LLM compression

Spring 2025

Compressing LLMs

e Post-training compression has been the mainstream
* Retraining cost Is too large, including alignment

e 2025. Shifting toward methods involving retraining (e.g., Gemma QAT)

Unlabeled Collection of (prompt, Collection of @
corpus response) pairs prompts Human labeler

)
Instruction Remforcement learning
Pre-t
{ R } (_{ fine- tunlng from human feedback }
Pretrained Instruction Reinforcement learning
LLM fine-tuned LLM fined-tuned LLM
Dataset x00 billions to 1.x ~XK to X0k ~x0k prompt
size trillion tokens (prompt, response)
Example GPT-3, LLaMA, Dolly-v2, Claude, GPT-4,
of models Falcon, BLOOM Falcon-instruct ChatGPT

(c) Reinforcement learning

(a)Pre-training (b) Instruction fine-tuning from human feedback

Compressing LLMs

* Also, more efforts on resolving memory bottleneck
e e.g., weight quantization > weight & activation quantization

e 2025. Activation quantization as well, especially the KV cache

%
(bt V__prev
K_prev (cached)
(cached) i,
L] FR5E |
Q_new Lel /\

|‘ KV-cachelO:K]

KV-cochelK+1]

KV-cache

Popular ideas

 Thus, much emphasis on finding a good approximation of original model

min |[f(;w) — fOc W)

&:compressed

e Two mainstream approaches:

e Hessian-based
“Minimize the compression error very carefully, using Hessians”

e Qutlier-driven
“Identify outliers, and use these to keep compression error small”

Hesslan-based Approach

Basic iIdea

e Already discussed Hesslan-based loss approximation in sparsity
e Optimal Brain Damage

e Approximate the loss of removing a weight as:
foow+06) — fg,w) ~ 6 "HS
e Optimal Brain Surgeon
e Prune the weight with minimal score: Wl.2/2[H_1]ii
e Update other weights by —wiH_lei/[H_l]ii

e |dea. Perform OBS for LLMs

Basic iIdea

e Challenge. Computing Hessian inverse for LLMs, multiple times
e Very heavy: trillion x trillion matrix

e |dea. Approximate by the layerwise subproblem

min [|[WX — VAVXH%
w

e Further approximate it by the rowwise subproblem

min HWZ.T:X — WTXH%
W

e Then the Hessian becomes: H = 2XX' € R%oXdcol

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022

Basic iIdea

e Again, computing the Hessian inverse can be done recursively by using the
matrix inversion formula:

—1 Tyy—1
H_1 oxy—1 m—1Xm Xy —1

— _1 L —
" m N+x,H! x

* Problem. Need to compute Hesslan after removing each weight

e LLMs are very large, so a lot of repetitions!

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022

Basic iIdea

 Fortunately, we have the following lemma:

e Lemma. Given an invertible d_; X d.; matrix H and its inverse H™!, let H_,
denote the Hessian with row and column i removed. Then, we have:

H!={ H! b H-'H!
—1 [H_l] .ol l,.

i .
—1

» Gaussian elimination of row/col i in H™!, then remove them completely

« Complexity of O(d>.,)

col

e Allows parallel processing of rows

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022

SparseGPT

 Problem. Keeping track of row-wise Hesslan inverse iIs memory-heavy

(HMz:)_l

Hessian H

reconstr:ly

(_ (..............

"

select & invert

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023

SparseGPT

e |dea. Iterate over columns, removing certain fraction at a time and freezing the
surviving weights

p% sparse
update [RO S N S S5 ~

A

mask M

prune

frozen

paunud 184 jou

%@@
P

P : P
. . . - .
- . M . 4
. : . : .
: : . . :
: ¢ I tE &
- vl 3
. . - M M -
: ¢ N B T
‘.. : :- ; S ': l" E s
PR R R ! 5 e 3
o5 F ;b O
57 Pl FE
IS :ord -
N < r o A M :
‘s“:.' L i
wuu, * S Poid
r 4 o4 v 2 P4
. o4 r s
.‘. ... '.n : :- :’
"“"" : 3 3
-l . .
ettt roq
P
e
Q.'. ..

(Hy,) > (Hy,) > (Hyp,) ™' » (Hy,) ™! (Hy,) ™

elimination

(HUa) !

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023

Quantization

o Similarly, the weight quantization can be done using Hessians

 For simplicity, assume that we have a fixed grid, and put weights on grid
one-by-one.

e Similar derivation gives that the weight updates needed to compensate
for quantizing w, Is:

. quant(w,) — w, _—

—1 q
[H™],,
 Weights quantized later are likelier to change more

 Heuristic. Quantize the outliers, as soon as they appear

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022

GPTQ

 Order. Later, people discovered that the order does not matter much

e Simple quantized in an order, In parallel, save time

Inverse Layer Hessian

(Cholesky Form) Weight Matrix / Block

e More tricks

e Lazy batching: Update later columns
a bit slowly to prevent frequent memory

«—>
access
e Cholesky reformulation: Improved
numerical stabllity, avoiding the computed intially block quantized recursively
o column-by-column
accumulation of errors from repeated '
updates quantized weights [T “uanized waohs

Frantar et al.,, “GPTQ: Accurate Post-Training Quantization for Generated Pre-Trained Transformers,” ICLR 2023

Outlier-driven Approach

Outliers?

 Transformer activations of very large magnitude

e Happens in a small number of channels / tokens / layers

outlier X W
% 10 \v | | 0.1 | I
L
E’ low eftective bits
E ERAN
=

0
hard to quantize very easy to quantize

—

Xiao et al, “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Timkey & van Schijndel (EMNLP 2021)

e Observes that 1-3 channels In later layers are outliers

e Dominates the cosine similarity computation

xInet-base-cased layer # 12 gpt2 layer # 12
Cosine
Similarity
Model |
Behavior
0.00 0.25 0.50 0.75 1.0 0.00 0.25 050 0.75 1.0
Proportion by dimension Proportion by dimension
roberta-base layer # 12 bert-base-cased layer # 12

Cosine
Similarity

!

Model
Behavior

0.00 0.25 0.50 0.75 1.0 0.00 0.25 0.50 0.75 1.0
Proportion by dimension Proportion by dimension

Timkey and van Schijndel,, “All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representational Quality,” EMNLP 2021

Bondarenko et al. (EMNLP 2021)

e Qutliers are the residual sum after FFN of layer 10 & 11

e Large accuracy drop of W32A8 / W8AS8 performance on BERT

Quantized activations STS-B MNLI QNLI RTE
none (FP32 model) 89.09 8491 91.58 70.40
all 62.64 42.67 50.74 48.74
all, except softmax input 7092 4254 51.84 48.74
all, except sum of embeddings 67.57 4682 51.22 51.26
all, except self-attention output 7047 46.57 5098 50.90
all, except softmax output 72.83 50.35 50.23 4946
all, except residual connections after FFN 81.57 82.56 89.73 67.15
same as above, but for layers 10, 11 only 79.40 81.24 88.03 63.90

?
X
“Layer Norm_

GELU

x t
é‘ Multi-headed
Self-Attention

- !
!

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021

Bondarenko et al. (EMNLP 2021)

Happens for [SEP] token, and small number of channels

e Qutliers have small variance, though

input Input
10 //\ — O
U — et | N i’ =
0
__ ; |
-10 -
-20 —— max = /\\~ﬁ B ',l/‘/'_/ \‘\»\ 8 I
=30 | —— min v
—Mean m
\/(,)\ (S\Q« Q:x\ \f\{o ’b.\% \C’c‘/ 0&\ ((8\ o(\@ ’O\\‘\ ‘\4_?/(7 \\S\@ ed}v C\{&‘o QS\ - 10 . . .
¢ C® T SEN & & < 1 Embedding dimension 768
<
output
output
el D SRR SR ST S S S Y ST SR A S S W |
-200 \ / \ Y
| / \ -
-400 \\ / \ g
_ \ / '\' o
600 | —— max \ \ o
-800 | — rn::'qm \‘ /' ‘\ n
——— 6+ 5td - ‘\‘ ©
~1000 o
(J\/g)\ &% ’\Q::\ & & (\\(g, 0&\ QS\ ooe ?}\4\ _&Qf; &% & qf\{& ‘8\ O .
S AR & @ O ¢ N & & < 0 . . .
¢ & ¢ 1 Embedding dimension 768
(a) (b)

Figure 2: Full-precision FFN input (top row) and output (bottom row) in 11th layer of BERT. (a) Per-token ranges
for first data sequence in the MNLI development set. (b) Visualization of outliers across embedding dimension for
the first ten data sequences in the MNLI development set. Dark grey color indicates values that exceed six standard
deviations from the mean of the activation tensor.

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021

Dettmers et al. (NeurlPS 2022)

* More significant in >6.7B models (attention projection & 1st FFN output)

e At 6./B scale, outliers occur in all layers and 75% of all tokens

Method | 100 ‘
—— LLM.int8() | 5
8-bit baseline | 9
16-bit baseline e @ 80
=
> ©
C :
>
O 0.6 m
@ S 60
"5 et
-
< O
O 0 O
g 0-> O 40
o >
= ©
)
s S
0.4 o 20
> © emergence of
-
SIS S of - C 4 outlier features
outlier features | O
0.3 | Q |
I N R R R R S 0 2 4 6 8 10 12
N e ™ Parameters in billions
Parameters

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurlPS 2022

60

Ul
o

S
(-

N
o

Median feature outlier magnitude
(- W
- o

Dettmers et al. (NeurlPS 2022)

e Larger model => Larger outlier magnitude, greater number of outlier features

emergence of 3

outlier features

35

30

25 20
C4 perplexity

15

7
6
-
C
3 5
O
V)
)
-
> 4
-
(V)
)
(Tl
3
=
-
@ /
2 emergence of
outlier features
1
35 30 25 20 15

C4 perplexity

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurlPS 2022

Absolute Value

QI\)-RO\OO

P
S

+—/—

~
S

0

1000

2000 2000
CéQ”/Ze/ 4000

5000 0
Activation (Original)

Xiao et al, “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Basic iIdea

* |dea. If certain channels are likelier to have larger input:

e pruning / quantizing the weights connected to the channel is likelier to
hurt the model accuracy more

WX — WX]||?

e selecting quantization range can be problematic: all non-outliers are likely
to be quantized to zero

 Question. If we know certain channels are outlier-prone, what can we do?

Activation Quantization
e (1) Divide-and-Quantize

e Assign different quantization range to different groups of channels

W I W I
X X

X
(a) Per-tensor (b) Per-embedding (c) Per-embedding-group

Figure 3: An overview for several choices of activation quantization granularity. The color indicates quantization
parameter sharing. In all cases we assume per-tensor weight quantization.

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021

Activation Quantization

e (1) Divide-and-Quantize

e Assign different precision to different channels

LLM.Int8()

f

2 |45|-

171 -

X it

-63

-1 |-83

FP16

L

Outliers

Regular values

>
1|0
2|0
o1z| W
3|2
1|2
FP16

Y

8-bit Vector-wise Quantization

1 !
: (1) Find vector-wise constants: Cw & Cy (2) Quantize (4) Dequantize E
: i
] X *(127/C,) = X ;
] X 1 9 - Cw F16(/Cx) 18 OutB’; (CX®CW) out :
1 — - U

: 2(2]-1]1 1|0 WF;;s(]'ZWCW) =W 127*%127 F16 E
: 310132 0 |-2 :
: 1[-1]-1]0 112 (3) Int8 Matmul ;
. F16 F16 :
E T W x|8 W8= Ol’It|32 E
. |

e S — .
' [

]

' (1) Decompose outliers (2) FP16 Matmul :

- n

' [

- —]

E 45}17 W XF16 WF16 OUtF16 E _ Out

i 210 - FP16
; X |12}63 15 :

: 3783 F16 :

. F16 :

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurlPS 2022

Activation Quantization
e (2) Migrate the difficulty to weight
o Defer scaling factors in the weights WX = (WA~ (AX)

e A= (max(|X;|)/max(|W:]|))“

. ogtier —xp Wi Original: e M SmoothQuant:

ks low effective bits .. A : 1 I

. X l 1o X=X

Y 2 1 2|12 dog 12 1 -2

7 hard to quantize 0 very easy to quantize x [=16 2 6 1 -1 -11'1 EE I -4 2 2 x4 -4 -4
(a) Original >[1-2 8 -1 -9 5 .1 9 :2 |12 2 -1 -3 5 .1 9

moothed | Migrate difficulty o= | [———— [l Bl i e : il

g1y LTS W 216 2 9:|-1-1 1|:1:i:1 4 1 3: |33 3

i: \/\/\/\/\N\/ \/\/\fv\/v\/ W s = V/max [X[7max [W[W = diag(s)W

7 easy to quantize 0 easy to quantize

Wei et al,, “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,"NeurlPS 2022
(b) SmoothQuant Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Activation Quantization

e (2) Migrate the difficulty to weight

e Can be scaled using the scaling factors in the LayerNorm

X Lover | X a - D v X ¢ D
Nayer Quant > FEN -D—> l Non-:;alln | >
. orm / N J - 4 & /

Figure 3: Comparison of the quantization flow before (left) and after (right) Gamma Migration. The original
LayerNorm = the Non-scaling LayerNorm * «y. For other detailed applications such as LayerNorm in encoder-
decoder structure, see Fig. 6, Fig. 7.

Wei et al,, “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,"NeurlPS 2022
Xiao et al, “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Weight Quantization

e Activation distribution helps discover important weights

bad hardware efficiency)

Wepis Q(W)m3 Q(W)Mixprec Q(W)mir3
+12[-0.2|-2.4|-3.4 +1| 40| -2 -3 i lv0l 21— | , |
—2.5|-3.5|+1.9|+1.4 3| -4| +2]| +1 determine the salien]: __________ > |-2.5-3.5[+1.9|+1.4 scale before quantlze H
~0.9]+1.6/-2.5|-1.9 1| +2| =3[-2 weights by -1| 42| -3]| -2 | /&—’
~3.5|+1.5/+0.5|-0.1 Q —4| 42| +1]| +0 aCtiVatiOI},o"" —4| 42| +1| +0 :-
+1.8|-1.6/-3.2|-3.4 > || = || =n || == 2l 2ol 23l 23 t average mag.
+2.4|-3.5|-2.8|-3.9 +2| -4 -3|-4 | +2| -4 -3| -4
+0.1|-3.8|+2.4|+3.4 +0| —4 | 42| +3 X | * | +0| -4| +2]| +3 X *
+0.9[+3.3|-1.9|-2.3 +1| +3| -2 -2 | +1] 43| 2| =2

(a) RTN quantization (PPL 43.2) (b) Keep 1% salient weights in FP16 (PPL 13.0) (c) Scale the weights before quantization (PPL 13.0)

Lin et al., “AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration,” MLSys 2024

Weight Pruning

e Activation distribution helps discover important weights

Magnitude Pruning Wanda
_____ S =|W| alol1!-1 S = [W|-[[X]2
s lo[1]1] [alo1]1] [4]o]o]o]| w 3|21 3| [4/0][8[3] [+][o]1]o0
w3 |2/-1]3/+3]2 13 +/3]2 03 3102+ 3/4]8 9[>0 0 1|3
3[1fof2] {3]1]o]2] [3[0]0] 320 6] [3]0]0]2
Weights lw—e_ié_r;t_ir_r{;;gr’;é&:_e_l Pruned Weights IXllz| 1| 2 {787 3 Weight Importance Pruned Weights
grouped per layer Weights and activations grouped per output

Figure 1: Illustration of our proposed method Wanda (Pruning by Weights and activations), compared
with the magnitude pruning approach. Given a weight matrix W and input feature activations X,
we compute the weight importance as the product between the weight magnitude and the norm of
the corrsponding input activations (|W| - || X||2). Weight importance scores are compared on a
per-output basis (within each row in W), rather than globally across the entire matrix.

Sun et al., “A Simple and Effective Pruning Approach for Large Language Models,” ICLR 2024

Rotation

e |dea. Mitigate the outliers by multiplying the rotation matrix

e For some orthogonal rotation matrix R

WX = (WR")(RX)

---------------- -1 MO0~ ="=====+9

Rotation Q

X2 — (x1 - x2)/ Sqrt(Z)

~l
O
-

X1 100
(x1 + x2)/sqrt(2)

Ashkboos et al, “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024

Rotation

e Jo get the rotation matrix:

e Random Hadamard rotation

e Learned rotation (e.g., SpinQuant, via Cayley SGD)

o Often represented as blockwise rotation + permutation

! |
| L 05! | “‘ 0.30]
150 0.4 o4l N | ‘ ‘} s \ \
. i |
0.20
1.00 0.3 0.3 ‘“ o
0.75 0.2 . | . 0.15
0.50 - I I 0.10
: »‘ S 0.1 ' 0
0.25 @ i ‘,; | @ | @ 0.05] | A
0.00 0 0.0 150 0.0 0.005 8
o o 0 0 o ' :
y Rotation 100 & Permutation 0 | 100 & Rotation
ﬁ 200 # 2000 ﬁ
an 3000 20 an 3000 >0
" 4000 O nel

00000

00000

Ashkboos et al, “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024

Prefix Tuning

 |dea. Add some special “attention sink” tokens as the prompt token
 These suck up all attention, and mitigates outliers in later tokens

e Apply further fine-tuning

Activation Activation
(Original) (CushionCache)
2k [2K 2k
1k "1k
0 // o
4000 4000
SR 2000
@@ 'z}@ & 1000
(’)\) D '&'Q/ O \b A
& &® '
Hard to quantize Searching Cushion Easy to quantize

& Caching

Son et al,, “Prefixing Attention Sinks can Mitigate Activation Outliers for Large Language Model Quantization,” EMNLP 2024

Wrapping up
e LM compression = Model compression + LLM-specific constraints

e Much focus on practicality

That's it for today (-

