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1. Preliminary study

▪ What is the KV Cache?

▪ Long Sequence

▪ Challenge in KV Cache compression
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What is the KV-Cache? 1. Preliminary study

✓ Transformer-based models generate the next token (word) in an 

autoregressive manner based on previous inputs

✓ They predict the next word using the previously input text information.

[1] https://medium.com/@joaolages/kv-caching-explained-276520203249
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What is the KV-Cache? 1. Preliminary study

✓ Repeated computations are performed during the auto-regressive 

generation process

▪ recalculating the same previous token attention at each generation step

▪ Computational cost !!!

[1] Ashish Vaswani et. al., “Attention Is All You Need” , arxiv:1706.03762
[2] https://medium.com/@joaolages/kv-caching-explained-276520203249

5

https://medium.com/@joaolages/kv-caching-explained-276520203249


What is the KV-Cache? 1. Preliminary study

✓ By caching the previous Keys an Values, it is possible to focus on only 

calculating the attention for the new token

✓ The matrices obtained with KV caching are small → fast matrix 

multiplications

✓ faster inference & to avoid wasteful re-computation 

[1] https://medium.com/@joaolages/kv-caching-explained-276520203249

6

https://medium.com/@joaolages/kv-caching-explained-276520203249


Long Sequence 1. Preliminary study

✓ KV caching comes with its own pitfalls 

✓ For longer context lengths, the KV cache becomes the dominant memory 

bottleneck

[ Model size and activation memory size estimates for different LLaMA models ]

[1] Coleman Hopper et. al., “KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization” , NuerIPS 2024

7



2. Background and related work

▪ Challenge in KV Cache compression

▪ Approach to KV Cache quantization 
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Challenges in KV-Cache Compression 2. Background

✓ Both compression and decompression speeds

▪ Dynamically adding new entries to the caches as well as decoding them at inference

✓ Inherent structure in caches

▪ The existence of attention sinks

▪ Large outlier values
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Approach to KV-Cache quantization 2. Background

✓ Quantization Granularity

✓ Error Handling

✓ Cross Layer merging
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Approach to KV-Cache quantization 2. Background

✓ Quantization Granularity

▪ An approach to determining at what scope or level the scale factor should be set for 

quantization

▪ Examples include Global, Group-wise, Channel-wise, Token-wise, hybrid granularity

[1] Zirui Liu et. al., “KIVI A Tuning-Free Asymmetric 2bit Quantization for KV Cache”, arxiv:2402.02750
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Approach to KV-Cache quantization 2. Background

✓ Error Handling

▪ Approaches to minimizing and correcting quantization error

▪ Most methods maintain a window of recent historical KV cache in full precision to 

preserve accuracy

[1] Saleh Ashkboos et. al., “QuaRot: Outlier-Free 4Bit Inference in Rotated LLMs” , NuerIPS 2024
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Approach to KV-Cache quantization 2. Background

✓ Cross Layer merging

▪ Combining the KV caches from multiple layers into a single shared cache to reduce 

memory usage

[1] Yifei Yang et. al., “KVSHARER: EFFICIENT INFERENCE VIA LAYER-WISE DISSIMILAR KV CACHE SHARING”, arxiv:2410.18517
[2] Akide Liu et. al., “MiniCache: KV Cache Compression in Depth Dimension for Large Language Models”, arxiv:2405.14366
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3. Method

▪ Core research idea

▪ Inter-Layer dependencies

▪ AQUA-KV Calibration

▪ AQUA-KV Inference

14



Core research idea 3. Method

✓ Remove predictable information from the KV cache and cache only the 

residuals after quantization

✓ Predict the current layer’s KV cache based on the Key and Value of the 

previous layer

Predict StoreStore

Residual
Compression

KV cache
Compression

[ 100, 200, 300 ,,,]

[ 20, 40, 60  ,,,] Residual

KV vector [ 80, 160, 240  ,,,] Predict

+
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Inter-Layer Dependencies 3. Method

✓ Why Analyze Inter-Layer Dependencies?

▪ To build a predictor, the Key/Value of the current layer must be predictable

▪ AQUA-KV assumes a structure where the Key/Value is predicted linearly across layers

▪ To validate this hypothesis, the inter-layer dependency is experimentally verified across 

diverse inputs

Predictor 

f(x)
X Y

Various

inputs 

Keys & 

Values 
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Inter-Layer Dependencies 3. Method

✓ Linear probe model

▪ Train linear regression model 

▪ Prediction and interdependency analysis of i-th layer keys or values across various 

inputs

✓ Various inputs

▪ Previous layer keys and values, adjacent tokens, and different vector types

✓ Analysis of Layer Dependencies

▪ Inter Layer : cached vectors at different layer or tokens 

▪ Intra Layer : (key & value) vectors within the same layer

▪ Extracting with the simple predictor models
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Inter-Layer Dependencies 3. Method

✓ Explained variance ratio

▪ A metric that quantifies how well the model explains the variance of the actual values.

▪ A higher value indicates better information reconstruction from the source input.

▪ Ensures fair comparison across layers with different scales (e.g., size and distribution of 

Keys and Values).

▪ If a predictor captures 90% of the variance, it means that the subsequent quantization 

only needs to capture the remaining 10% of variance

▪ This would mean that the resulting quantization will also have roughly 10 times smaller 

error

▪ 1bit and 2bit quantizer usually explain 0.75 and 0.89 variance respectively
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Inter-Layer Dependencies 3. Method

✓ What Do the Results Tell Us? 

▪ Keys and Values can be predicted based on inter-layer dependency

▪ For attention keys, using just one previous already achieves errors similar to 2bit 

quantization

▪ For values, the dependency on previous layer is also strong

▪ Strong dependencies between key and values within the same layer
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AQUA-KV Calibration 3. Method

✓ AQUA-KV

▪ Exploits inter- and intra-layer dependencies to improve quantization accuracy

✓ Predictors

▪ Per layer

• Key predictor, Value Predictor

▪ Sequential Prediction

• Operate layer-by-layer

▪ Reflect the way predictors are used

• For training: reconstructed cache entries as input

▪ Key Predictor

• previous layer keys

▪ Value Predictor

• previous layer keys + current layer keys

• Cannot predict in both direction within same layer

• 𝑉𝐿,𝑟𝑒𝑐 → 𝐾𝐿, 𝐾𝐿,𝑟𝑒𝑐 → 𝑉𝐿

• Values are harder to predict
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AQUA-KV Calibration 3. Method

✓ AQUA-KV

▪ Exploits inter- and intra-layer dependencies to improve quantization accuracy
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AQUA-KV Calibration 3. Method

✓ AQUA-KV

▪ Exploits inter- and intra-layer dependencies to improve quantization accuracy

✓ Lightweight Linear Regressors

▪ Fast training with closed-form solutions

• 𝑊∗ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

• ~ 4 hours training for Llama-3.1-70B

▪ Low compute & memory overhead

• Modern LLMs: Grouped Query Attention (GQA)

✓ Quantization

▪ Only the residual parts that cannot be predicted

▪ Attention Sink

• Keep the first 4 tokens uncompressed

▪ Recent token buffer

• Up to 128 tokens uncompressed

• Improves accuracy on recent tokens
[1] Ainslie, Joshua, et al. "Gqa: Training generalized multi-query transformer models from multi-head checkpoints." arXiv preprint arXiv:2305.13245 (2023).
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AQUA-KV Calibration 3. Method

✓ AQUA-KV

▪ Exploits inter- and intra-layer dependencies to improve quantization accuracy

✓ Lightweight Linear Regressors

▪ Fast training with closed-form solutions

• 𝑊∗ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

• ~ 4 hours training for Llama-3.1-70B

▪ Low compute & memory overhead

• Modern LLMs: Grouped Query Attention (GQA)

✓ Quantization

▪ Only the residual parts that cannot be predicted

▪ Attention Sink

• Keep the first 4 tokens uncompressed

▪ Recent token buffer

• Up to 128 tokens uncompressed

• Improves accuracy on recent tokens
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AQUA-KV Inference 3. Method

✓ Inference

▪ Decode → Computation → Encode

• Reconstruct KV-cache from a compressed representation
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✓ Inference

▪ Decode → Computation → Encode

• Inference combines the current token’s KV with the reconstructed cache from decode step

AQUA-KV Inference 3. Method
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✓ Inference

▪ Decode → Computation → Encode

• Only residual part that the predictor cannot predict is compressed and stored

AQUA-KV Inference 3. Method
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4. Evaluation

▪ Evaluation Settings

▪ Detailed Evaluation

▪ Large-Scale Evaluation
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Evaluation Settings 4. Experiments

✓ Predictor Calibration

▪ Dataset: RedPajama

• Random 256 sequences with 8192 tokens

• Use 32 of sequences as holdout for hyperparameter selection

• Use remaining 224 for training the predictors

✓ Perplexity evaluation

▪ Account for the effect of recent token buffers and attention sinks

✓ LongBench v1

▪ 14 English-language tasks

• SamSum, 2WikiMQ, TREC, HotpotAQ, MultiNews, TriviaQA, QMSum, PsgCount, MFQA_en,

Musique, Qasper, PsgRetr, NarrativeQA, GovReport

▪ Without restricting the input 8192 tokens

• To better explore the effectiveness of AQUA-KV on longer sequences
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Detailed Evaluation 4. Experiments

✓ Alternative Quantizer

▪ Addition of AQUA-KV to Quanto

• Group size: 64, per token quantization

• A significant improvement in both PPL and LongBench avg scores

▪ Addition of AQUA-KV to HIGGS

• 𝑑 = 2, 𝑛 ∈ 16,64,256 , 2-, 3-, 4-bit for each

• Outperforms in both PPL and LongBench avg scores

✓ Layer Sharing

▪ Sharing multiple layer pairs causes major accuracy drops
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Detailed Evaluation 4. Experiments

✓ Predictor Architecture

▪ Linear regression (main proposal)

▪ Reduce-Rank Regression(with rank=256)

• Slight increase in PPL

▪ MLP with two layers

• Double hidden dimension + Layer normalization

• Slightly better performance

• A significant cost in size and speed

▪ Linear regressor + GPTQ

• Effective for scenarios where minimal model size is crucial
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Detailed Evaluation 4. Experiments

✓ First Layer Keys & Values

▪ Use 4-bit HIGGS quantization

• Since the first layer is not compressed by AQUA-KV predictors
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Detailed Evaluation 4. Experiments

✓ Rotary Positional Embedding (RoPE)

▪ Natural dilemma about whether to apply predictors and quantizers

• Better in Pre-RoPE

• Simple linear models are not rotation-equivariant
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Detailed Evaluation 4. Experiments

✓ Ablation Analysis
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Large-Scale Evaluation 4. Experiments

✓ Evaluation of AQUA-KV with HIGGS backbone

▪ Particularly noticeable for extreme 2-bit compression
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Large-Scale Evaluation 4. Experiments

✓ Evaluation of AQUA-KV with HIGGS backbone

▪ Particularly noticeable for extreme 2-bit compression

AQUA-KV for 2 bit compression is roughly equivalent to the 3-bit HIGGS baseline quantizer

36



5. Discussion

▪ Summary

▪ Limitations & further research

▪ Our Observed Limitations
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Conclusion 5. Discussion

✓ Summary

▪ Analysis of KV cache structure

• Identified compression opportunities via mutual information

▪ AQUA-KV compression framework

• Exploit inter- and intra-layer dependencies

• Compatible with any quantization

✓ Limitations & further research

▪ Inference speed

• Depends heavily on the backbone quantizer

• Cannot be faster than the baseline

• For Llama-70B

• HIGSS: 5.91 tokens/s

• AQUA-KV: 5.76 tokens/s

▪ Unoptimized pytorch can be improved with specialized libraries.

Redundant computations
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Conclusion 5. Discussion

✓ Our Observed Limitations

▪ Predictor overhead

• Additional memory and compute costs

• No evaluation is provided for non-GQA architectures

• Although claimed to be minimal due to GQA

• Suggesting the justification may be incidental rather than fundamental.

▪ Limited Parallelism

• Current key usage for value predictor restricts parallel execution

• Unclear whether the performance gain justifies the added cost

▪ The Lack of Evalutaion

• There is no EVR results for 𝑉𝐿−1; 𝐾𝐿

• only 𝐾𝑉𝐿−1; 𝐾𝐿 and 𝐾𝑉𝐿−1 are evaluated

• What if using 𝐾𝑉𝐿−1 yields comparable performance with only minor inference-time overhead?
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Thank you
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AQUA-KV Inference Appendix.

✓ Encode

▪ Only residual part that the predictor cannot predict is compressed and stored

✓ Decode

▪ Reconstruct KV-cache from a compressed representation
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Auto-regressive PPL evaluation
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Appendix.


	기본 구역
	Slide 1: Cache Me If You Must:  Adaptive Key-Value Quantization for Large Language Models 
	Slide 2: Contents
	Slide 3
	Slide 4: What is the KV-Cache?
	Slide 5: What is the KV-Cache?
	Slide 6: What is the KV-Cache?
	Slide 7: Long Sequence
	Slide 8
	Slide 9: Challenges in KV-Cache Compression
	Slide 10: Approach to KV-Cache quantization
	Slide 11: Approach to KV-Cache quantization
	Slide 12: Approach to KV-Cache quantization
	Slide 13: Approach to KV-Cache quantization
	Slide 14
	Slide 15: Core research idea
	Slide 16: Inter-Layer Dependencies
	Slide 17: Inter-Layer Dependencies
	Slide 18: Inter-Layer Dependencies
	Slide 19: Inter-Layer Dependencies
	Slide 20: AQUA-KV Calibration
	Slide 21: AQUA-KV Calibration
	Slide 22: AQUA-KV Calibration
	Slide 23: AQUA-KV Calibration
	Slide 24: AQUA-KV Calibration
	Slide 25: AQUA-KV Inference
	Slide 26: AQUA-KV Inference
	Slide 27: AQUA-KV Inference
	Slide 28
	Slide 29: Evaluation Settings
	Slide 30: Detailed Evaluation
	Slide 31: Detailed Evaluation
	Slide 32: Detailed Evaluation
	Slide 33: Detailed Evaluation
	Slide 34: Detailed Evaluation
	Slide 35: Large-Scale Evaluation
	Slide 36: Large-Scale Evaluation
	Slide 37
	Slide 38: Conclusion
	Slide 39: Conclusion
	Slide 40
	Slide 41: AQUA-KV Inference
	Slide 42: Auto-regressive PPL evaluation


