Recap: Computations of DL

Spring 2025

Agenda

e |ast Class
e Motivations
e What to expect
e Administrivia
e Today
e A brief recap of ML/DL
e Inference cost?

e Training cost?

| iInear Models

Model

e Linear Model = Extremely simple neural net

e e.g., linear regression, perceptrons, ..

e for an easy discussion, suppose that y € |

Output prediction

M
(> —> w;x,=w-X
i=0

Input attribute values
2 =
Z S\

Inference

e Question. How many computations do we need for an inference?

o T

V=W X, x,w € R

e \WWhich unit will you use?

Recap: FLOPs

* One option is to use FLOPs (Floating Point Operations)
e] addition of floats =1FLOP

e 1 multiplication of floats =1FLOP

float
0O 01111110 .01010101010101010101011
Sign Exponent Fraction (a.k.a. Mantissa)

value = (sign) x 2@Pponenty w1 (fraction)

https://docs.nvidia.com/cuda/floating-point/index.html

https://docs.nvidia.com/cuda/floating-point/index.html

Inference (again)

- T

V=W X, X,WELd

e Answer. We need 2d FLOPs

e We are performing an elementary operation d times:

s — 5+ (w; XXx;)

MAC / MAD

e Multiply and add (or accumulate) abstracted into a single operation
a<—a+ (bXc)
e Rounding only done once; better precision

a < rn(a+(b><c))

Example

 Jo see the importance of rounding, consider the following example:

A =2'%1.00000000000000000000001
B =2"%1.00000000000000000000001
C = 2°x1.00000000000000000000001

A+B+C =2°%x1.0110000000000000000000101100...
rn(rn(A+B)+ C) = 2°x1.01100000000000000000010

rn(A+rnB+) = 2°x1.01100000000000000000001

& o Pl

AN

a3 b3 t=0

/ 33/‘ \b3 @ forifrom1to 4

@ t=0 7!2?%2 t=rn (a; X b; + t)

/ 4N for i from 1 to 4 @ return ¢

a2 b2
0 p = (a; X b;) R .
o t=rm(t+p) 04 b1 @ Fused multiply-add
al a2 return ¢

pl =rn (aj X by)
@ p2 = (a2 X b))

p3 =1 (a3 X b3)

p4 =1 (aqg X byg)
Sleft = (p1 + p2)
Sright = N (p3 + p4)

t = (Sleft + Sright)
al 4 \b1 a27‘ \bz a37‘ \b3 a47‘ \b4 return ¢

TOPs

e Sometimes, you would see “TOPs”

Al
Performance

GPU

GPU Max
Frequency

Jetson AGX Orin series

Jetsgrri\nAGX Jetson AGX
Developer Kit LNt
275 TOPS

Jetson AGX
Orin Industrial

248 TOPs

2048-core NVIDIA Ampere architecture GPU with 64

Tensor Cores

1.3 GHz

1.2 GHz

Jetson AGX
Orin 32GB

200 TOPS

1792-core
NVIDIA
Ampere ¢ GPU
with 56 Tensor
Cores

930 MHz

Jetson Orin NX series

Jetson Orin Jetson Orin
NX 16GB NX 8GB
157 TOPS 117 TOPS

1024-core NVIDIA Ampere
architecture GPU with 32 Tensor
Cores

1173MHz 1N173MHz

e Usually an umbrella term for (a trillion) INT8 / INT4 operations

Jetson Orin Nano series

;Zt::g:;:: Jetson Orin
Developer Kit 2L
67 TOPS 67 TOPS

1024-core NVIDIA Ampere
architecture GPU with 32 Tensor
Cores

1020MHz 1020MHz

Jetson Orin
Nano 4GB

34 TOPS

512-core

NVIDIA

Ampere
architecture
GPU with 16
Tensor Cores

1020MHz

Training

e Question. How many computations do we need for training?

T

w'x, x,w € R?

y

Training
e This is ill-posed, as we require more setup:
 We have a dataset D={X{,Y)---s Xpn» Y}

e We use the squaredloss Z(y,y) = (y —)A?)2

 \We solve the empirical risk minimization

N
min Z (v, — W'X,)* = min ||y — w'X]|5
weR - weR

e Question. Can we answer the question now?

Training
e Not really!

e |t depends on the optimization method to solve:

- Twv 112
min ||y — w XH2
weR?

e Exact solution

e Gradient descent

Exact solution

e Exact solution can be found as
wk = (X'X)' Xy

e Here, dagger means Moore-Penrose pseudoinverse

e Typically, computing the matrix inverse is quite costly

. 0(n3) FLOPs, where constants depend on “how”

Gradient descent

e We'll use gradient descent
W< WwW—7n-VL(W)
 For linear regression, this is:
weI-2nX"X)w+21-X'y
e Luckily, blue terms can be pre-computed, and thus negligible.

e Q. What if we use SGD?

e Q. Any sacrifice In memory?

Per-iteration compute

o After pre-computing, we are doing simply

w — Aw + b, A € R¥ p e R?

e MV mults. Equivalent to computing dot products d times = 2d?* FLOPs

e VV adds. d FLOPs

e Brainteaser. Can you find a better way, if d > N?

Takeaways

e Many things affect the computational cost
e Dataset size
e Model size
e Optimization algorithm
e Number of Iterations
e Even worse, the optimal way to compute can vary

e dvs N

* Luckily, measuring the inference cost is relatively simple &

Neural nets

Neural nets

e A graph of layers

e Each layer performs an elementary operation

e Example. MLP

Input Layer Hidden Layer 1 Hidden Layer2 Output Layer
784 128 64 10

‘ (relu) (relu) (softmax)

ORXSTNTN T N i,
g ”“'0“ '(' ® |

WKL
KK)om o»m»
LSRRI K>
S
9

v O
PRINGNG

Example: Inceptionv3

Input: 299x299x3, Output:8x8x2048

Convolution Input: guép;:m .
299x299x3 XOX
: :ﬂ‘g‘:’%ﬂ / Final part:8x8x2048 -> 1001
sm Concat /
#» Dropout -
#» Fully connected /
& Softmax

https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=en

https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=en

Linear layer

 The simplest building block
Y = 6(WX + b17) A

° Ian’It X E \- dl-XI’l éff

e d;:Input dimension

5
Input SR Output
e n: batch size Neurons ;_:'_'_’;;(f:_"jif.;;.'j;:'j,\--'f:_:.'.'_"f,-o:;j,;. Neurons
:

o« Weight W € R%X4 O
* d,: output dimension N *'.

e Activation function o(-)

Linear layer

Y =c(WX +bl')
e Sequentially perform three operations
e MM multiply
« MM addition

e Activation

e Question. What is the heaviest?

Matrix multiplications

e Of course, the matmul

e How many FLOPs for multiplying two matrices?

m

Matrix multiplications

* More broadly, GEMM (generalized matmuls) is at the center of deep learning
comptuations

e e.g., convolution, self-attention, gradient computation, ...

A good reference: this NVIDIA doc

e Question. Other than FLOPs, what should we care about?

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Memory issues

e Consider multiplying very large matrices
e Suppose that we multiply two 4096x4096 matrices.

e Question. If they are in FP32, how much memory do you need?

e Can your L1 cache hold it?

Central Processing Unit

e Can your L2 cache hold it?
Control Unit
| Arithmetic/Logic Unit |

e Need to care about data movement!

Memory Unit

Memory issues

e DL HWs tend to have spacious memory & high memory bandwidths

e Example. NVIDIA HIOO has ~6OMB L2 cache & 80GB GPU memory,
connected with several TB/s bandwidths

Core Con Core Con

trol trol
L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache
L2 Cache

DRAM

CPU GPU

Matmuls on GPUs

e On GPUs, matmuls are grouped into tiles.

e Better utilization of cores and memory

e Allows us to re-use loaded elements:

B - e I

e See also: link

https://marek.ai/matrix-multiplication-on-cpu.html

Side note: Tensor Cores

e Jo fully utilize tensor cores, pay attention to dimensions

e Cannot get full benefits if dimensions are not regular.

cuBLAS version< 11.0 cuBLAS version211.0
Tensor Cores can be used for... , _
CuDNN version < 7.6.3 cuDNN version 2 7.6.3
INTS8 Multiples of 16 Always but most efficient with multiples of

16; on A100, multiples of 128.

FP16 Multiples of 8 Always but most efficient with multiples of
8; on A100, multiples of 64.

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Duration (ms)

Performance of NN GEMM on cuBLAS v10
with M = 1024, N = 1024

0.20

0.15

0.10}

0.05

0.00 e
1008 1012 10K16 1020 1024

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Memory vs. Compute

e Suppose that we have an MLP without bilases

 An overly simplified sketch for computing matmuls:

1. Load W, on cache

2. Compute X; = o(W.X._,)
3. Store X; on cache
4. Repeat 1-3.

Memory vs. Compute

e Given limited on-chip memory, we can do a stupid thing:

Load W, Load W._,

———
Time

e A nightmare in terms of runtime
 More money (cloud GPU)

e More electricity (idle energy)

Memory vs. Compute

e With more spacious on-chip memory, we can be smarter (double buffering)

Currently X._, and W, on cache

1. Compute X; = o(W;X;_;) + Load W, on other cache

2. Store X on cache
3. Repeat 1-2.

Load W, Load W, Load W, _,

——
Time

Bottleneck?

e Either can be the bottleneck
e Compute-bound
e Memory-bound

e Depends on the hardware, model architecture, inference vs. training

* Nice blog: link ff

| ANWAN
Me,mw‘ y C,OVH]DWIZ&

https://horace.io/brrr_intro.html

Hardware

e Even with the same model, the runtime distribution differs a lot depending on
which HW we use

* Typically, GPUs spend much less time for compute

Other Other Flemwise Other Data . Other Data
Elemwise 10% Plshiate 1% 4 8% 1% Elemwise) 0,

10.5% 0.3%
15% 23% Shuffle
0%

ShuffleNet V1 on GPU MobileNet V2 on GPU ShuffleNet V1 on ARM MobileNet V2 on ARM

Shuffle
5%

Fig.2: Run time decomposition on two representative state-of-the-art network archi-
tectures, ShuffeNet v1 [15] (1x, g = 3) and MobileNet v2 [14] (1x).

Ma et al., “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” ECCV 2018

Model architecture

e Consider the example of convolution

e Parameter sharing, thus reduces the memory burden

Model architecture

e To map ad X d X c input to an output of the same size:

Option 1) Fully-connected Layer

Params. Requires cd* parameters.
Compute. Requires 2¢*d* FLOPs

Option 2) Convolutional layer (3 X 3)

Params. Requires 9c? parameters
Compute. Requires 18¢?d? FLOPs

e Saves d* in parameters, and d? in computations

Neural nets: Training

Training

e Much more complicated forward
e Recap: Backprop

e Re-uses the activations
computed during the forward

e Less computation

e More memory

backward

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

RuntimeError: CUDA out of memory. Tried to allocate 200.00 MiB (GPU ©; 15.78 GiB total
capaclity; 14.56 GiB already allocated; 38.44 MiB free; 14.80 G1B reserved 1n total by

PyTorch) If reserved memory 1is >> allocated memory try setting max split size mb to avoid

fragmentation. See documentation for Memory Management and PYTORCH CUDA ALLOC CONF

Example

e Consider a two-layer MLP

A\

Y — Wzg(WIX)

Forward FLOPs Backward FLOPs

Example

 Holding intermediate results iIn memory helps computing backward.

e Sacrifice In memory

 Advantages in computation

Forward FLOPs Backward FLOPs

Example

e Note. We need 2x more computation for BW than FW

e useful rule of thumb

Forward FLOPs Backward FLOPs

FLOP backward-forward ratios

ST L L L T T T T T OTOT OTCOUTCOUTTOTOUTTOUTYTOUTNTOUNOUTNTNOUTTONTOOUTNOTTOTOTOTOTOTCOUTNOTOTOTIOUTTOUTOUTNTNOUTTOUNTONOOTOTNTOUTNTOUTNTOONTOUTTOOTTYTOOTTOOTTOT YOO OTOOUTTOTOOTNNOTOTTNTIOTNTIOUTOUENTNIOTNTNOUTOUTNOUTOUTOTETETEIOTCOT

: o o

O + +

s 2 2

Cown

. - ~N N

(1

“ | I B

" | [S
L LJ m LJ
n n = n
™~ — — o

2.0 fmmmmm e e

o11eJ plemuioj-piemddeq

Tradeoff

e Backprop trades memory for computation
e Gradient Checkpointing. Trades less memory for less computational benefit.
e Discard “some activations,” and re-materialize whenever needed

e Visual explanation here: https://github.com/cybertronai/gradient-
checkpointing?tab=readme-ov-file

https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file
https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file
https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file

Vanilla Backprop

Memory-Poor

e |f we can hold only three circles

With Gradient Checkpoints

e |f we can hold slightly more circles

Remarks

e Discussion so far focuses compute vs. memory, in terms of runtime
e Making Al faster

e This Iis not necessarily aligned with other notions of “efficiency”
e Making Al smaller (#params, #bits)

* Making Al greener (energy usage)

e Also, duration # latency # throughput

o See excellent treatise on “the efficiency misnomer”

https://arxiv.org/abs/2110.12894

S @ o | . o
75 - ¢ .9 i 0@] I T~
1Y ® -® o .- ° . .9
S Rt : . .
ot DR
3 70 -9 - O - °®
O ¢ o o @ © e
< 65 R E—
O] o . :) O] @ ~® Jranstormer
= R % ¢ e
@60l _ | Switch Tr
P, O o . ,
= o< ; ~®- Universal Tr
N 55 - ‘0 |l @ - ‘
10 100 1000 1 3 10 30 03 05 1.0 3.0 5.0
Million Parameters TFLOPs msec/example

Figure 1: Comparison of standard Transformers, Universal Transformers and Switch Transformers in
terms of three common cost metrics: number of parameters, FLOPs, and throughput. Relative ranking
between models 1s reversed between the two cost indicators. Experiments and the computation of cost
metrics were done with Mesh Tensorflow (Shazeer et al., 2018), using 64 TPU-V3.

Wrapping up
* Today. Recaps on basic ideas

 Next. Sparsity

e Ask yourself:

e How does forward-mode autodiff compare with backward-mode,
INn terms of compute & memory?

e How does depthwise convolution compare with vanilla?
e How does Adam compare with SGD, in terms of memory?

e How does GelLU compare with RelLU, in terms of memory during backprop?

That's it for today (-

