
Spring 2025

Recap: Computations of DL
EECE695D: Efficient ML Systems

Agenda
• Last Class

• Motivations

• What to expect

• Administrivia

• Today

• A brief recap of ML/DL

• Inference cost?

• Training cost?

Linear Models

Model
• Linear Model = Extremely simple neural net

• e.g., linear regression, perceptrons, …

• for an easy discussion, suppose that (the value to be predicted)y ∈ ℝ1

Inference
• Question. How many computations do we need for an inference?

• Which unit will you use?

̂y = w⊤x, x, w ∈ ℝd

Recap: FLOPs
• One option is to use FLOPs (Floating Point Operations)

• 1 addition of floats = 1 FLOP

• 1 multiplication of floats = 1 FLOP

Sign Exponent Fraction (a.k.a. Mantissa)

https://docs.nvidia.com/cuda/floating-point/index.html

https://docs.nvidia.com/cuda/floating-point/index.html

Inference (again)

• Answer. We need FLOPs

• We are performing an elementary operation times:

̂y = w⊤x, x, w ∈ ℝd

2d

d

s ← s + (wi × xi)

MAC / MAD
• Multiply and add (or accumulate) abstracted into a single operation

• Rounding only done once; better precision

a ← a + (b × c)

a ← rn(a + (b × c))

a ← rn(a + rn(b × c))

Example
• To see the importance of rounding, consider the following example:

TOPs
• Sometimes, you would see “TOPs”

• Usually an umbrella term for (a trillion) INT8 / INT4 operations
(here, “op” could mean a single fused multiply-adds)

Training
• Question. How many computations do we need for training?

̂y = w⊤x, x, w ∈ ℝd

Training
• This is ill-posed, as we require more setup:

• We have a dataset

• We use the squared loss

• We solve the empirical risk minimization

• Question. Can we answer the question now?

D = {(x1, y1), …, (xN, yN)}

ℓ(y, ̂y) = (y − ̂y)2

min
w∈ℝd

N

∑
i=1

(yi − w⊤xi)2 ⇔ min
w∈ℝd

∥y − w⊤X∥2
2

Training
• Not really!

• It depends on the optimization method to solve:

• Exact solution

• Gradient descent

min
w∈ℝd

∥y − w⊤X∥2
2

Exact solution
• Exact solution can be found as

• Here, dagger means Moore-Penrose pseudoinverse

• Typically, computing the matrix inverse is quite costly

• FLOPs, where constants depend on “how”
(tradeoff of numerical stability & computation)

w* = (X⊤X)†X⊤y

O(n3)

Gradient descent
• We’ll use gradient descent (does this make our life easier?)

• For linear regression, this is:

• Luckily, blue terms can be pre-computed, and thus negligible.

• Q. What if we use SGD?

• Q. Any sacrifice in memory?

w ← w − η ⋅ ∇L(w)

w ← (I − 2ηX⊤X)w + 2η ⋅ X⊤y

Per-iteration compute
• After pre-computing, we are doing simply

• MV mults. Equivalent to computing dot products times = FLOPs

• VV adds. FLOPs

• Brainteaser. Can you find a better way, if ?

w ← Aw + b, A ∈ ℝd×d, b ∈ ℝd

d 2d2

d

d ≫ N

Takeaways
• Many things affect the computational cost

• Dataset size

• Model size

• Optimization algorithm

• Number of iterations

• Even worse, the optimal way to compute can vary

• d vs N

• Luckily, measuring the inference cost is relatively simple 😅

Neural nets

Neural nets
• A graph of layers

• Each layer performs an elementary operation

• Example. MLP

Example: Inceptionv3

https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=en

https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=en

Linear layer
• The simplest building block

• Input

• : Input dimension

• : batch size

• Weight

• : output dimension

• Activation function

Y = σ(WX + b1⊤)

X ∈ ℝdi×n

di

n

W ∈ ℝdo×di

do

σ(⋅)

Linear layer

• Sequentially perform three operations

• MM multiply

• MM addition

• Activation

• Question. What is the heaviest?

Y = σ(WX + b1⊤)

Matrix multiplications
• Of course, the matmul

• How many FLOPs for multiplying two matrices?

Matrix multiplications
• More broadly, GEMM (generalized matmuls) is at the center of deep learning

comptuations

• e.g., convolution, self-attention, gradient computation, …

• A good reference: this NVIDIA doc

• Question. Other than FLOPs, what should we care about?

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Memory issues
• Consider multiplying very large matrices

• Suppose that we multiply two 4096x4096 matrices.

• Question. If they are in FP32, how much memory do you need?

• Can your L1 cache hold it?

• Can your L2 cache hold it?

• Need to care about data movement!

Memory issues
• DL HWs tend to have spacious memory & high memory bandwidths

• Example. NVIDIA H100 has ~60MB L2 cache & 80GB GPU memory,
 connected with several TB/s bandwidths

Matmuls on GPUs
• On GPUs, matmuls are grouped into tiles.

• Better utilization of cores and memory

• Allows us to re-use loaded elements:

• See also: link

https://marek.ai/matrix-multiplication-on-cpu.html

Side note: Tensor Cores
• To fully utilize tensor cores, pay attention to dimensions

• Cannot get full benefits if dimensions are not regular.

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Memory vs. Compute
• Suppose that we have an MLP without biases

• An overly simplified sketch for computing matmuls:

Memory vs. Compute
• Given limited on-chip memory, we can do a stupid thing:

• A nightmare in terms of runtime

• More money (cloud GPU)

• More electricity (idle energy)

Memory vs. Compute
• With more spacious on-chip memory, we can be smarter (double buffering)

Bottleneck?
• Either can be the bottleneck

• Compute-bound

• Memory-bound

• Depends on the hardware, model architecture, inference vs. training

• Nice blog: link

https://horace.io/brrr_intro.html

Hardware
• Even with the same model, the runtime distribution differs a lot depending on

which HW we use

• Typically, GPUs spend much less time for compute

Ma et al., “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” ECCV 2018

Model architecture
• Consider the example of convolution

• Parameter sharing, thus reduces the memory burden

Model architecture
• To map a input to an output of the same size:

• Saves in parameters, and in computations

d × d × c

d4 d2

Neural nets: Training

Training
• Much more complicated

• Recap: Backprop

• Re-uses the activations
computed during the forward

• Less computation

• More memory

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

Example
• Consider a two-layer MLP

̂Y = W2σ(W1X)

Example
• Holding intermediate results in memory helps computing backward.

• Sacrifice in memory

• Advantages in computation

Example
• Note. We need 2x more computation for BW than FW

• useful rule of thumb

Tradeoff
• Backprop trades memory for computation

• Gradient Checkpointing. Trades less memory for less computational benefit.

• Discard “some activations,” and re-materialize whenever needed

• Visual explanation here: https://github.com/cybertronai/gradient-
checkpointing?tab=readme-ov-file

https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file
https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file
https://github.com/cybertronai/gradient-checkpointing?tab=readme-ov-file

Vanilla Backprop

Memory-Poor
• If we can hold only three circles

With Gradient Checkpoints
• If we can hold slightly more circles

Remarks
• Discussion so far focuses compute vs. memory, in terms of runtime

• Making AI faster

• This is not necessarily aligned with other notions of “efficiency”

• Making AI smaller (#params, #bits)

• Making AI greener (energy usage)

• Also, duration latency throughput

• See excellent treatise on “the efficiency misnomer”

≠ ≠

https://arxiv.org/abs/2110.12894

Wrapping up
• Today. Recaps on basic ideas

• Next. Sparsity

• Ask yourself:

• How does forward-mode autodiff compare with backward-mode,
in terms of compute & memory?

• How does depthwise convolution compare with vanilla?

• How does Adam compare with SGD, in terms of memory?

• How does GeLU compare with ReLU, in terms of memory during backprop?

That’s it for today 🙌

