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Compressing LLMs
• Post-training compression has been the mainstream 

• Retraining cost is too large, including alignment 

• 2025. Shifting toward methods involving retraining (e.g., Gemma QAT)



Compressing LLMs
• Also, more efforts on resolving memory bottleneck 

• e.g., weight quantization > weight & activation quantization 

• 2025. Activation quantization as well, especially the KV cache



Popular ideas
• Thus, much emphasis on finding a good approximation of original model 

 

• Two mainstream approaches: 

• Hessian-based 
“Minimize the compression error very carefully, using Hessians” 

• Outlier-driven 
“Identify outliers, and use these to keep compression error small”

min
̂θ:compressed

∥f(x; w) − f(x; ŵ)∥2



Hessian-based Approach



Basic idea
• Already discussed Hessian-based loss approximation in sparsity 

• Optimal Brain Damage 

• Approximate the loss of removing a weight as: 

 

• Optimal Brain Surgeon 

• Prune the weight with minimal score:      

• Update other weights by                          

• Idea. Perform OBS for LLMs

f(x; w + δ) − f(x; w) ≈ δ⊤Hδ
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Basic idea
• Challenge. Computing Hessian inverse for LLMs, multiple times 

• Very heavy: trillion x trillion matrix 

• Idea. Approximate by the layerwise subproblem 

 

• Further approximate it by the rowwise subproblem 

 

• Then the Hessian becomes:      
(same for all rows)
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Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022



Basic idea
• Again, computing the Hessian inverse can be done recursively by using the 

matrix inversion formula: 

 

• Problem. Need to compute Hessian after removing each weight 

• LLMs are very large, so a lot of repetitions!
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Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022



Basic idea
• Fortunately, we have the following lemma: 

• Lemma. Given an invertible  matrix  and its inverse , let  
denote the Hessian with row and column  removed. Then, we have: 

 

• Gaussian elimination of row/col  in , then remove them completely 

• Complexity of  

• Allows parallel processing of rows
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Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022



SparseGPT
• Problem. Keeping track of row-wise Hessian inverse is memory-heavy

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023



SparseGPT
• Idea. Iterate over columns, removing certain fraction at a time and freezing the 

surviving weights

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023



Quantization
• Similarly, the weight quantization can be done using Hessians 

• For simplicity, assume that we have a fixed grid, and put weights on grid 
one-by-one. 

• Similar derivation gives that the weight updates needed to compensate 
for quantizing  is: 

 

• Weights quantized later are likelier to change more 

• Heuristic. Quantize the outliers, as soon as they appear

wq

δ =
quant(wq) − wq
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Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022



GPTQ
• Order. Later, people discovered that the order does not matter much 

• Simple quantized in an order, in parallel, save time 

• More tricks (see the paper) 

• Lazy batching: Update later columns 
a bit slowly to prevent frequent memory 
access 

• Cholesky reformulation: Improved 
numerical stability, avoiding the 
accumulation of errors from repeated 
updates

Frantar et al., “GPTQ: Accurate Post-Training Quantization for Generated Pre-Trained Transformers,” ICLR 2023



Outlier-driven Approach



Outliers?
• Transformer activations of very large magnitude 

• Happens in a small number of channels / tokens / layers

Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Timkey & van Schijndel (EMNLP 2021)
• Observes that 1-3 channels in later layers are outliers 

• Dominates the cosine similarity computation

Timkey and van Schijndel., “All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representational Quality,” EMNLP 2021



Bondarenko et al. (EMNLP 2021)
• Outliers are the residual sum after FFN of layer 10 & 11 

• Large accuracy drop of W32A8 / W8A8 performance on BERT

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021



Bondarenko et al. (EMNLP 2021)
• Happens for [SEP] token, and small number of channels 

• Outliers have small variance, though

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021



Dettmers et al. (NeurIPS 2022)
• More significant in >6.7B models (attention projection & 1st FFN output) 

• At 6.7B scale, outliers occur in all layers and 75% of all tokens

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurIPS 2022



Dettmers et al. (NeurIPS 2022)
• Larger model => Larger outlier magnitude, greater number of outlier features

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurIPS 2022



Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Basic idea
• Idea. If certain channels are likelier to have larger input: 

• pruning / quantizing the weights connected to the channel is likelier to 
hurt the model accuracy more 

 

• selecting quantization range can be problematic: all non-outliers are likely 
to be quantized to zero 

• Question. If we know certain channels are outlier-prone, what can we do?

∥WX − ŴX∥2



Activation Quantization
• (1) Divide-and-Quantize 

• Assign different quantization range to different groups of channels

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021



Activation Quantization
• (1) Divide-and-Quantize 

• Assign different precision to different channels

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurIPS 2022



Activation Quantization
• (2) Migrate the difficulty to weight 

• Defer scaling factors in the weights       

•

WX = (WΛ−1)(ΛX)

Λi = (max( |Xi | )/ max( |Wi | ))α

Wei et al., “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,”NeurIPS 2022 
Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Activation Quantization
• (2) Migrate the difficulty to weight 

• Can be scaled using the scaling factors in the LayerNorm

Wei et al., “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,”NeurIPS 2022 
Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023



Weight Quantization
• Activation distribution helps discover important weights

Lin et al., “AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration,” MLSys 2024



Weight Pruning
• Activation distribution helps discover important weights

Sun et al., “A Simple and Effective Pruning Approach for Large Language Models,” ICLR 2024



Rotation
• Idea. Mitigate the outliers by multiplying the rotation matrix 

• For some orthogonal rotation matrix        ( ,  ) R R⊤R = RR⊤ = I Rij ∈ {±1}

WX = (WR⊤)(RX)

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024



Rotation
• To get the rotation matrix: 

• Random Hadamard rotation 

• Learned rotation (e.g., SpinQuant, via Cayley SGD) 

• Often represented as blockwise rotation + permutation

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024



Prefix Tuning
• Idea. Add some special “attention sink” tokens as the prompt token 

• These suck up all attention, and mitigates outliers in later tokens 

• Apply further fine-tuning

Son et al., “Prefixing Attention Sinks can Mitigate Activation Outliers for Large Language Model Quantization,” EMNLP 2024



Wrapping up
• LLM compression = Model compression + LLM-specific constraints 

• Much focus on practicality



That’s it for today 🙌


