield limited additional

benefit

▪ Gradient masking strategy lacks broader comparison

▪ QuEST favors large updates to low-error weights

▪ Competing methods (e.g., INT4 Transformer) use random masking for unbiased

updates

▪ No comparison with Post-Training Quantization (PTQ)

▪ Cost–performance trade-offs between QAT vs. PTQ not addressed

▪ Performance gains over PTQ methods remain unquantified

▪ Limited to small-scale models

▪ Largest model tested is 800M; scalability of QAT to LLMs (>7B) remains uncertain

29

Thank you.

	Slide 1: Quest: Stable Training of LLMs with 1-Bit Weight and Activation
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Background
	Slide 7: Background
	Slide 8: Background
	Slide 9: Background
	Slide 10: Background
	Slide 11: Method
	Slide 12: Method
	Slide 13: Method
	Slide 14: Method
	Slide 15: Method
	Slide 16: Experiment
	Slide 17: Experiment
	Slide 18: Experiment
	Slide 19: Experiment
	Slide 20: Experiment
	Slide 21: Experiment
	Slide 22: Experiment
	Slide 23: Experiment
	Slide 24: Experiment
	Slide 25: Experiment
	Slide 26: Experiment
	Slide 27: Experiment
	Slide 28: Discussion & Limitation
	Slide 29

