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Agenda
• Last Class 

• Motivations 

• What to expect 

• Administrivia 

• Today 

• A brief recap of ML/DL 

• Inference cost? 

• Training cost?



Linear Models



Model
• Linear Model = Extremely simple neural net 

• e.g., linear regression, perceptrons, … 

• for an easy discussion, suppose that  (the value to be predicted)y ∈ ℝ1



Inference
• Question. How many computations do we need for an inference? 

 

• Which unit will you use?

̂y = w⊤x, x, w ∈ ℝd



Recap: FLOPs
• One option is to use FLOPs (Floating Point Operations) 

• 1 addition of floats = 1 FLOP 

• 1 multiplication of floats = 1 FLOP

Sign Exponent Fraction (a.k.a. Mantissa)

https://docs.nvidia.com/cuda/floating-point/index.html

https://docs.nvidia.com/cuda/floating-point/index.html


Inference (again)
 

• Answer. We need  FLOPs 

• We are performing an elementary operation  times: 

̂y = w⊤x, x, w ∈ ℝd

2d

d

s ← s + (wi × xi)



MAC / MAD
• Multiply and add (or accumulate) abstracted into a single operation 

 

• Rounding only done once; better precision 

 

a ← a + (b × c)

a ← rn(a + (b × c))

a ← rn(a + rn(b × c))



Example
• To see the importance of rounding, consider the following example:





TOPs
• Sometimes, you would see “TOPs” 

• Usually an umbrella term for (a trillion) INT8 / INT4 operations 
(here, “op” could mean a single fused multiply-adds)



Training
• Question. How many computations do we need for training? 

̂y = w⊤x, x, w ∈ ℝd



Training
• This is ill-posed, as we require more setup: 

• We have a dataset                 

• We use the squared loss      

• We solve the empirical risk minimization 

 

• Question. Can we answer the question now?

D = {(x1, y1), …, (xN, yN)}

ℓ(y, ̂y) = (y − ̂y)2

min
w∈ℝd

N

∑
i=1

(yi − w⊤xi)2 ⇔ min
w∈ℝd

∥y − w⊤X∥2
2



Training
• Not really! 

• It depends on the optimization method to solve: 

 

• Exact solution 

• Gradient descent

min
w∈ℝd

∥y − w⊤X∥2
2



Exact solution
• Exact solution can be found as 

 

• Here, dagger means Moore-Penrose pseudoinverse 

• Typically, computing the matrix inverse is quite costly 

•  FLOPs, where constants depend on “how” 
(tradeoff of numerical stability & computation)

w* = (X⊤X)†X⊤y

O(n3)



Gradient descent
• We’ll use gradient descent (does this make our life easier?) 

 

• For linear regression, this is: 

 

• Luckily, blue terms can be pre-computed, and thus negligible. 

• Q. What if we use SGD? 

• Q. Any sacrifice in memory?

w ← w − η ⋅ ∇L(w)

w ← (I − 2ηX⊤X)w + 2η ⋅ X⊤y



Per-iteration compute
• After pre-computing, we are doing simply 

 

• MV mults. Equivalent to computing dot products  times =  FLOPs 

• VV adds.  FLOPs 

• Brainteaser. Can you find a better way, if ?

w ← Aw + b, A ∈ ℝd×d, b ∈ ℝd

d 2d2

d

d ≫ N



Takeaways
• Many things affect the computational cost 

• Dataset size 

• Model size 

• Optimization algorithm 

• Number of iterations 

• Even worse, the optimal way to compute can vary 

• d vs N 

• Luckily, measuring the inference cost is relatively simple 😅



Neural nets



Neural nets
• A graph of layers 

• Each layer performs an elementary operation 

• Example. MLP



Example: Inceptionv3

https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=en

https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=en


Linear layer
• The simplest building block 

 

• Input  

• : Input dimension 

• : batch size 

• Weight  

• : output dimension 

• Activation function 

Y = σ(WX + b1⊤)

X ∈ ℝdi×n

di

n

W ∈ ℝdo×di

do

σ( ⋅ )



Linear layer
 

• Sequentially perform three operations 

• MM multiply 

• MM addition 

• Activation 

• Question. What is the heaviest?

Y = σ(WX + b1⊤)



Matrix multiplications
• Of course, the matmul 

• How many FLOPs for multiplying two matrices?



Matrix multiplications
• More broadly, GEMM (generalized matmuls) is at the center of deep learning 

comptuations 

• e.g., convolution, self-attention, gradient computation, … 

• A good reference: this NVIDIA doc 

• Question. Other than FLOPs, what should we care about?

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html


Memory issues
• Consider multiplying very large matrices 

• Suppose that we multiply two 4096x4096 matrices. 

• Question. If they are in FP32, how much memory do you need? 

• Can your L1 cache hold it? 

• Can your L2 cache hold it? 

• Need to care about data movement!



Memory issues
• DL HWs tend to have spacious memory & high memory bandwidths 

• Example. NVIDIA H100 has ~60MB L2 cache & 80GB GPU memory, 
                 connected with several TB/s bandwidths



Matmuls on GPUs
• On GPUs, matmuls are grouped into tiles. 

• Better utilization of cores and memory 

• Allows us to re-use loaded elements: 

• See also: link

https://marek.ai/matrix-multiplication-on-cpu.html


Side note: Tensor Cores
• To fully utilize tensor cores, pay attention to dimensions 

• Cannot get full benefits if dimensions are not regular.

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html


https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html


Memory vs. Compute
• Suppose that we have an MLP without biases 

• An overly simplified sketch for computing matmuls:



Memory vs. Compute
• Given limited on-chip memory, we can do a stupid thing: 

• A nightmare in terms of runtime 

• More money (cloud GPU) 

• More electricity (idle energy)



Memory vs. Compute
• With more spacious on-chip memory, we can be smarter (double buffering)



Bottleneck?
• Either can be the bottleneck 

• Compute-bound 

• Memory-bound 

• Depends on the hardware, model architecture, inference vs. training 

• Nice blog: link

https://horace.io/brrr_intro.html


Hardware
• Even with the same model, the runtime distribution differs a lot depending on 

which HW we use 

• Typically, GPUs spend much less time for compute

Ma et al., “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” ECCV 2018



Model architecture
• Consider the example of convolution 

• Parameter sharing, thus reduces the memory burden



Model architecture
• To map a  input to an output of the same size: 

• Saves  in parameters, and  in computations

d × d × c

d4 d2



Neural nets: Training



Training
• Much more complicated 

• Recap: Backprop 

• Re-uses the activations 
computed during the forward 

• Less computation 

• More memory

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/




Example
• Consider a two-layer MLP 

̂Y = W2σ(W1X)



Example
• Holding intermediate results in memory helps computing backward. 

• Sacrifice in memory 

• Advantages in computation



Example
• Note. We need 2x more computation for BW than FW 

• useful rule of thumb





Tradeoff
• Backprop trades memory for computation 

• Gradient Checkpointing. Trades less memory for less computational benefit. 

• Discard “some activations,” and re-materialize whenever needed 

• Visual explanation here: https://github.com/cybertronai/gradient-
checkpointing?tab=readme-ov-file

https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file
https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file
https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file


Vanilla Backprop



Memory-Poor
• If we can hold only three circles



With Gradient Checkpoints
• If we can hold slightly more circles



Remarks
• Discussion so far focuses compute vs. memory, in terms of runtime 

• Making AI faster 

• This is not necessarily aligned with other notions of “efficiency” 

• Making AI smaller (#params, #bits) 

• Making AI greener (energy usage) 

• Also, duration  latency  throughput 

• See excellent treatise on “the efficiency misnomer”

≠ ≠

https://arxiv.org/abs/2110.12894




Wrapping up
• Today. Recaps on basic ideas 

• Next. Sparsity 

• Ask yourself: 

• How does forward-mode autodiff compare with backward-mode, 
in terms of compute & memory? 

• How does depthwise convolution compare with vanilla? 

• How does Adam compare with SGD, in terms of memory? 

• How does GeLU compare with ReLU, in terms of memory during backprop?



That’s it for today 🙌


