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Introduction

 LongLoRA
 Fine-Training supporting Long Context Length

o Position Interpolation + (LoRA+) + Shifted Sparse Attention (S2-Attn)
 LoRA+: can be trainable with LoRA where Embedding, Norm, Attention

 S2-Attn: group with nearby tokens
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Introduction

 LongLoRA

o Position Interpolation + (LoRA+) + Shifted Sparse Attention
 Perplexity : LongLoRA has better accuracy compared to LoRA. (similar Full FT)

 GPU Memory : LongLoRA is similar with LoRA because of Flash Attention 

 Train hours : LongLoRA has the fastest train hours
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Introduction

 Motivation (Long Context Length and hours)
o Modern LLM has to support Long Context..
 Ex) Summarize Documents, Answering Long Question

 So, Long Context trains or full tunes with Long Context Length (ex) 32K more …)

o (Existed) Full Fine-tuning supports Long Context
 LoRA(Low-Rank Adaptation) is good where context is short, but LoRA has high Perplexity

 (Existed) Dilated or Sparse Attention do not work like LongLoRA (S2-Attn)

o LongLoRA

 Using Sparse Shifted Attention (S2-Attn) and (LoRA+)
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Introduction

 Motivation (Train Hours)
o Long Context Train Time & Memory(Device) Cost is too expensive
 [Positional Interpolation 2K --> 8K Fine-Tuning cost] : A100 x 32 --> A100 x 128

 It will be cost about 1.268$ * 128 / hour = 162.3$ / Hours

 8K is about 17.5 hours  162.3$ * 17.5= 2840.32$ = 4,260,480 won

 16K ~ Train Cost is too high!
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Long LoRA

2 Related Work & Background
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Background

 Transformer Architecture
o Embedding: Converts input tokens into fixed-dimensional continuous

vectors that the model can process.

o Norm (Normalization): Normalizes the output of each layer to stabilize
training and accelerate convergence.

o Multi-head Self-Attention: Captures different types of relationships
between tokens by projecting the input into multiple attention heads and
combining their outputs.

o Feed Forward Layer: Applies nonlinear transformations independently to
each token to enhance representational capacity.
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Background

 LoRA
o Low-Rank Adaptation

o Fine-tuning Mechanism

o LoRA is a method that efficiently fine-tunes a pre-trained model by 
learning small, low-rank matrices added to the original weights wi
thout updating the entire model.

o LoRA Finetunes Attention Weights

 Pretrained Weight is FREEZE!

 A,B Low Matrix is trained

 Other (Embedding, Norm …) is Also FREEZE!

※ LoRA+ is goint to be explained by SW Kang!
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Background

 Dense Attention is the full-attention transformer (which we call the dense attention transformer) has
O(n²) complexity. BigBird (Zaheer et al., 2020)

 Transformer Architecture
o Longformer (Beltagy et al., 2020): a sparse attention mechanism combining local sliding

windows and global tokens to efficiently process long documents.

o BigBird (Zaheer et al., 2020): Proposes a sparse attention model using random, local, and 
global patterns to achieve scalability for extremely long sequences while preserving
theoretical guarantees. (Local + Random Selection)
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 Potisional Interpolation
o It compresses the position so that it stays inside the range seen during pretra

ining.

 x : token embedding vector 

 m : the original position index (e.g., 0 to 4096) 

 L : the maximum context length supported by the pre-trained RoPE (e.g., 
4096) 

 L′: the extended context length we want to achieve (e.g., 100k)

Background

14



Background
 Flash Attention

o With long context,
Whole Q,K,V Cache is too long and big size.

--> It will be caused Memory Bottleneck!

o Flash Attention Steps (ex Chunk size = 128)

1. Read 128x128 Chunk Key, Value Cache (to SRAM)

2. Read 128x128 Chunk Query Cache (to SRAM)

3. Calculate Softmax and save output.
(with overlapping the loading of new K,V blocks)
= pipelining

4. Trash previous Cache.
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Relative Work
 Classic Effecient Fine-Tuning

o Prompt Tuning (Lester et al., 2021): Fine-tunes a frozen pre-trained model by
learning small, trainable input prompt vectors.

o Prefix Tuning (Li & Liang, 2021): Fine-tunes by prepending trainable prefix vectors
to each layer's input in the Transformer.

o Hidden state Tuning (Liu et al., 2022): Adapts the model by directly modifying the
internal hidden states.

o Bias Tuning (Zaken et al., 2022): Fine-tunes only the bias terms of the model
parameters for lightweight adaptation.

o Masked Weigth learning (Sung et al., 2021): Learns by selectively updating 
a masked subset of the pre-trained weights.

o Input-Tuning (An et al., 2022): Adjusts the model by applying trainable
transformations to the input embeddings.
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Long LoRA

3 LongLoRA
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Key Idea

 LoRA based fine-tuning for Long Context
o Full fine-tuning is too heavy !!

 Position Interpolation + LoRA+ + Shifted Sparse Attention (in fine-tuning)

 LoRA+

o Trainable norm & embed layer

 S²-Attention
o Sparse Attention (Group)

o Shifted Attention Pattern
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LongLoRA

 LoRA+

o LoRA is not sufficient for Long Context

Table 2: Finetuning normalization and embedding layers
is crucial for low-rank long-context adaptation.
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LongLoRA

 LoRA+

o LoRA is not sufficient for Long Context

o Training Embedding & Norm layer

Table 2: Finetuning normalization and embedding layers
is crucial for low-rank long-context adaptation.
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LongLoRA

 Pilot study
o 2 key points
 Computational cost

 LLM performance

o Applying Sparse Attention (Group)
 Good computational cost

 Pool performance for Long Context
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LongLoRA

 Pilot study
o 2 key points
 Computational cost

 LLM performance

o Applying Sparse Attention (Group)
 Good computational cost

 Pool performance for Long Context

Lose info between group
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LongLoRA

 Pilot study
o 2 key points
 LLM performance

 Computational cost

o Applying Sparse Attention (Group)
 Good computational cost

 Pool performance for Long Context

o Applying Sparse Attention + Shifted Pattern
 Including shifted pattern for communication between groups

Activate attention between each group !
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LongLoRA

 S²-Attention flow
o Shift down for each Q, K, V matrix (half head)

o Concatenate [normal half heads, shifted half heads] for each Q, K, V matrix

o Calculate attention result

o Shift up result(shifted half heads) for roll back

Figure 3: Illustration of S²-Attn.
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LongLoRA

 Simplest version of S²-Attention
o Conventional Sparse Attention for 1 head
 Context Length = 8, Head dimension = 2

 Group = 4
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LongLoRA

 Simplest version of S²-Attention
o Shift down for each Q, K matrix

o New group for attention
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LongLoRA

 Shifted Sparse Attention
o Calculate attention for new group
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PseudoCode of LongLoRA – pytorch style

# B: batch size; S: sequence length or number of tokens; G: group size; 
# H: number of attention heads; D: dimension of each attention head
qkv = cat((qkv.chunk(2, 3)[0], qkv.chunk(2, 3)[1].roll(-G/2, 1)), 3).view(B*N/G,G,3,H,D) 

# Calculate group attention output
out = self_attn(qkv)

#split out on H into 2 chunks, and then roll back G/2 on N
out = cat((out.chunk(2, 2)[0], out.chunk(2, 2)[1].roll(G/2, 1)), 2) 

Shift up for consistency 

Half head shift Grouping It can implement by adding two lines
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Long LoRA

4 Experiment Result
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 In S²-Attn, the last tokens are moved to the front
o which could break the original token order expected by the causal mask.

o Variant 2 groups the shifted tokens separately.

o Variant 3 swaps the shifted and original tokens.

Variants of S²-Attention
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Ablation on Group Sizes

 Fine-tuning Llama2 7B to 8192 and 16384 context lengths via LongLoRA. 
o The group size varies from {1/2, 1/4, 1/6, 1/8} of the target context length

 1/2 and 1/4 settings have minor gaps to full attention fine-tuning.

 Group sizes less than 1/4 would be not good enough.

Evaluate on PG19 validation set

31



Training

 Training Procedure
 8 x A100 GPUs

 All models are fine-tuned via the next token prediction objective.

 Optimizer: AdamW with

 Learning rate: for 7B and 13B, for 70B models.

 Weight decay: 0

 Global batch size: 64

 1000 steps
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RedPajama-V2 Dataset for Training

 RedPajama-V2 Dataset
o Open dataset for training large language models

o Over 100B text documents

o Source: 84 CommonCrawl snapshots

Estimated Token count# DocumentsLanguage

20.5T14.5Ben

3.0T1.9Bde

2.7T1.6Bfr

2.8T1.8Bes

1.5T0.9Bit

30.4T20.8BTotal
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Datasets for Long-Context Evaluation

 PG19 Dataset
o large benchmark for long-range language modeling, based on historical English books.

o A collection of books from Project Gutenberg, published before 1919.

o Designed for long-range language modeling.

o 28,000+ full books & 2.7 billion tokens

 Arxiv Math proof-pile Dataset (8.3B tokens, ~13GB total size.)

o A benchmark for assessing long-context models on both written math explanations and 
structured proof data.

o Designed for pretraining and fine-tuning language models on mathematics.

TestValidationTrain

1005028,602Books

6,966,4993,007,0611,973,136,207Num. Tokens
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Efficiency and FLOPs Reduction of LongLoRA

 LongLoRA trains faster, uses less memory, and handles long contexts.

 As the context gets longer, attention FLOPs take a bigger share of the total.

 S²-Attn reduces FLOPs significantly, especially for very long contexts.
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Long-sequence Language Modeling

 Evaluated on Proof-Pile and PG19 datasets.

 With the same training context length, longer evaluation context leads to lower perplexity

 Demonstrates effectiveness of efficient fine-tuning with LongLoRA.

Perplexity evaluation on proof-pile test split.Perplexity evaluation on PG19 test split.
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Long-sequence Language Modeling Evaluation

 Benchmark for long context understanding
o Bilingual 
 English, Chinese

o 6 task categories
 multi-task singledoc QA, multi-doc QA, summarization, fewshot learning, synthetic tasks, 

and code completion.
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Retrieval-based Evaluation

 Task to retrieve the target topic from a very long conversation.
o lengths varying from 3k, 6k, 10k, 13k, to 16k.

 13B model achieves near LongChat-13B (SoTA) topic retrieval in long conversations
with lower cost.

LongLoRA-13BLongChat-13B

S^2 Attention(proposed)Full Fine-tuningFine-tuning method

RedPajamaCurated Vicunadataset
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PassKey Retrieval

 In passkey retrieval task, a random passkey is hidden inside a long document.

 The model needs to retrieve the correct passkey.

 The document length varies with the value of M and N. 12362 is the passkey
number to retrieve. It is randomly sampled and varies at each testing time.
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PassKey Retrieval (Evaluation)

 Llama2 7B (4k context length) vs. 7B model fine-tuned (32k context length)

 By extending position Interpolation, it handles longer sequences without extra
fine-tuning.
o e.g. 
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Conclusion

 LongLoRA is an efficient fine-tuning method for extending context length of 
pre-trained LLMs.

 It reduces computation cost during fine-tuning by:
o Using Shifted Sparse Attention (S²-Attn)

o Improving LoRA with fine-tuning of embedding and normalization (LoRA+).

 S²-Attn saves FLOPs while keeping similar performance to full attention.

 LongLoRA extends context length with 8 × A100 GPUs.
o Llama2-7B to 100k tokens.

o Llama2-70B to 32k tokens

 It is compatible with tools like FlashAttention2.
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Trade-off: LongLoRA

 While LongLoRA scales efficiently to longer contexts, it introduces a trade-off:
 slight degradation in short-context performance due to Position Interpolation.

 This trade-off should be considered depending on the target application.

 Since LongLoRA models are specialized for long sequences,
they may not be ideal for the tasks such as:
o strong short-context understanding

o casual conversation

o quick summarization.
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Limitation

 LongLoRA extends the context length using S²-Attention and LoRA+.
 (LoRA+ : LoRA with embedding and normalization fine-tuning).

 Justified mainly based on PPL (context length ≤ 30k).

 Full Attn., Short Attn., S²-Attn.

 Full FT, LoRA, LoRA+

 Other metrics (training time, memory) not discussed.
 Direct comparison between [S²-Attn. & LoRA] and [S²-Attn & LoRA+] is missing.
 Experiments limited to 30k tokens despite long context focus.
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Long LoRA

5 Appendix
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Multi-head attention

 Q, K, V projection (Lowering dimension of embedding vector)

 H – head attention
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LongAlphaca(SUPERVISED FINE-TUNING）
 In LongLoRA, models fine-tuned with RedPajama present good perplexities

o But the chat ability is limited. 

 The authors collected some question-answer pairs to imporve QA ability.
o LongAlpaca-12k (9k long-context QAs + 3k QAs sampled from the Alpaca dataset)
 Technical papers
 Science fiction
 Other books

 Prompt format
o Below is {material type}. Memorize the content and answer my question after the p

aper. {material content} n Now the material ends. {question}
 {material type} = "book", "paper", others
 {material content} = long-context content in the document
 {question} = question (e.g. summarization)

46



LongAlphaca – QA Ability
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LongAlphaca - {question} part
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