
QTIP: Quantization with Trellises and
Incoherence Processing

김승준, 권순현, 이재훈

Key contributions

•Incoherence Processing for Gaussian-Like Weights

•Apply incoherence processing (RHT) to transform weights into independent, Gaussian-like distributions, enabling effective

trellis coding for i.i.d. sources.

•Ensures robust quantization by minimizing correlations in large-scale LLM weights.

•Bitshift and Tail-Biting Trellis for Ultra-High-Dimensional Quantization

•Introduce Bitshift Trellis for lookup-free transitions (1 cycle) and Tail-Biting Trellis with Algorithm 4 (two Viterbi calls) to

enable tractable quantization of ultra-high-dimensional sequences (>100 dimensions).

•Achieve bit efficiency and reduced distortion, supporting fast inference (4ms/token) on GPUs.

•Hybrid Lookup-Computed Code for Efficient Code Generation

•Develop a hybrid code that generates pseudorandom indices with a small LUT (cached in GPU memory), eliminating full

codebook storage (8 bytes → 0).

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.

Key contributions

•Incoherence Processing for Gaussian-Like Weights

•Apply incoherence processing (RHT) to transform weights into independent, Gaussian-like distributions, enabling effective

trellis coding for i.i.d. sources.

•Ensures robust quantization by minimizing correlations in large-scale LLM weights.

•Bitshift and Tail-Biting Trellis for Ultra-High-Dimensional Quantization

•Introduce Bitshift Trellis for lookup-free transitions (1 cycle) and Tail-Biting Trellis with Algorithm 4 (two Viterbi calls) to

enable tractable quantization of ultra-high-dimensional sequences (>100 dimensions).

•Achieve bit efficiency and reduced distortion, supporting fast inference (4ms/token) on GPUs.

•Hybrid Lookup-Computed Code for Efficient Code Generation

•Develop a hybrid code that generates pseudorandom indices with a small LUT (cached in GPU memory), eliminating full

codebook storage (8 bytes → 0).

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.

Key contributions

•Incoherence Processing for Gaussian-Like Weights

•Apply incoherence processing (RHT) to transform weights into independent, Gaussian-like distributions, enabling effective

trellis coding for i.i.d. sources.

•Ensures robust quantization by minimizing correlations in large-scale LLM weights.

•Bitshift and Tail-Biting Trellis for Ultra-High-Dimensional Quantization

•Introduce Bitshift Trellis for lookup-free transitions (1 cycle) and Tail-Biting Trellis with Algorithm 4 (two Viterbi calls) to

enable tractable quantization of ultra-high-dimensional sequences (>100 dimensions).

•Achieve bit efficiency and reduced distortion, supporting fast inference (4ms/token) on GPUs.

•Hybrid Lookup-Computed Code for Efficient Code Generation

•Develop a hybrid code that generates pseudorandom indices with a small LUT (cached in GPU memory), eliminating full

codebook storage (8 bytes → 0).

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.

Key contributions

•Incoherence Processing for Gaussian-Like Weights

•Apply incoherence processing (RHT) to transform weights into independent, Gaussian-like distributions, enabling effective

trellis coding for i.i.d. sources.

•Ensures robust quantization by minimizing correlations in large-scale LLM weights.

•Bitshift and Tail-Biting Trellis for Ultra-High-Dimensional Quantization

•Introduce Bitshift Trellis for lookup-free transitions (1 cycle) and Tail-Biting Trellis with Algorithm 4 (two Viterbi calls) to

enable tractable quantization of ultra-high-dimensional sequences (>100 dimensions).

•Achieve bit efficiency and reduced distortion, supporting fast inference (4ms/token) on GPUs.

•Hybrid Lookup-Computed Code for Efficient Code Generation

•Develop a hybrid code that generates pseudorandom indices with a small LUT (cached in GPU memory), eliminating full

codebook storage (8 bytes → 0).

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.

Key contributions

•Incoherence Processing for Gaussian-Like Weights

•Apply incoherence processing (RHT) to transform weights into independent, Gaussian-like distributions, enabling effective

trellis coding for i.i.d. sources.

•Ensures robust quantization by minimizing correlations in large-scale LLM weights.

•Bitshift and Tail-Biting Trellis for Ultra-High-Dimensional Quantization

•Introduce Bitshift Trellis for lookup-free transitions (1 cycle) and Tail-Biting Trellis with Algorithm 4 (two Viterbi calls) to

enable tractable quantization of ultra-high-dimensional sequences (>100 dimensions).

•Achieve bit efficiency and reduced distortion, supporting fast inference (4ms/token) on GPUs.

•Hybrid Lookup-Computed Code for Efficient Code Generation

•Develop a hybrid code that generates pseudorandom indices with a small LUT (cached in GPU memory), eliminating full

codebook storage (8 bytes → 0).

•Balances speed and quality with post-quantization fine-tuning, enhancing overall performance.

Target

1. High dimension vector quantization (256)

2. Less memory access with more calculation

Background (Contents)

1) Quantization

2) PTQ and QAT

3) Scalar quantization and vector quantization

4) Incoherence processing

5) Trellis-coded quantization

Background (Quantization)
•What is quantization?

𝑥(𝑡)
𝑥𝑠(𝑡)

𝑦(𝑡)

Eq Quantization
Error

Analog Digital

Background (Quantization)
•What is quantization?

• More bits = higher accuracy

• In AI, quantization is reducing number of bit == less cost ➔ reducing accuracy (How to solve?)

𝟓𝐛𝐢𝐭 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧
𝟒𝒕𝒊𝒎𝒆𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒕𝒆

𝟑𝐛𝐢𝐭 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Background (PTQ and QAT)

•Post-training quantization (PTQ) and quantization aware training (QAT)

Criteria PTQ (Post-Training Quantization) QAT (Quantization-Aware Training)

Purpose
Quantize a pre-trained model witho

ut retraining

Train the model with quantization const

raints

Methodology
Apply quantization after training (e.

g., weight scaling)

Simulate quantization during training (e.

g., fake quant)

Advantages
- Fast and simple

- No retraining needed

- Higher accuracy

- Better handling of quantization errors

Disadvantages
- Potential accuracy drop

- Limited flexibility

- Requires retraining

- Higher computational cost

Use Case - Quick deployment (e.g., QTIP) - High-precision tasks

Background (SQ vs. VQ)

•Scalar quantization vs Vector quantization

Criteria Scalar Quantization (SQ) Vector Quantization (VQ)

Definition
Quantizes each element (scalar)

independently

Quantizes groups of elements (vectors)

together

Granularity
Per element

(e.g., each weight individually)

Per vector

(e.g., group of weights as a single unit)

Complexity Simple, low computational cost More complex, higher computational cost

Memory Efficiency
Lower

(stores more bits per element)

Higher

(fewer bits per vector via codebook)

Quality
Limited (ignores correlations

between elements)

Better (captures correlations

within vectors)

Use Case
Basic compression

(e.g., uniform quantization)

Advanced compression

(e.g., QTIP's trellis coding)

Background (SQ vs. VQ)

•Scalar quantization vs Vector quantization

Reference: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40

𝐕𝐞𝐜𝐭𝐨𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐒𝐜𝐚𝐥𝐚𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Reference: https://link.springer.com/chapter/10.1007/978-3-031-57840-3_40

𝐕𝐞𝐜𝐭𝐨𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐒𝐜𝐚𝐥𝐚𝐫 𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Background (SQ vs. VQ)

•Scalar quantization vs Vector quantization

Higher dimension vector quantization

- Better quality ☺

- Time & Hardware burden

- Code book C ∈ R2kd×d for K-bit and d dimensional vector S

- Finding nearest neighbor in C require O(2kd·d)

Related work (Incoherence processing)

•What is incoherence processing ?
•Transforms LLM weights into independent, Gaussian-like distributions using Random Hadamard

Transform (RHT).

•Reduces correlations between weights, enabling effective trellis coding.

•Why it matters in QTIP ?

•Ensures i.i.d. Gaussian weights for high-quality quantization.

•Supports ultra-high-dimensional (>100) quantization with minimal distortion.

Related work (Incoherence processing)

•What is incoherence processing ?
•Transforms LLM weights into independent, Gaussian-like distributions using Random Hadamard

Transform (RHT).

•Reduces correlations between weights, enabling effective trellis coding.

•Why it matters in QTIP ?

•Ensures i.i.d. Gaussian weights for high-quality quantization.

•Supports ultra-high-dimensional (>100) quantization with minimal distortion.

Figure Reference: QuIP, https://arxiv.org/abs/2307.13304

Related work (Incoherence processing)

•What is incoherence processing ?
•Transforms LLM weights into independent, Gaussian-like distributions using Random Hadamard

Transform (RHT).

•Reduces correlations between weights, enabling effective trellis coding.

•Why it matters in QTIP ?

•Ensures Gaussian [weights & eigenvector] for high-quality quantization.

•Supports ultra-high-dimensional (>100) quantization with minimal distortion.

Related work (TCQ)

• Trellis_Coded Quantization from Trellis code modulation (communication system)

Definition Combines error-correcting coding with modulation to improve signal reliability over noisy channels

Key Features

- Uses a trellis structure to map coded bits to signal constellations

- Increases coding gain without bandwidth expansion

- Improves error performance (e.g., 3-6 dB gain)

- Widely used in modems, satellite communications

Advantages

- Enhanced error correction

- Efficient use of signal space

- Robust against channel noise

Challenges

Scalability Issue

: Infeasible for large-scale LLMs (e.g., Llama 3 405B, 810GB).

Hardware Inefficiency

: Lookup-heavy operations are not GPU-friendly, limiting parallelism. = Low inference speed

Related work (TCQ)

• Trellis_Coded Quantization from Trellis code modulation (communication system)

Definition Combines error-correcting coding with modulation to improve signal reliability over noisy channels

Key Features

- Uses a trellis structure to map coded bits to signal constellations

- Increases coding gain without bandwidth expansion

- Improves error performance (e.g., 3-6 dB gain)

- Widely used in modems, satellite communications

Advantages

- Enhanced error correction

- Efficient use of signal space

- Robust against channel noise

Challenges

Scalability Issue

: Infeasible for large-scale LLMs (e.g., Llama 3 405B, 810GB).

Hardware Inefficiency

: Lookup-heavy operations are not GPU-friendly, limiting parallelism. = Low inference speed

Related work (TCQ)

• Trellis_Coded Quantization from Trellis code modulation (communication system)

Figure Reference: Trellis Code Modulation
, https://www.telecom.tuc.gr/~liavas/Seminars/coding_theory/Docs/3_Trellis_Coded_Modulation.pdf

Related work (TCQ)

• Trellis_Coded Quantization (TCQ)

Figure Reference: Trellis-Coded Quantization for End-to-End Learned Image Compression
, https://ieeexplore.ieee.org/document/9897685

Related work (TCQ)

• Trellis-coded Quantization from Trellis code modulation (communication system)

Definition Combines error-correcting coding with modulation to improve signal reliability over noisy channels

Key Features

- Uses a trellis structure to map coded bits to signal constellations

- Increases coding gain without bandwidth expansion

- Improves error performance (e.g., 3-6 dB gain)

- Widely used in modems, satellite communications

Advantages

- Enhanced error correction

- Efficient use of signal space

- Robust against channel noise

Challenges

Scalability Issue (Hugh book)

: Infeasible for large-scale LLMs (e.g., Llama 3 405B, 810GB).

Hardware Inefficiency (Slow)

: Lookup-heavy operations are not GPU-friendly, limiting parallelism. = Low inference speed

Problem Formulation

• Vector Quantization (VQ)

• Hard to support high-dimension. → high quantization distortion.

• Need to store codebook. → cache miss.

• Trellis Coded Quantization (TCQ)

• Need to store trellis. → cache miss.

• Need to store codebook. → cache miss.

• Sequential decoding. → low parallelism & low throughput.

• QTIP – weight only PTQ

• Incoherence Processing

• Bitshift Trellis

• Compute-based Codes

Problem Formulation

• Vector Quantization (VQ)

• Hard to support high-dimension. → high quantization distortion.

• Need to store codebook. → cache miss.

VQ-Dequantization

1. Lode codebook.
2. Lookup codebook

to get quantized value.

Space complexity: 𝐎(𝐝 × 𝟐𝐤𝐝)

1

2

Problem Formulation

• Vector Quantization (VQ)

• Hard to support high-dimension. → high quantization distortion.

• Need to store codebook. → cache miss.

VQ-Dequantization

1. Lode codebook.
2. Lookup codebook

to get quantized value.

Space complexity: 𝐎(𝐝 × 𝟐𝐤𝐝)

1

2

s
codebook size >> L1 cache

Dimension limited!

Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis. → cache miss.

• Need to store codebook. → cache miss.

• Sequential decoding. → low parallelism & low throughput.

S1

S2

S3

S1

S2

S3

S1

S2

S3

𝑊1 𝑊2
𝑊3

0

1

0

1

TCQ-Dequantization

Trellis walking!
But sequential decoding…

b=10

0

Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis. → cache miss.

• Need to store codebook. → cache miss.

• Sequential decoding. → low parallelism & low throughput.

S1

S2

S3

S1

S2

S3

S1

S2

S3

𝑊1 𝑊2
𝑊3

0

1

0

1

1 TCQ-Dequantization

Trellis walking!
But sequential decoding…

b=10

0

Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis. → cache miss.

• Need to store codebook. → cache miss.

• Sequential decoding. → low parallelism & low throughput.

S1

S2

S3

S1

S2

S3

S1

S2

S3

𝑊1 𝑊2
𝑊3

0

1

0

1

1

2

TCQ-Dequantization

Trellis walking!
But sequential decoding…

b=10

0

Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis. → cache miss.

• Need to store codebook. → cache miss.

• Sequential decoding. → low parallelism & low throughput.

S1

S2

S3

S1

S2

S3

S1

S2

S3

𝑊1 𝑊2
𝑊3

0

1

0

1

TCQ-Dequantization

Trellis walking!
But sequential decoding…

Also, require lookup codebook!

1

2

3

𝑊1 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆1]
𝑊2 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆3]
𝑊3 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆2]

b=10

0

Problem Formulation

• Trellis Coded Quantization (TCQ)

• Need to store trellis. → cache miss.

• Need to store codebook. → cache miss.

• Sequential decoding. → low parallelism & low throughput.

S1

S2

S3

S1

S2

S3

S1

S2

S3

𝑊1 𝑊2
𝑊3

0

1

0

1

TCQ-Dequantization

Trellis walking!
But sequential decoding…

Also, require lookup codebook!

1

2

3

𝑊1 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆1]
𝑊2 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆3]
𝑊3 = 𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘[𝑆2]

b=10

0

s

codebook & trellis >> L1 cache

Slow inference speed!

QTIP

How to support parallel decoding with high dimension.
+ low quantization distortion & w/o codebook

QTIP

How to support parallel decoding with high dimension.
+ low quantization distortion & w/o codebook

1. Incoherence Processing

2.Bitshift Trellis

3.Compute-based Codes

Proposed Method

• Incoherence Processing

• outliers cause poor quantization quality.

• weights and Hessian eigenvectors are not too large in any direction, aiding quantization.

→ enables good shaping.

pseudo-Gaussian
(weights are spread uniformly in all directions)

high coherent
(most weights align in few dominant directions)

RHT

may cause distortion

Random Hadamard Transform

Proposed Method

• Incoherence Processing

• outliers cause poor quantization quality.

• weights and Hessian eigenvectors are not too large in any direction, aiding quantization.

→ enables good shaping.

pseudo-Gaussian
(weights are spread uniformly in all directions)

high coherent
(most weights align in few dominant directions)

RHT

may cause distortion

Random Hadamard Transform

s

Low distortion ☺

Better shaping ☺

Proposed Method

• Bitshift Trellis

• TCQ requires sequential decoding, limiting parallelism.

• Using Viterbi algorithm.

→ enables parallel decoding.

• Viterbi algorithm

• Finding the most likely sequence(minimize metric) of hidden states.

• Used in communication systems, such as error correction codes etc.

0

1

0

1

0

1

state

transition

1. Recursive step
calculate metric (MSE) for all possible path.

2. Storage of back pointers
store previous path’s pointer.

3. Traceback
find optimal path which make best metric.

Proposed Method

• Bitshift Trellis Encoding

• 2𝐿 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑗 𝑒𝑑𝑔𝑒𝑠. 𝑗 = 𝑖2𝑘𝑉𝑚𝑜𝑑2𝐿 + 𝑐, 0 ≤ 𝑐 < 2𝑘𝑉.

• top L-kV bits of node j equal the bottom L-kV bits of node i. If node i → node j.

• where, L = log2(# of codebook), k = bitrate, V = # of weight in groups.

𝐿 = 2, 𝑘 = 1, 𝑉 = 1

Proposed Method

• Bitshift Trellis Encoding

• 2𝐿 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑗 𝑒𝑑𝑔𝑒𝑠. 𝑗 = 𝑖2𝑘𝑉𝑚𝑜𝑑2𝐿 + 𝑐, 0 ≤ 𝑐 < 2𝑘𝑉.

• top L-kV bits of node j equal the bottom L-kV bits of node i. If node i → node j.

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

Proposed Method

• Bitshift Trellis Encoding

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

𝑆 = 10011 → 𝑘 = 1.67 𝑆 = 0000101 → 𝑘 = 2.33

Proposed Method

• Bitshift Trellis Encoding with tail-biting

• Force head and tail to have the same bit. → near-optimal.

Sequence S

𝑺𝒍𝒆𝒇𝒕 𝒉𝒂𝒍𝒇 𝑺𝒓𝒊𝒈𝒉𝒕 𝒉𝒂𝒍𝒇

1
𝑺𝒍𝒆𝒇𝒕 𝒉𝒂𝒍𝒇𝑺𝒓𝒊𝒈𝒉𝒕 𝒉𝒂𝒍𝒇 Encoded S’

𝑺𝒍𝒆𝒇𝒕 𝒉𝒂𝒍𝒇 𝑺𝒓𝒊𝒈𝒉𝒕 𝒉𝒂𝒍𝒇

Extracted overlapped
position of head and tail

constraint

2

Encoded S
3

Viterbi

Viterbi

RHT
Required 2 times of Viterbi algorithm.

Proposed Method

• Bitshift Trellis Encoding with tail-biting

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

𝑆 = 100 → 𝑘 = 1 𝑆 = 000011 → 𝑘 = 2

Proposed Method

• Bitshift Trellis Encoding with tail-biting

𝐿 = 3, 𝑘 = 1, 𝑉 = 1 𝐿 = 3, 𝑘 = 2, 𝑉 = 1

𝑆 = 10010 → 𝑘 = 1 𝑆 = 0000110 → 𝑘 = 2

s

Proposed Method

• Decoding of Bitshift Trellis

• shifted-windowing of sequence.

𝐿 = 3, 𝑘 = 2, 𝑉 = 1
→1bit share

0 0 0 0 1 1

0 0 0 0 0 1 1 1 0

But, this is not a true quantized value.
Need to convert to float value.

Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST

• generate pseudorandom approximately Gaussian number from a L bit word.

→ enable fast decoding on cache-limited hardware.

index LUT value

VQ & TCQ

Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST

• generate pseudorandom approximately Gaussian number from a L bit word.

→ enable fast decoding on cache-limited hardware.

index LUT value

VQ & TCQ

Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST

• generate pseudorandom approximately Gaussian number from a L bit word.

→ enable fast decoding on cache-limited hardware.

high correlations 1MAD 3INST Gaussian

bitshift trellis

Proposed Method

• Lookup-Free Computed Codes

• 1MAD, 3INST

Proposed Method

• Lookup Computed Codes

• HYB

• Computed Codes Results

Experiments

Model
• Llama family (Llama 1, 2, 3)

VQ-based PTQ Methods
• QuIP#
• AQLM (Llama 2)
• GPTVQ-2D (Llama 1)

QTIP Methods
• Lookup-free computated codes
• Hybrid Lookup-computated codes

✓ No fine-tuning for Lookup-free codes, comparison with 2, 3, 4 quantization bit

Lookup-Free Computated Codes

QTIP Code Generation Algorithms
• 1MAD, 3INST

Bitshift Trellis parameters
• L=16, V=1
• Tx=Ty=16 (16x16 tensor core MMA optimization)

Perplexity (PPL)
• dataset : Wikitext2(W2), C4

Lookup-Free Computated Codes

QTIP Code Generation Algorithms
• 1MAD, 3INST

Bitshift Trellis parameters
• L=16, V=1
• Tx=Ty=16 (16x16 tensor core MMA optimization)

Perplexity (PPL)
• dataset : Wikitext2(W2), C4

better than fine-tuned QuIP#, AQLM

Lookup-Free Computated Codes

QTIP Code Generation Algorithms
• 1MAD, 3INST

Bitshift Trellis parameters
• L=16, V=1
• Tx=Ty=16 (16x16 tensor core MMA optimization)

Perplexity (PPL)
• dataset : Wikitext2(W2), C4

better than fine-tuned QuIP#, AQLM

Lookup-Free Computated Codes

QTIP Code Generation Algorithms
• 1MAD, 3INST

Bitshift Trellis parameters
• L=16, V=1
• Tx=Ty=16 (16x16 tensor core MMA optimization)

Perplexity (PPL)
• dataset : Wikitext2(W2), C4

worse than fine-tuned QuIP#, AQLM (except 2-bits)

Hybrid Lookup-Computated Codes (PPL)

Hybrid Lookup code parameters
• L=16, V=2, Q=9 (codebook size 2KiB with FP16)
• Tx=Ty=16

Fine-tuned
• codebook element block-wise fine-tuning

outperforms all cases, especially at 2-bits (high dimensionality)

Llama1 → GPTVQ

Hybrid Lookup-Computated Codes (PPL)

Hybrid Lookup code parameters
• L=16, V=2, Q=9 (codebook size 2KiB with FP16)
• Tx=Ty=16

Fine-tuned
• codebook element block-wise fine-tuning

Llama2 → AQLM

Hybrid Lookup-Computated Codes (Zeroshot)

Evaluation Tasks
• ARCC, ARCE, PIQA, WINO

QTIP not always outperform even at 2-bits

Hybrid Lookup-Computated Codes (Zeroshot)

PPL (ctx=8192), Zero-shot w/ Llama 3
• Llama 3 is known to be more difficult to apply PTQ than Llama 2

For Llama3, outperforms QuIP# because of high dimensionality (TCQ > VQ)

Hybrid Lookup-Computated Codes (Zeroshot)

Llama 3-1, instruct-tuned
• PV-Tuning : fine-tuning focused quantization method

Llama 3-2, instruct-tuned
• 2.5-3X compression

4bit quantization for decoding layer (not embedding)

lower PPL, similar zeroshot

Inference Speed

Batch 1 inference speed
• AQLM : large codebook size
• QuIP# : dimension 8, VQ search
• QTIP : dimension 256, parallel quantization decoding

strong performance with fast inference

Conclusion

Contribution
• High-dimensional vector quantization based on a trellis code
• L1 cache-friendly lookup-free or hybrid lookup computated codes

Limitation
• Weight-only PTQ method
• Low zeroshot accuracy relative to PPL

Appendix

Ablation on Trellis Size (L)
• Large L reduces PPL, but codebook size ↑

Ablation on Trellis Size (V)
• Large V enhances quantization efficiency, but increases PPL
• Larger L can cover effect of large V

Appendix

Decoding Speed on Different GPUs

	Slide 1: QTIP: Quantization with Trellises and Incoherence Processing
	Slide 2: Key contributions
	Slide 3: Key contributions
	Slide 4: Key contributions
	Slide 5: Key contributions
	Slide 6: Key contributions
	Slide 7: Background (Contents)
	Slide 8: Background (Quantization)
	Slide 9: Background (Quantization)
	Slide 10: Background (PTQ and QAT)
	Slide 11: Background (SQ vs. VQ)
	Slide 12: Background (SQ vs. VQ)
	Slide 13: Background (SQ vs. VQ)
	Slide 14: Related work (Incoherence processing)
	Slide 15: Related work (Incoherence processing)
	Slide 16: Related work (Incoherence processing)
	Slide 17: Related work (TCQ)
	Slide 18: Related work (TCQ)
	Slide 19: Related work (TCQ)
	Slide 20: Related work (TCQ)
	Slide 21: Related work (TCQ)
	Slide 22: Problem Formulation
	Slide 23: Problem Formulation
	Slide 24: Problem Formulation
	Slide 25: Problem Formulation
	Slide 26: Problem Formulation
	Slide 27: Problem Formulation
	Slide 28: Problem Formulation
	Slide 29: Problem Formulation
	Slide 30: QTIP
	Slide 31: QTIP
	Slide 32: Proposed Method
	Slide 33: Proposed Method
	Slide 34: Proposed Method
	Slide 35: Proposed Method
	Slide 36: Proposed Method
	Slide 37: Proposed Method
	Slide 38: Proposed Method
	Slide 39: Proposed Method
	Slide 40: Proposed Method
	Slide 41: Proposed Method
	Slide 42: Proposed Method
	Slide 43: Proposed Method
	Slide 44: Proposed Method
	Slide 45: Proposed Method
	Slide 46: Proposed Method
	Slide 47: Experiments
	Slide 48: Lookup-Free Computated Codes
	Slide 49: Lookup-Free Computated Codes
	Slide 50: Lookup-Free Computated Codes
	Slide 51: Lookup-Free Computated Codes
	Slide 52: Hybrid Lookup-Computated Codes (PPL)
	Slide 53: Hybrid Lookup-Computated Codes (PPL)
	Slide 54: Hybrid Lookup-Computated Codes (Zeroshot)
	Slide 55: Hybrid Lookup-Computated Codes (Zeroshot)
	Slide 56: Hybrid Lookup-Computated Codes (Zeroshot)
	Slide 57: Inference Speed
	Slide 58: Conclusion
	Slide 59: Appendix
	Slide 60: Appendix

