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Key contributions

•Incoherence Processing for Gaussian-Like Weights

•Apply incoherence processing (RHT) to transform weights into independent, Gaussian-like distributions, enabling effective

trellis coding for i.i.d. sources. 

•Ensures robust quantization by minimizing correlations in large-scale LLM weights.

•Bitshift and Tail-Biting Trellis for Ultra-High-Dimensional Quantization

•Introduce Bitshift Trellis for lookup-free transitions (1 cycle) and Tail-Biting Trellis with Algorithm 4 (two Viterbi calls) to

enable tractable quantization of ultra-high-dimensional sequences (>100 dimensions). 

•Achieve bit efficiency and reduced distortion, supporting fast inference (4ms/token) on GPUs.

•Hybrid Lookup-Computed Code for Efficient Code Generation

•Develop a hybrid code that generates pseudorandom indices with a small LUT (cached in GPU memory), eliminating full

codebook storage (8 bytes → 0). 

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.
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codebook storage (8 bytes → 0). 

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.

Target

1. High dimension vector quantization (256)

2. Less memory access with more calculation



Background (Contents)

1) Quantization

2) PTQ and QAT

3) Scalar quantization and vector quantization

4) Incoherence processing

5) Trellis-coded quantization



Background (Quantization)
•What is quantization?

𝑥(𝑡)
𝑥𝑠(𝑡)

𝑦(𝑡)

Eq Quantization
Error

Analog Digital



Background (Quantization)
•What is quantization?

• More bits = higher accuracy

• In AI, quantization is reducing number of bit == less cost ➔ reducing accuracy  (How to solve?)

𝟓𝐛𝐢𝐭 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧
𝟒𝒕𝒊𝒎𝒆𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒕𝒆

𝟑𝐛𝐢𝐭 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧



Background (PTQ and QAT)

•Post-training quantization (PTQ) and quantization aware training (QAT)

Criteria PTQ (Post-Training Quantization) QAT (Quantization-Aware Training)

Purpose
Quantize a pre-trained model witho

ut retraining

Train the model with quantization const

raints

Methodology
Apply quantization after training (e.

g., weight scaling)

Simulate quantization during training (e.

g., fake quant)

Advantages
- Fast and simple

- No retraining needed

- Higher accuracy

- Better handling of quantization errors

Disadvantages
- Potential accuracy drop

- Limited flexibility

- Requires retraining

- Higher computational cost

Use Case - Quick deployment (e.g., QTIP) - High-precision tasks



Background (SQ vs. VQ)

•Scalar quantization vs Vector quantization

Criteria Scalar Quantization (SQ) Vector Quantization (VQ)

Definition
Quantizes each element (scalar)

independently

Quantizes groups of elements (vectors)

together

Granularity
Per element

(e.g., each weight individually)

Per vector

(e.g., group of weights as a single unit)

Complexity Simple, low computational cost More complex, higher computational cost

Memory Efficiency
Lower

(stores more bits per element)

Higher

(fewer bits per vector via codebook)

Quality
Limited (ignores correlations

between elements)

Better (captures correlations

within vectors)

Use Case
Basic compression

(e.g., uniform quantization)

Advanced compression

(e.g., QTIP's trellis coding)



Background (SQ vs. VQ)

•Scalar quantization vs Vector quantization

Reference: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40

𝐕𝐞𝐜𝐭𝐨𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐒𝐜𝐚𝐥𝐚𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧



Reference: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40

𝐕𝐞𝐜𝐭𝐨𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐒𝐜𝐚𝐥𝐚𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Background (SQ vs. VQ)

•Scalar quantization vs Vector quantization

Higher dimension vector quantization

- Better quality ☺

- Time & Hardware burden 

- Code book C ∈ R2kd×d for K-bit and d dimensional vector S

- Finding nearest neighbor in C require O(2kd·d)



Related work (Incoherence processing)

•What is incoherence processing ?
•Transforms LLM weights into independent, Gaussian-like distributions using Random Hadamard 

Transform (RHT).

•Reduces correlations between weights, enabling effective trellis coding.

•Why it matters in QTIP ?

•Ensures i.i.d. Gaussian weights for high-quality quantization.

•Supports ultra-high-dimensional (>100) quantization with minimal distortion.
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Related work (Incoherence processing)

•What is incoherence processing ?
•Transforms LLM weights into independent, Gaussian-like distributions using Random Hadamard 

Transform (RHT).

•Reduces correlations between weights, enabling effective trellis coding.

•Why it matters in QTIP ?

•Ensures Gaussian [weights & eigenvector] for high-quality quantization.

•Supports ultra-high-dimensional (>100) quantization with minimal distortion.



Related work (TCQ)

• Trellis_Coded Quantization from Trellis code modulation (communication system)

Definition Combines error-correcting coding with modulation to improve signal reliability over noisy channels

Key Features

- Uses a trellis structure to map coded bits to signal constellations

- Increases coding gain without bandwidth expansion

- Improves error performance (e.g., 3-6 dB gain)

- Widely used in modems, satellite communications

Advantages

- Enhanced error correction

- Efficient use of signal space

- Robust against channel noise

Challenges

Scalability Issue

: Infeasible for large-scale LLMs (e.g., Llama 3 405B, 810GB).

Hardware Inefficiency 

: Lookup-heavy operations are not GPU-friendly, limiting parallelism. = Low inference speed
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Related work (TCQ)

• Trellis_Coded Quantization from Trellis code modulation (communication system)

Figure Reference: Trellis Code Modulation
, https://www.telecom.tuc.gr/~liavas/Seminars/coding_theory/Docs/3_Trellis_Coded_Modulation.pdf



Related work (TCQ)

• Trellis_Coded Quantization (TCQ)

Figure Reference: Trellis-Coded Quantization for End-to-End Learned Image Compression
, https://ieeexplore.ieee.org/document/9897685



Related work (TCQ)

• Trellis-coded Quantization from Trellis code modulation (communication system)

Definition Combines error-correcting coding with modulation to improve signal reliability over noisy channels

Key Features

- Uses a trellis structure to map coded bits to signal constellations

- Increases coding gain without bandwidth expansion

- Improves error performance (e.g., 3-6 dB gain)

- Widely used in modems, satellite communications

Advantages

- Enhanced error correction

- Efficient use of signal space

- Robust against channel noise

Challenges

Scalability Issue (Hugh book)

: Infeasible for large-scale LLMs (e.g., Llama 3 405B, 810GB).

Hardware Inefficiency (Slow)

: Lookup-heavy operations are not GPU-friendly, limiting parallelism. = Low inference speed



Problem Formulation

• Vector Quantization (VQ)

• Hard to support high-dimension. → high quantization distortion.

• Need to store codebook.             → cache miss.

• Trellis Coded Quantization (TCQ)

• Need to store trellis.                    → cache miss.

• Need to store codebook.             → cache miss.

• Sequential decoding.                   → low parallelism & low throughput.

• QTIP – weight only PTQ

• Incoherence Processing

• Bitshift Trellis

• Compute-based Codes



Problem Formulation
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• Hard to support high-dimension. → high quantization distortion.
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VQ-Dequantization

1. Lode codebook.
2. Lookup codebook

to get quantized value.

Space complexity: 𝐎(𝐝 × 𝟐𝐤𝐝)
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• Hard to support high-dimension. → high quantization distortion.

• Need to store codebook.             → cache miss.

VQ-Dequantization

1. Lode codebook.
2. Lookup codebook

to get quantized value.

Space complexity: 𝐎(𝐝 × 𝟐𝐤𝐝)

1

2

s
codebook size >> L1 cache

Dimension limited!



Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis.                    → cache miss.

• Need to store codebook.             → cache miss.

• Sequential decoding.                   → low parallelism & low throughput.
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Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis.                    → cache miss.

• Need to store codebook.             → cache miss.
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S1

S2

S3

S1

S2

S3

S1

S2

S3

𝑊1 𝑊2
𝑊3

0

1

0

1

TCQ-Dequantization

Trellis walking!
But sequential decoding…

Also, require lookup codebook!

1

2

3

𝑊1 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆1]
𝑊2 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆3]
𝑊3 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆2]

b=10

0



Problem Formulation
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• Need to store codebook.             → cache miss.
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s

codebook & trellis >> L1 cache

Slow inference speed!



QTIP

How to support parallel decoding with high dimension.
+ low quantization distortion & w/o codebook



QTIP

How to support parallel decoding with high dimension.
+ low quantization distortion & w/o codebook

1. Incoherence Processing

2.Bitshift Trellis

3.Compute-based Codes



Proposed Method

• Incoherence Processing

• outliers cause poor quantization quality.

• weights and Hessian eigenvectors are not too large in any direction, aiding quantization.

→ enables good shaping.

pseudo-Gaussian
(weights are spread uniformly in all directions)

high coherent
(most weights align in few dominant directions)

RHT

may cause distortion

Random Hadamard Transform



Proposed Method

• Incoherence Processing

• outliers cause poor quantization quality.

• weights and Hessian eigenvectors are not too large in any direction, aiding quantization.

→ enables good shaping.

pseudo-Gaussian
(weights are spread uniformly in all directions)

high coherent
(most weights align in few dominant directions)

RHT

may cause distortion

Random Hadamard Transform

s

Low distortion ☺

Better shaping ☺



Proposed Method

• Bitshift Trellis

• TCQ requires sequential decoding, limiting parallelism.

• Using Viterbi algorithm.

→ enables parallel decoding.

• Viterbi algorithm

• Finding the most likely sequence(minimize metric) of hidden states.

• Used in communication systems, such as error correction codes etc.

0

1

0

1

0

1

state

transition

1. Recursive step
calculate metric (MSE) for all possible path.

2. Storage of back pointers
store previous path’s pointer.

3. Traceback
find optimal path which make best metric.



Proposed Method

• Bitshift Trellis Encoding

• 2𝐿 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑗 𝑒𝑑𝑔𝑒𝑠. 𝑗 = 𝑖2𝑘𝑉𝑚𝑜𝑑2𝐿 + 𝑐, 0 ≤ 𝑐 < 2𝑘𝑉.

• top L-kV bits of node j equal the bottom L-kV bits of node i. If node i → node j.

• where, L = log2(# of codebook), k = bitrate, V = # of weight in groups.

𝐿 = 2, 𝑘 = 1, 𝑉 = 1



Proposed Method

• Bitshift Trellis Encoding

• 2𝐿 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑗 𝑒𝑑𝑔𝑒𝑠. 𝑗 = 𝑖2𝑘𝑉𝑚𝑜𝑑2𝐿 + 𝑐, 0 ≤ 𝑐 < 2𝑘𝑉.

• top L-kV bits of node j equal the bottom L-kV bits of node i. If node i → node j.

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1



Proposed Method

• Bitshift Trellis Encoding

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

𝑆 = 10011 → 𝑘 = 1.67 𝑆 = 0000101 → 𝑘 = 2.33



Proposed Method

• Bitshift Trellis Encoding with tail-biting

• Force head and tail to have the same bit. → near-optimal.

Sequence S

𝑺𝒍𝒆𝒇𝒕 𝒉𝒂𝒍𝒇 𝑺𝒓𝒊𝒈𝒉𝒕 𝒉𝒂𝒍𝒇

1
𝑺𝒍𝒆𝒇𝒕 𝒉𝒂𝒍𝒇𝑺𝒓𝒊𝒈𝒉𝒕 𝒉𝒂𝒍𝒇 Encoded S’

𝑺𝒍𝒆𝒇𝒕 𝒉𝒂𝒍𝒇 𝑺𝒓𝒊𝒈𝒉𝒕 𝒉𝒂𝒍𝒇

Extracted overlapped 
position of head and tail

constraint

2

Encoded S
3

Viterbi

Viterbi

RHT
Required 2 times of Viterbi algorithm.



Proposed Method

• Bitshift Trellis Encoding with tail-biting

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

𝑆 = 100 → 𝑘 = 1 𝑆 = 000011 → 𝑘 = 2



Proposed Method

• Bitshift Trellis Encoding with tail-biting

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

𝑆 = 10010 → 𝑘 = 1 𝑆 = 0000110 → 𝑘 = 2

s



Proposed Method

• Decoding of Bitshift Trellis

• shifted-windowing of sequence.

𝐿 = 3, 𝑘 = 2, 𝑉 = 1
→1bit share

0 0 0 0 1 1

0 0 0 0 0 1 1 1 0

But, this is not a true quantized value.
Need to convert to float value.



Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST

• generate pseudorandom approximately Gaussian number from a L bit word.

→ enable fast decoding on cache-limited hardware.

index LUT value

VQ & TCQ
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Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST

• generate pseudorandom approximately Gaussian number from a L bit word.

→ enable fast decoding on cache-limited hardware.

high correlations 1MAD 3INST Gaussian

bitshift trellis



Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST



Proposed Method

• Lookup Computed Codes

• HYB

• Computed Codes Results



Experiments

Model
• Llama family (Llama 1, 2, 3)

VQ-based PTQ Methods
• QuIP#
• AQLM (Llama 2)
• GPTVQ-2D (Llama 1)

QTIP Methods
• Lookup-free computated codes
• Hybrid Lookup-computated codes

✓ No fine-tuning for Lookup-free codes, comparison with 2, 3, 4 quantization bit



Lookup-Free Computated Codes

QTIP Code Generation Algorithms
• 1MAD, 3INST

Bitshift Trellis parameters
• L=16, V=1
• Tx=Ty=16 (16x16 tensor core MMA optimization)

Perplexity (PPL)
• dataset : Wikitext2(W2), C4
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Lookup-Free Computated Codes

QTIP Code Generation Algorithms
• 1MAD, 3INST

Bitshift Trellis parameters
• L=16, V=1
• Tx=Ty=16 (16x16 tensor core MMA optimization)

Perplexity (PPL)
• dataset : Wikitext2(W2), C4

worse than fine-tuned QuIP#, AQLM (except 2-bits)



Hybrid Lookup-Computated Codes (PPL)

Hybrid Lookup code parameters
• L=16, V=2, Q=9 (codebook size 2KiB with FP16)
• Tx=Ty=16

Fine-tuned
• codebook element block-wise fine-tuning

outperforms all cases, especially at 2-bits (high dimensionality)

Llama1 → GPTVQ



Hybrid Lookup-Computated Codes (PPL)

Hybrid Lookup code parameters
• L=16, V=2, Q=9 (codebook size 2KiB with FP16)
• Tx=Ty=16

Fine-tuned
• codebook element block-wise fine-tuning

Llama2 → AQLM



Hybrid Lookup-Computated Codes (Zeroshot)

Evaluation Tasks
• ARCC, ARCE, PIQA, WINO

QTIP not always outperform even at 2-bits



Hybrid Lookup-Computated Codes (Zeroshot)

PPL (ctx=8192), Zero-shot w/ Llama 3 
• Llama 3 is known to be more difficult to apply PTQ than Llama 2

For Llama3, outperforms QuIP# because of high dimensionality (TCQ > VQ)



Hybrid Lookup-Computated Codes (Zeroshot)

Llama 3-1, instruct-tuned
• PV-Tuning : fine-tuning focused quantization method

Llama 3-2, instruct-tuned
• 2.5-3X compression

4bit quantization for decoding layer (not embedding)

lower PPL, similar zeroshot



Inference Speed

Batch 1 inference speed
• AQLM : large codebook size
• QuIP# : dimension 8, VQ search
• QTIP : dimension 256, parallel quantization decoding

strong performance with fast inference



Conclusion

Contribution
• High-dimensional vector quantization based on a trellis code
• L1 cache-friendly lookup-free or hybrid lookup computated codes

Limitation
• Weight-only PTQ method
• Low zeroshot accuracy relative to PPL



Appendix

Ablation on Trellis Size (L)
• Large L reduces PPL, but codebook size ↑

Ablation on Trellis Size (V)
• Large V enhances quantization efficiency, but increases PPL
• Larger L can cover effect of large V



Appendix

Decoding Speed on Different GPUs
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