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Compressing LLMs

e Post-training compression has been the mainstream
* Retraining cost Is too large, including alignment

e 2025. Shifting toward methods involving retraining (e.g., Gemma QAT)
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Compressing LLMs

* Also, more efforts on resolving memory bottleneck
e e.g., weight quantization > weight & activation quantization

e 2025. Activation quantization as well, especially the KV cache
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Popular ideas

 Thus, much emphasis on finding a good approximation of original model

min  |[f(;w) — fOc W)

&:compressed

e Two mainstream approaches:

e Hessian-based
“Minimize the compression error very carefully, using Hessians”

e Qutlier-driven
“Identify outliers, and use these to keep compression error small”



Hesslan-based Approach



Basic iIdea

e Already discussed Hesslan-based loss approximation in sparsity
e Optimal Brain Damage

e Approximate the loss of removing a weight as:
foow+06) — fg,w) ~ 6 "HS
e Optimal Brain Surgeon
e Prune the weight with minimal score: Wl.2/2[H_1]ii
e Update other weights by —wiH_lei/[H_l]ii

e |dea. Perform OBS for LLMs



Basic iIdea

e Challenge. Computing Hessian inverse for LLMs, multiple times
e Very heavy: trillion x trillion matrix

e |dea. Approximate by the layerwise subproblem

min [|[WX — VAVXH%
w

e Further approximate it by the rowwise subproblem

min HWZ.T:X — WTXH%
W

e Then the Hessian becomes: H = 2XX' € R%oXdcol

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022



Basic iIdea

e Again, computing the Hessian inverse can be done recursively by using the
matrix inversion formula:

—1 Tyy—1
H_1 oxy—1 m—1Xm Xy —1

— _1 L —
" m N+x,H! x

* Problem. Need to compute Hesslan after removing each weight

e LLMs are very large, so a lot of repetitions!

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022



Basic iIdea

 Fortunately, we have the following lemma:

e Lemma. Given an invertible d_; X d.; matrix H and its inverse H™!, let H_,
denote the Hessian with row and column i removed. Then, we have:

H!={ H! b H-'H!
—1 [H_l] .ol l,.

i .
—1

» Gaussian elimination of row/col i in H™!, then remove them completely

« Complexity of O(d>.,)

col

e Allows parallel processing of rows

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022



SparseGPT

 Problem. Keeping track of row-wise Hesslan inverse iIs memory-heavy

(HMz:)_l

Hessian H

reconstr:ly

(_ ( ..............

"

select & invert

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023



SparseGPT

e |dea. Iterate over columns, removing certain fraction at a time and freezing the
surviving weights
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Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023



Quantization

o Similarly, the weight quantization can be done using Hessians

 For simplicity, assume that we have a fixed grid, and put weights on grid
one-by-one.

e Similar derivation gives that the weight updates needed to compensate
for quantizing w, Is:

. quant(w,) — w, _—

—1 q
[H™],,
 Weights quantized later are likelier to change more

 Heuristic. Quantize the outliers, as soon as they appear

Frantar et al, “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurlPS 2022



GPTQ

 Order. Later, people discovered that the order does not matter much

e Simple quantized in an order, In parallel, save time

Inverse Layer Hessian

(Cholesky Form) Weight Matrix / Block

e More tricks

e Lazy batching: Update later columns
a bit slowly to prevent frequent memory

«—>
access
e Cholesky reformulation: Improved
numerical stabllity, avoiding the computed intially block  quantized recursively
o column-by-column
accumulation of errors from repeated '
updates quantized weights [T “uanized waohs

Frantar et al.,, “GPTQ: Accurate Post-Training Quantization for Generated Pre-Trained Transformers,” ICLR 2023



Outlier-driven Approach



Outliers?

 Transformer activations of very large magnitude

e Happens in a small number of channels / tokens / layers
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Xiao et al, “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Timkey & van Schijndel (EMNLP 2021)

e Observes that 1-3 channels In later layers are outliers

e Dominates the cosine similarity computation
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Timkey and van Schijndel,, “All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representational Quality,” EMNLP 2021



Bondarenko et al. (EMNLP 2021)

e Qutliers are the residual sum after FFN of layer 10 & 11

e Large accuracy drop of W32A8 / W8AS8 performance on BERT

Quantized activations STS-B MNLI QNLI RTE
none (FP32 model) 89.09 8491 91.58 70.40
all 62.64 42.67 50.74 48.74
all, except softmax input 7092 4254 51.84 48.74
all, except sum of embeddings 67.57 4682 51.22 51.26
all, except self-attention output 7047 46.57 5098 50.90
all, except softmax output 72.83 50.35 50.23 4946
all, except residual connections after FFN  81.57 82.56 89.73 67.15
same as above, but for layers 10, 11 only 79.40 81.24 88.03 63.90
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Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021



Bondarenko et al. (EMNLP 2021)

Happens for [SEP] token, and small number of channels

e Qutliers have small variance, though
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Figure 2: Full-precision FFN input (top row) and output (bottom row) in 11th layer of BERT. (a) Per-token ranges
for first data sequence in the MNLI development set. (b) Visualization of outliers across embedding dimension for
the first ten data sequences in the MNLI development set. Dark grey color indicates values that exceed six standard
deviations from the mean of the activation tensor.

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021



Dettmers et al. (NeurlPS 2022)

* More significant in >6.7B models (attention projection & 1st FFN output)

e At 6./B scale, outliers occur in all layers and 75% of all tokens
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Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurlPS 2022
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Dettmers et al. (NeurlPS 2022)

e Larger model => Larger outlier magnitude, greater number of outlier features
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Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurlPS 2022
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Xiao et al, “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Basic iIdea

* |dea. If certain channels are likelier to have larger input:

e pruning / quantizing the weights connected to the channel is likelier to
hurt the model accuracy more

WX — WX]||?

e selecting quantization range can be problematic: all non-outliers are likely
to be quantized to zero

 Question. If we know certain channels are outlier-prone, what can we do?



Activation Quantization
e (1) Divide-and-Quantize

e Assign different quantization range to different groups of channels

W I W I
X X

X
(a) Per-tensor (b) Per-embedding (c) Per-embedding-group

Figure 3: An overview for several choices of activation quantization granularity. The color indicates quantization
parameter sharing. In all cases we assume per-tensor weight quantization.

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021



Activation Quantization

e (1) Divide-and-Quantize

e Assign different precision to different channels
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Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurlPS 2022



Activation Quantization
e (2) Migrate the difficulty to weight
o Defer scaling factors in the weights WX = (WA~ (AX)

e A= (max(|X;|)/max(|W:]|))“
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Wei et al,, “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,"NeurlPS 2022
(b) SmoothQuant Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Activation Quantization

e (2) Migrate the difficulty to weight

e Can be scaled using the scaling factors in the LayerNorm
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. orm / N J - 4 & /

Figure 3: Comparison of the quantization flow before (left) and after (right) Gamma Migration. The original
LayerNorm = the Non-scaling LayerNorm * «y. For other detailed applications such as LayerNorm in encoder-
decoder structure, see Fig. 6, Fig. 7.

Wei et al,, “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,"NeurlPS 2022
Xiao et al, “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Weight Quantization

e Activation distribution helps discover important weights

bad hardware efficiency )
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Lin et al., “AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration,” MLSys 2024



Weight Pruning

e Activation distribution helps discover important weights

Magnitude Pruning Wanda
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Figure 1: Illustration of our proposed method Wanda (Pruning by Weights and activations), compared
with the magnitude pruning approach. Given a weight matrix W and input feature activations X,
we compute the weight importance as the product between the weight magnitude and the norm of
the corrsponding input activations (|W| - || X||2). Weight importance scores are compared on a
per-output basis (within each row in W), rather than globally across the entire matrix.

Sun et al., “A Simple and Effective Pruning Approach for Large Language Models,” ICLR 2024



Rotation

e |dea. Mitigate the outliers by multiplying the rotation matrix

e For some orthogonal rotation matrix R

WX = (WR")(RX)

---------------- -1 MO0~ ="=====+9

Rotation Q

X2 — (x1 - x2)/ Sqrt(Z)

~l
O
-

X1 100
(x1 + x2)/sqrt(2)

Ashkboos et al, “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024



Rotation

e Jo get the rotation matrix:

e Random Hadamard rotation

e Learned rotation (e.g., SpinQuant, via Cayley SGD)

o Often represented as blockwise rotation + permutation
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Ashkboos et al, “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024



Prefix Tuning

 |dea. Add some special “attention sink” tokens as the prompt token
 These suck up all attention, and mitigates outliers in later tokens

e Apply further fine-tuning
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Son et al,, “Prefixing Attention Sinks can Mitigate Activation Outliers for Large Language Model Quantization,” EMNLP 2024



Wrapping up
e LM compression = Model compression + LLM-specific constraints

e Much focus on practicality



That's it for today (-



