Quest: Stable Training of LLMs with
1-Bit Weight and Activation

2025.05.07.

Computer Science and Engineering
POSTECH

POSTERPLCH

Introduction

= PTQis the most dominant method for LLM inference quantization.
= PTQ: Find the optimal quantization step size based on the statistical feature of pretrained weight.

= QAT: Get an accurate discrete approximation of weight by optimizing parameters.

= For LLM Inference Quantization, PTQ is the most popularly researched scheme.

(SmoothQuant, GPTQ, AWQ, OWQ, etc...)

X X7 Hg -
Original: Abs Max SmoothQuant: * =& |
..... D S !
- 21 2|izi; 22240 500 Hossian H; =217 .
5 1 H 280 11]-1]1 a2 L1412 21, [4]4]4 e .
F2 2 P2 a2l 22 22 s G . |
282 98 -1 1iniiil[4 1 3 [333 I el
W s = y/max [X[/ max [W[W = diag(s)W V] Output ¥ = WX
Activation Outliers }
SmoothQuant owQ

Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models”

POSTERPCH Lee et al., “OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models”

Introduction

= Why PTQ and not QAT so far?

rPOSTERCH

Generally, PTQ is faster and shows less computation than QAT.

So far, QAT shows high training costs and unstable convergence problems.

Kumar et al.(2024) insist that the current SOTA QAT shows the optimal points on 8-bit quantization.

Final Val Loss

Scaling: Quantized Training

Training larger models in lower
precision can be compute optimal

3.233

FP4 FP6 FP8 BF16 FP32
(1.76B) (1.17B) (880M) (440M) (220M)

Training Precision (Model Size)

Kumar et al., “Scaling Laws for Precision”

Introduction

= Restriction of PTQ

= For hardware support for multiplication, both weight and activation extends down to 4-bit.

= However, sota PTQ method still far from recovering full accuracy on W4A4

Table 3: WikiText-2 Perplexity and zero-shot accuracy of QuaRot on the LLAMA-2 family using 4-
and 8-bits with Round-to-Nearest (RTN) weights and activation quantization. For zero-shot tasks, we
use PIQA (PQ), WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and
LAMBADA (LA). We quantize all weights, activations, and caches.

Model | Method Precision | PPL | | PQT WGT HST A-eT A-cT LAT Avg T |

| |
| | Baseline | FPI6 | 547 | 79.11 69.06 7599 7458 4625 7390 69.82 |
7B ROLRTN INT4 837 | 72.09 6069 6540 5888 3524 5727 5826
QuaRot- INTS 550 | 7894 6867 75.80 7479 4539 7433 69.65
| | Baseline | FPI6 | 3.32 | 8270 7798 8384 8098 5734 7958 77.07 |
08B QUARGLRTN INT4 414 | 80.69 75.14 7963 7757 5171 77.02 73.63
INTS 333 | 8297 7798 83.67 8077 58.11 7953 77.17

QuaRot: W4A4, W8AS8 results

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs ”

rPOSTELCH

4

Introduction

= QAT has an apparent strength in accuracy.

= |n the vision model, QAT outperformed the PTQ method due to its characteristics,

"learn the optimal step size that effectively reflects the input’s distribution”.

The goal of this paper:

1. Overcome the Pareto-optimal bit-width(8-bit) of LLM-QAT method.
2. Achieve the super-low bit-width (1-bit) quantization without large errors in LLM.

rPOSTELCH

Background

IQAT

= Use 'fake quantization’ operation to train quantization effects

“Fake Quantization”

conv
(a) Integer-arithmetic-only inference (b) Training with simulated quantization

Jacob et al., “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference”

rPOSTELCH

Background

IQAT

Use 'fake quantization’ operation to train quantization effects

Clipping is not-differentiable, so use STE to get gradient.

) clip(x, a
X=a- {p(’)“
Weigh r x Quantized Weight Q
(FP) Quantizer lfl (INT)
1 3% S e 5 ’ . 1 2
17| 36 : Jﬂ 12 [: 2 | 2
G STE /
01 | -01 0.1 |-01
2 -1 1 2
-0.2 | 0.2 -0.2 | 0.2
Gradient dL/dr / Gradient dL/dQ
(FP)

rPOSTELCH

\ (FP)

Continuous-to-Discrete tensor fitting

/'

)=
<
o ==

Relying on STE, QAT learn the appropriate quantization

Background

= Hadamard Matrix

= Hadamard Matrix: Orthogonal, all elements are +1 or -1

» |nverse Hadamard matrix is transpose of itself

Hl - [1]3
HE — 1 1 L] HI! =H1 E.'Hn—l-.
1 -1
1 1 1 1 My N
M® N = :
1 -1 1 -1 :
Hy = }
1 1 -1 -1
1 -1 -1 1 |

rPOSTELCH

MuN -

Background

= Hadamard Transformation

= Matmul with Hadamard Matrix, vector goes to Hadamard domain (linear transformation)

§=Hy-v,

= Few works report that “Hadamard Transformation leads weight distribution match to Gaussian”

Before QuaRot With QuaRot
-5 0.4 —— Min/Max
g —— 1/99 Percentile
-1 E 0.2 25/75 Percentile
g s g o TP,
=3 r=] '"-mﬂ A A YR S SN |
g uniform g T‘
20 taton | £ 0.2 | | | |
— variable <
-25 i i i i 1 —0_4
! 2Bil:s. per glmensio: ° ° ' ' ' ' ' ' '
0 1,000 2,000 3,000 4,000 0 1,000 2,000 3,000 4,000
Figure 1: Distributed mean estimation on data generated from a Gaussian distribution. Hidden dimension index Hidden dimension index

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs ”

Suresh et al., “Distributed mean estimation with limited communication”

rPOSTRCH

Background

= Hadamard Transformation

= Matmul with Hadamard Matrix, vector goes to Hadamard domain (linear transformation)

§=Hy-v,

= Few works report that “Hadamard Transformation leads weight distribution match to Gaussian”

= Adbantages
= |nverse matrix is transpose of itself -> Easy to calcultate inverse matrix
= Hadamard multiplication is supported by hardware

» Hadamard domain distributes outlier, which is quantization-friendly

rPOSTRCH

10

Method

= Minimizing the quantization error of gradients.

= QAT: Approximate the discrete weight by optimizing

parameters relying on STE.

= However, it is difficult due to misalignment between
discrete weight's gradient and continuous weight's

gradient.

= Solution: Selective gradient masking.

» Big update for small quant error weight element.

= Small update for large quant error weight element.

= Update based on Discrete Mask of weight and

activation.

rPOSTELCH

H Vol — Vel Hz @)

Let us define the quantization error for each entry wy as
err, = | wE — Wy | We can partition the weight indices
k based on whether the quantization error errj, is smaller or
larger than some “trust factor” threshold 7'. Denote:

Sqman = {k‘ rerrg < T}, S]arge = {k Derry > T}.

Then, the squared gradient difference in (2) decomposes as:

> (VwLli — VaLi)’H > (VwLle — VaLi)?.

fessmall ke Slarge

>

(*) (x2)

7

11

Method

= Forward: Hadamard Preprocessing

rPOSTELCH

Large quant error elements (S;4-g¢) should be eliminated
as many as possible for stable convergence.

Siarge 1 generally shown outlier values.

Suppress and mitigate the outlier value by Hadamard

Transformation.

Xp, = proj,«|HT(x).

ils P
L
12~
0.9
0.6
0.3
0.0
400

1,100
Okep 150 " o

15 ™
124
0.9
0.6
0.3

0.0
400
300

>
200 &
100®

50
fOkloo 150
< 200 ©

Kim et al., “HOT: Hadamard-based optimized training” 12

Method

= Forward: Gaussian Fitting

Xy, = proj,..[HT(x).
= More strongly normalize the distribution of tensor h PIOJa ()
via root mean square(RMS) normalization.
= Align the distribution of tensor to N (0,1).
= Find the quantization step size a* to minimize the
N clip (x/RMS(x)| o*
L2 error resulting from N (0,1). X = o - RMS(x) - { p(x/ — (x))-‘ =
:= proj,.(x), where
. 2
cli Qo
o = argminE¢pr0,1 H£ —a- { P&,)-‘
a€R o 2

POSTECH 13

Method

= Backward: Trust Gradient Estimation

rPOSTRCH

Element-wise product the mask resulting from the

tensor’s Gaussian Fitting with gradient.

Conduct Inverse Hadamard Transformation (IHT)

Return to original space from Hadamard space.

Discrete mask is converted to a continuous -

domain via IHT.
Siarge €lements can participate the subtle
gradient update, so can make the convergence

more stable.

[HT

0

A

Xh

14

Method

= Algorithm of QUEST

Algorithm 1 QUEST Training Forward

, 1: Input: Input activations x, row-major weight w
Hadamard Preprocessing —alx, = HT(x)

: =+ proj, . X
Gaussian Fitting 4—/3“”"' Proj, Xp

4: wp, = HI'(w)
T\l = Proj,« Wh

7: Return: y, Xp, Wit Mo (Xn; Xp), | Mo (Wh; W)

Algorithm 2 QUEST Training Backward

1: Input: g—ﬁ, Xn, Why My« (Xh,; fih,), M- (Wh; VAVh)
oL OL &

© 9%, — oy Wh
Trust Gradient Estimation " = oL
<\3:\%= IHT (Ma* (Xh; Xh,) © afch)

. OL —=FTOT

© Bwn _ Xh By

. 8L _ @ dL

5. 9L = IHT (Ma* (Wh;Wp) @ awh)
dL L

6: Return: ox’ ow

POSTECH 15

Experiment

= LLM experiment Setup

rPOSTRCH

Llama-family model (30M ~ 800M)
Pretraining C4 dataset
each model trained by (Free param * 100) token, regardless of precision

= Ex: 100M model : 10B tokens

Optimizer : AdamW

Lr scheduler : Cosine decay, 10% warm up
Gradient clipping : threshold 1.0

Weight decay : decoupled, 0.1

16

Experiment

= Comparison to Prior QAT Method.

= Target : PACT, LSQ
= 30M model, 3B token W4A4

10 4.0

—— QuEST] —— QuEST
— 1LSQ — LSQ
97 —— PACT , —— BF16
—— BF16 389V \

W\W W“w M N\M

Loss
Loss

3.2 7

T T T T T T 3.0 T T

T T T
0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Step Step
(a) (b)

rPOSTECH 17

Experiment

= Comparison to Prior QAT Method.

rPOSTRCH

Target : PACT, LSQ

60

mm LSQ
5590 mmm QuEST 54.05

50 4
45 1

40

PPL

354

30

25

20 -

W4A4 W3A3 W2A2 WI1A1
Bitwidth Configuration

Figure 3. Perplexity (PPL) across bit-widths with QuEST vs. a
tuned variant of LSQ on a 30M model. QuEST leads to consistently
lower PPL, with the advantage growing with compression.

18

Experiment

= LLM experiment result
Llama-family model (30M, ~ 800M)
Pretraining C4 dataset

rPOSTELCH

Demonstrate that:

Stable training in W1A1
WA4A4 has Pareto-dominant relative to BF16

4.0

.
&~ QuEST W1Al
38V . - QuEST W2A2
16 . e ¢ QuEST W3A3
QUEST W4A4
34 o T —e— BFI6

C4 Val Loss

/

Ling
=)
)

2.4 ~ v ~
10 107 10
Memory, Mbit

Figure 1. The scaling law induced by QuEST when training Llama-
family models from 30 to 800M parameters on C4, with quan-
tized weights and activations from 1 to 4 bits, in the 100 to-
kens/parameter regime (higher compression uses proportionally
more data at fixed memory). QuEST allows for stable training at 1-
bit weights and activations (W1A1), and the QUEST W4A4 model

is Pareto-dominant relative to BF16, with lower loss at lower size.

19

Experiment

= Scaling laws:
= Hoffman et al.(2022)
= Loss can be modeling using the following parametric form:
L(N,D)=AN"*+BD P 4+ E,
= N: number of model param
= D: number of training tokens

= A, B, E, a, B: Empirical coefficients fitted from data

rPOSTRCH

20

Experiment

= Scaling laws

-4 QuEST W1Al

* To model quantized training, the original formula is 41 ; e OMESTW2A2
- 361 . e - QuEST W3A3
extended to account for precision P: QUEST W4A4
2 341 R N —e— BFI6
gig 3.2 ";::f"-.
>
>
A B © 3.0
L(N,D, P) = +E. .

(N -efi(P))e | DP

= eff(P): Effective parameter multiplier for precision PP

= At P=16, eff(P)=1.0 recovers the original FP16 formulation

= the scaling law parameters (A, B, E, a, B, eff(P)) are fitted via Huber loss regression over
observed loss values across different (N,D,P)(N,D,P) combinations.

POSTRCH 21

Experiment

= Extensions to Different Formats (FP4)

rPOSTRCH

QUEST is extended to FP4 by replacing the uniform
rounding operation with rounding to the FP4 grid scaled to

[-1,1]

hed
[

The trust mask is adjusted based on the widest interval in

C4 Val Loss

the FP4 grid.

N
[o%]

FP4 performs slightly worse than INT4 in terms of
parameter efficiency.

This may be due to higher MSE when fitting Gaussian data
under clipping

344

Fig
=
I

QuEST W4A4
QuEST 2:4 INT4
QuEST FP4

1
"-_"’),_
“'.‘_'.‘n.
Ul
..
o,
"A'_".

.__.".:s-.

Memory, Mbit

10

22

Experiment

= Extensions to Different Formats (2:4 Sparsity)

= QUEST also supports sparse weights.

= During the forward pass: sparsify - quantize.

3.4 L_'

= During the backward pass: apply the trust mask as usual | ‘

i
“‘-‘,.‘a,_'
A'.

QuEST W4A4
| A QuEST 2:4 INT4
@ QuEST FP4

hed
[

C4 Val Loss
=

= outperforms FP4 but is slightly less efficient than INT4.

N
[o%]

._'.".:s..

10’ 10
Memory, Mbit

POSTRECH 23

Experiment

= QOther variation: weight-only-quantization

= train 30—200M parameter models using only weight quantization at 1-4 bits.

= 2-bit weights are Pareto-optimal.

= 1-bit weights surprisingly outperform 3-bit in some cases.

3.6 -
.. * WIAILG
" .y o W2AI6
. o W3AI6
. RN WAA16
. -;,‘?..:
%4 —e— BFI6
3.0- "?'.\;\ N
N
2.8 - o
10? 10°
Memory, Mbit

rPOSTRCH

Experiment

= Hadamard Transform Ablation
* Training remains stable across all bitwidths.
= W1A1 (1-bit weights & activations) underperforms compared to BF16.
= WA4A4 remains Pareto-optimal, suggesting the Hadamard step improves efficiency

but does not change scaling laws.

4.00{ @~
"--‘:r‘\ --#- WIAI NO HT

3731 '."-3,} 4 WIAIL

3.50 4 ‘ Q';E?”.r; --#%- W2A2 NO HT
LRI e W2A2

5251 DR

3.00 - .

2.75 1

2,50 1
10? 10° 10°

Memory, Mbit

rPOSTRCH

Experiment

= GPU Execution for QUEST Models (Layer wise, left)
" For the 800M model:
= Upto 1.2x speedup on the smallest layers (with Hadamard)
= Upto 2.4x speedup on the largest down-projection layer (without Hadamard)
= Hadamard overhead reaches up to 30% on the down-projection layer

= For the 7B model: 2.3x to 3.9% speedups due to larger compute per layer.

INT4 vs BF16 Layer Speedup for Batch Size = 4096 on RTX 4090 End-to-End Prefill Speedup INT4 vs BF16 on RTX 4090
200M Model 7B Model 2.00
40 1.75 B NOHT wmem HT
35 mm MNOHT .
| mmm HT 1.30
30 =125
£25 3 1.00}-
320 7 0.75
ju
w15 0.50
1.0F 0.25
0.5 0.00
0.0

Number of Sequences (Sequence Length =512)

Q-EKV 0O GateUpDown QK-V O GateUp Down

rPOSTERCH

Experiment

= GPU Execution for QUEST Models (end to end, right)

= QuEST kernels demonstrate a 1.3x to 1.5% speedup over the BF16 baseline.

INT4 vs BF16 Layer Speedup for Batch Size = 4096 on RTX 4090

4.0
35
3.0

225
=

320

w15

1.OF

0.5
0.0

rPOSTERCH

800M Model

7B Model

s NOHT
Em HT

Q-K-V 0O Gate-Up Down

Q-K-V 0O Gate-Up Dowm

2.00
175
1.50
=125

2 1.00f

w075
0.50
025
0.00

End-to-End Prefill Speedup INT4 vs BF16 on RTX 4090

Em NOHT s HT

Number of Sequences (Sequence Length =512)

27

Discussion & Limitation

= Unclear effect of scaling after Hadamard Transform
= HT already mitigates outliers; further Gaussian scaling may yield limited additional
benefit
= Gradient masking strategy lacks broader comparison
= QuEST favors large updates to low-error weights
= Competing methods (e.g., INT4 Transformer) use random masking for unbiased
updates
= No comparison with Post-Training Quantization (PTQ)
= Cost—performance trade-offs between QAT vs. PTQ not addressed
= Performance gains over PTQ methods remain unquantified
= Limited to small-scale models

= Largest model tested is 800M; scalability of QAT to LLMs (>7B) remains uncertain

rPOSTRCH

28

rPOSTRCH

Thank you.

29

	Slide 1: Quest: Stable Training of LLMs with 1-Bit Weight and Activation
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Background
	Slide 7: Background
	Slide 8: Background
	Slide 9: Background
	Slide 10: Background
	Slide 11: Method
	Slide 12: Method
	Slide 13: Method
	Slide 14: Method
	Slide 15: Method
	Slide 16: Experiment
	Slide 17: Experiment
	Slide 18: Experiment
	Slide 19: Experiment
	Slide 20: Experiment
	Slide 21: Experiment
	Slide 22: Experiment
	Slide 23: Experiment
	Slide 24: Experiment
	Slide 25: Experiment
	Slide 26: Experiment
	Slide 27: Experiment
	Slide 28: Discussion & Limitation
	Slide 29

