
Spring 2025

Long context LLMs
EECE695D: Efficient ML Systems

Handling long contexts
• Suppose that we give LLM a new book and ask questions about it

• Question. How much context length would we need?

• e.g., King James Bible has 783,137 words 1M tokens≈

Handling long contexts
• Thus, everybody loves to have LLMs that can handle long context

• Multimodal input, e.g., video

• Inference-time scaling

• However, LLMs typically had limited context lengths, until very recently…

• LLaMA 1: 2k

• LLaMA 2: 4k

• LLaMA 3: 8k

• LLaMA 4: 10M

Handling long contexts
• Why? Long context is expensive, computationally

• Computational cost of self-attention layers grow quadratically

• Much memory I/O at generation phase

Handling long contexts
• Solution.

• FlashAttention

• Train short, then extend

• Compress the KV cache

FlashAttention

Computing self-attention
• A simple technique to reduce memory I/O for long context

• Recall the self-attention operation

• This is done by:

• Compute

• Materialize:

•

•

•

O = σ(QK⊤)V

Q, K, V ∈ ℝN×d

S = QK⊤ ∈ ℝN×N

P = σ(S) ∈ ℝN×N

O = PV ∈ ℝN×d

Computing self-attention

• Naïvely, requires much HBM I/O

• Division (tokens) and fusion (ops) desired

• Difficult due to softmax

S = QK⊤ ∈ ℝN×N

P = σ(S) ∈ ℝN×N

O = PV ∈ ℝN×d

[σ(x)]j =
exp(xj)

∑i exp(xi)

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention

• Consider processing -th input token

• Standard Algo. Two loops:

• For , accumulate the denominator

• For , compute the weighted sum:

• If is large. Requires re-loading Q,K and re-computing the dot products

j

oj =
N

∑
i=1

vi ⋅ [σ(q⊤
j k:)]i

i ∈ {1,…, N}
zi = zi−1 + exp(q⊤

j ki)
i ∈ {1,…, N}

oi = oi−1 + vi ⋅
exp(q⊤

j ki)
zN

N

Concretely…

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022

• Does this in a single loop

• Idea. Consider a surrogate sequence

which is a partial sum normalized by another partial sum.

• Satisfies two properties:

•

• Follows the recurrence relation

o′ i =
i

∑
j=1

vj ⋅
exp(q⊤kj)

zi

o′ N = oN

o′ i =
o′ i−1 ⋅ zi−1 + vi ⋅ exp(q⊤ki)

zi

FlashAttention

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022

• Algo. For , compute:

•

•

• Can do kernel fusion!

• Advantages

• Constant memory on SRAM

• independent of N

• Loading only once

i = {1,…, N}
ei = exp(q⊤ki)
zi = zi−1 + ei

o′ i =
o′ i−1 ⋅ zi−1 + vi ⋅ ei

zi
⇐

ki, vi

FlashAttention

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022

• Self-Attention does not need memory: https://arxiv.org/abs/2112.05682

• FlashAttention 1: https://arxiv.org/abs/2205.14135

• How to handle backward

• How to handle “safe softmax”

• Block-sparse

• FlashAttention 2: https://arxiv.org/abs/2307.08691

• Parallelism and work partitioning

• Reducing non-matmul FLOPs

O(N2)

Further readings

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022

https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2307.08691

Extending context length

Length generalization
• Idea. Train a model with short context window, and use it for long context.

• Problem. Without any tricks, does not generalize

• Example. Needle in a haystack; retrieving a word at specific position
 (white dotted line: context length of training)

Lu et al., “A Controlled Study on Long Context Extension and Generalization in LLMs,” arXiv 2024

Length generalization
• Popular solutions involve altering positional embeddings

• RoPE. A relative positional embedding for transformers

• Rotates query / key by a certain degree, based on positions

• Example. For the -th input token

j

fq(xj, j) = RΘ,mWqxj, fk(xj, j) = RΘ,mWkxj

RΘ,j =

cos jθ1 −sin jθ1 0 0 ⋯ 0 0
sin jθ1 cos jθ1 0 0 ⋯ 0 0

0 0 cos jθ2 −sin jθ2 ⋯ 0 0
0 0 sin jθ2 cos jθ2 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯

Su et al., “RoFormer: Enhanced Transformer with Rotary Position Embedding,” arXiv 2021

• RoPE is useful because it preserves the dot product of query-key after any
shift in the token locations

• Same if tokens lie at (2,4) or (10002,10004)

• Apply rotation for two-dimension-chunks

Su et al., “RoFormer: Enhanced Transformer with Rotary Position Embedding,” arXiv 2021

Length generalization

• Idea. Reduce the frequency by , to increase the context length K-fold1/K

Chen et al., “Extending Context Window of Large Language Models via Positional Interpolation,” arXiv 2023

Position interpolation

• Proposed by a redditor “emozilla”

• Idea. Apply different scaling to different frequencies

• Large : Scale down less

• Small : Scale down more

• Intuition. High-frequency are sensitive to relative positions

• These are thus precious; better keep them intact

θ

θ

θ

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/

“Dynamic NTK” interpolation

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/

• YaRN: https://openreview.net/forum?id=wHBfxhZu1u

• Additional temperature scaling

• A controlled comparison: https://arxiv.org/abs/2409.12181

• Careful comparison, where NTK-RoPE is the winner

• Attention patterns (Long LoRA): https://arxiv.org/abs/2309.12307

• Fine tuning

Further readings

https://openreview.net/forum?id=wHBfxhZu1u
https://arxiv.org/abs/2409.12181
https://arxiv.org/abs/2309.12307

KV cache compression

KV cache compression
• Idea. Instead of compressing weights & activations, compress the KV cache

• More about memory I/O than computation

• Quantization (e.g., FlexGen)

• Again, there are outliers that we should worry about — in keys

Liu et al., “KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache,” arXiv 2024

KV cache compression
• Similar tricks can be used:

• Hadamard rotation

• Weight migration — do not migrate to weight, but scale up the queries!

Z = (QΛ) ⋅ (KΛ−1)⊤, Λ = diag(λ)

Lin et al., “QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving,” arXiv 2024

KV cache compression
• Sparsity (e.g., H2O)

• Turns out that only a fraction of tokens
matter for the future generation

• (Right) Sparsity of the softmax,
where we consider zero when
less than 1% of maximum

• Thus, load only a fixed number of
important tokens

Zhang et al., “H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models,” NeurIPS 2023

KV cache compression
• H2O. Recent token + important

• Keep track of the weighted sum of attention scores

• Lightweight heuristic to approximate these

Zhang et al., “H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models,” NeurIPS 2023

KV cache compression
• Sink-based. Attention sinks (meaningless but takes up all attention) have

much impact on the output

• Diagnosable with small norm of the value token

• Keep bottom-k tokens

ℓ2

Devoto et al., “A Simple and Effective L2 Norm-Based Strategy for KV Cache Compression,” EMNLP 2024

Wrapping up
• We did not cover “efficient transformers” literature

• Reformer: https://arxiv.org/abs/2001.04451

• Slightly outdated, but still provides a nice use of locality-sensitive
hashing (LSH)

https://arxiv.org/abs/2001.04451

That’s it for today 🙌

