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Handling long contexts
• Suppose that we give LLM a new book and ask questions about it 

• Question. How much context length would we need? 

• e.g., King James Bible has 783,137 words  1M tokens≈



Handling long contexts
• Thus, everybody loves to have LLMs that can handle long context 

• Multimodal input, e.g., video 

• Inference-time scaling 

• However, LLMs typically had limited context lengths, until very recently… 

• LLaMA 1: 2k 

• LLaMA 2: 4k 

• LLaMA 3: 8k 

• LLaMA 4: 10M



Handling long contexts
• Why? Long context is expensive, computationally 

• Computational cost of self-attention layers grow quadratically 

• Much memory I/O at generation phase



Handling long contexts
• Solution. 

• FlashAttention 

• Train short, then extend 

• Compress the KV cache



FlashAttention



Computing self-attention
• A simple technique to reduce memory I/O for long context 

• Recall the self-attention operation 

 

• This is done by: 

• Compute  

• Materialize: 

•  

•  

•

O = σ(QK⊤)V

Q, K, V ∈ ℝN×d

S = QK⊤ ∈ ℝN×N

P = σ(S) ∈ ℝN×N

O = PV ∈ ℝN×d



Computing self-attention
 

 

 

• Naïvely, requires much HBM I/O 

• Division (tokens) and fusion (ops) desired 

• Difficult due to softmax 

S = QK⊤ ∈ ℝN×N

P = σ(S) ∈ ℝN×N

O = PV ∈ ℝN×d

[σ(x)]j =
exp(xj)

∑i exp(xi)

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention


• Consider processing -th input token 

 

• Standard Algo. Two loops: 

• For ,   accumulate the denominator 

 

• For ,   compute the weighted sum: 

 

• If  is large. Requires re-loading Q,K and re-computing the dot products

j

oj =
N

∑
i=1

vi ⋅ [σ(q⊤
j k:)]i

i ∈ {1,…, N}
zi = zi−1 + exp(q⊤

j ki)
i ∈ {1,…, N}

oi = oi−1 + vi ⋅
exp(q⊤

j ki)
zN

N

Concretely…

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022



• Does this in a single loop 

• Idea. Consider a surrogate sequence 

 

which is a partial sum normalized by another partial sum. 

• Satisfies two properties: 

•  

• Follows the recurrence relation 

o′ i =
i

∑
j=1

vj ⋅
exp(q⊤kj)

zi

o′ N = oN

o′ i =
o′ i−1 ⋅ zi−1 + vi ⋅ exp(q⊤ki)

zi

FlashAttention

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022



• Algo. For , compute: 

•  

•  

•                             Can do kernel fusion! 

• Advantages 

• Constant memory on SRAM 

• independent of N 

• Loading  only once 

i = {1,…, N}
ei = exp(q⊤ki)
zi = zi−1 + ei

o′ i =
o′ i−1 ⋅ zi−1 + vi ⋅ ei

zi
⇐

ki, vi

FlashAttention

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022





• Self-Attention does not need  memory:  https://arxiv.org/abs/2112.05682 

• FlashAttention 1:                                                    https://arxiv.org/abs/2205.14135 

• How to handle backward 

• How to handle “safe softmax” 

• Block-sparse 

• FlashAttention 2:                                                   https://arxiv.org/abs/2307.08691 

• Parallelism and work partitioning 

• Reducing non-matmul FLOPs

O(N2)

Further readings

Dao et al., “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,” NeurIPS 2022

https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2307.08691


Extending context length



Length generalization
• Idea. Train a model with short context window, and use it for long context. 

• Problem. Without any tricks, does not generalize 

• Example. Needle in a haystack; retrieving a word at specific position 
                (white dotted line: context length of training)

Lu et al., “A Controlled Study on Long Context Extension and Generalization in LLMs,” arXiv 2024



Length generalization
• Popular solutions involve altering positional embeddings 

• RoPE. A relative positional embedding for transformers 

• Rotates query / key by a certain degree, based on positions 

• Example. For the -th input token 

 

j

fq(xj, j) = RΘ,mWqxj, fk(xj, j) = RΘ,mWkxj

RΘ,j =

cos jθ1 −sin jθ1 0 0 ⋯ 0 0
sin jθ1 cos jθ1 0 0 ⋯ 0 0

0 0 cos jθ2 −sin jθ2 ⋯ 0 0
0 0 sin jθ2 cos jθ2 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯

Su et al., “RoFormer: Enhanced Transformer with Rotary Position Embedding,” arXiv 2021



• RoPE is useful because it preserves the dot product of query-key after any 
shift in the token locations 

• Same if tokens lie at (2,4) or (10002,10004) 

• Apply rotation for two-dimension-chunks

Su et al., “RoFormer: Enhanced Transformer with Rotary Position Embedding,” arXiv 2021

Length generalization



• Idea. Reduce the frequency by , to increase the context length K-fold1/K

Chen et al., “Extending Context Window of Large Language Models via Positional Interpolation,” arXiv 2023

Position interpolation



• Proposed by a redditor “emozilla” 

• Idea. Apply different scaling to different frequencies 

• Large : Scale down less 

• Small : Scale down more 

• Intuition. High-frequency  are sensitive to relative positions 

• These are thus precious; better keep them intact

θ

θ

θ

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/

“Dynamic NTK” interpolation

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/


• YaRN:                                                 https://openreview.net/forum?id=wHBfxhZu1u 

• Additional temperature scaling 

• A controlled comparison:                                       https://arxiv.org/abs/2409.12181 

• Careful comparison, where NTK-RoPE is the winner 

• Attention patterns (Long LoRA):                          https://arxiv.org/abs/2309.12307 

• Fine tuning

Further readings

https://openreview.net/forum?id=wHBfxhZu1u
https://arxiv.org/abs/2409.12181
https://arxiv.org/abs/2309.12307


KV cache compression



KV cache compression
• Idea. Instead of compressing weights & activations, compress the KV cache 

• More about memory I/O than computation 

• Quantization (e.g., FlexGen) 

• Again, there are outliers that we should worry about — in keys

Liu et al., “KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache,” arXiv 2024



KV cache compression
• Similar tricks can be used: 

• Hadamard rotation 

• Weight migration — do not migrate to weight, but scale up the queries! 

Z = (QΛ) ⋅ (KΛ−1)⊤, Λ = diag(λ)

Lin et al., “QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving,” arXiv 2024



KV cache compression
• Sparsity (e.g., H2O) 

• Turns out that only a fraction of tokens 
matter for the future generation 

• (Right) Sparsity of the softmax, 
where we consider zero when 
less than 1% of maximum 

• Thus, load only a fixed number of 
important tokens

Zhang et al., “H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models,” NeurIPS 2023



KV cache compression
• H2O. Recent token + important 

• Keep track of the weighted sum of attention scores 

• Lightweight heuristic to approximate these

Zhang et al., “H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models,” NeurIPS 2023



KV cache compression
• Sink-based. Attention sinks (meaningless but takes up all attention) have 

much impact on the output 

• Diagnosable with small  norm of the value token 

• Keep bottom-k tokens

ℓ2

Devoto et al., “A Simple and Effective L2 Norm-Based Strategy for KV Cache Compression,” EMNLP 2024



Wrapping up
• We did not cover “efficient transformers” literature 

• Reformer:                                                        https://arxiv.org/abs/2001.04451 

• Slightly outdated, but still provides a nice use of locality-sensitive 
hashing (LSH)

https://arxiv.org/abs/2001.04451


That’s it for today 🙌


