
Spring 2025

LLM compression
EECE695D: Efficient ML Systems

Compressing LLMs
• Post-training compression has been the mainstream

• Retraining cost is too large, including alignment

• 2025. Shifting toward methods involving retraining (e.g., Gemma QAT)

Compressing LLMs
• Also, more efforts on resolving memory bottleneck

• e.g., weight quantization > weight & activation quantization

• 2025. Activation quantization as well, especially the KV cache

Popular ideas
• Thus, much emphasis on finding a good approximation of original model

• Two mainstream approaches:

• Hessian-based
“Minimize the compression error very carefully, using Hessians”

• Outlier-driven
“Identify outliers, and use these to keep compression error small”

min
̂θ:compressed

∥f(x; w) − f(x; ŵ)∥2

Hessian-based Approach

Basic idea
• Already discussed Hessian-based loss approximation in sparsity

• Optimal Brain Damage

• Approximate the loss of removing a weight as:

• Optimal Brain Surgeon

• Prune the weight with minimal score:

• Update other weights by

• Idea. Perform OBS for LLMs

f(x; w + δ) − f(x; w) ≈ δ⊤Hδ

w2
i /2[H−1]ii

−wiH−1ei/[H−1]ii

Basic idea
• Challenge. Computing Hessian inverse for LLMs, multiple times

• Very heavy: trillion x trillion matrix

• Idea. Approximate by the layerwise subproblem

• Further approximate it by the rowwise subproblem

• Then the Hessian becomes:
(same for all rows)

min
Ŵ

∥WX − ŴX∥2
2

min
ŵ

∥w⊤
i,:X − ŵ⊤X∥2

2

H = 2XX⊤ ∈ ℝdcol×dcol

Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022

Basic idea
• Again, computing the Hessian inverse can be done recursively by using the

matrix inversion formula:

• Problem. Need to compute Hessian after removing each weight

• LLMs are very large, so a lot of repetitions!

H−1
m = H−1

m−1 −
H−1

m−1xmx⊤
mH−1

m−1

N + xmH−1
m−1xm

Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022

Basic idea
• Fortunately, we have the following lemma:

• Lemma. Given an invertible matrix and its inverse , let
denote the Hessian with row and column removed. Then, we have:

• Gaussian elimination of row/col in , then remove them completely

• Complexity of

• Allows parallel processing of rows

dcol × dcol H H−1 H−i
i

H−1
−i = (H−1 −

1
[H−1]ii

H−1
:,i H−1

i,:)
−i

i H−1

Θ(d2
col)

Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022

SparseGPT
• Problem. Keeping track of row-wise Hessian inverse is memory-heavy

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023

SparseGPT
• Idea. Iterate over columns, removing certain fraction at a time and freezing the

surviving weights

Frantar et al., “SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot,” ICML 2023

Quantization
• Similarly, the weight quantization can be done using Hessians

• For simplicity, assume that we have a fixed grid, and put weights on grid
one-by-one.

• Similar derivation gives that the weight updates needed to compensate
for quantizing is:

• Weights quantized later are likelier to change more

• Heuristic. Quantize the outliers, as soon as they appear

wq

δ =
quant(wq) − wq

[H−1]qq
H−1eq

Frantar et al., “Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning,” NeurIPS 2022

GPTQ
• Order. Later, people discovered that the order does not matter much

• Simple quantized in an order, in parallel, save time

• More tricks (see the paper)

• Lazy batching: Update later columns
a bit slowly to prevent frequent memory
access

• Cholesky reformulation: Improved
numerical stability, avoiding the
accumulation of errors from repeated
updates

Frantar et al., “GPTQ: Accurate Post-Training Quantization for Generated Pre-Trained Transformers,” ICLR 2023

Outlier-driven Approach

Outliers?
• Transformer activations of very large magnitude

• Happens in a small number of channels / tokens / layers

Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Timkey & van Schijndel (EMNLP 2021)
• Observes that 1-3 channels in later layers are outliers

• Dominates the cosine similarity computation

Timkey and van Schijndel., “All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representational Quality,” EMNLP 2021

Bondarenko et al. (EMNLP 2021)
• Outliers are the residual sum after FFN of layer 10 & 11

• Large accuracy drop of W32A8 / W8A8 performance on BERT

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021

Bondarenko et al. (EMNLP 2021)
• Happens for [SEP] token, and small number of channels

• Outliers have small variance, though

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021

Dettmers et al. (NeurIPS 2022)
• More significant in >6.7B models (attention projection & 1st FFN output)

• At 6.7B scale, outliers occur in all layers and 75% of all tokens

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurIPS 2022

Dettmers et al. (NeurIPS 2022)
• Larger model => Larger outlier magnitude, greater number of outlier features

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurIPS 2022

Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Basic idea
• Idea. If certain channels are likelier to have larger input:

• pruning / quantizing the weights connected to the channel is likelier to
hurt the model accuracy more

• selecting quantization range can be problematic: all non-outliers are likely
to be quantized to zero

• Question. If we know certain channels are outlier-prone, what can we do?

∥WX − ŴX∥2

Activation Quantization
• (1) Divide-and-Quantize

• Assign different quantization range to different groups of channels

Bondarenko et al., “Understanding and Overcoming the Challenges of Efficient Transformer Quantization,” EMNLP 2021

Activation Quantization
• (1) Divide-and-Quantize

• Assign different precision to different channels

Dettmers et al., “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” NeurIPS 2022

Activation Quantization
• (2) Migrate the difficulty to weight

• Defer scaling factors in the weights

•

WX = (WΛ−1)(ΛX)

Λi = (max(|Xi |)/ max(|Wi |))α

Wei et al., “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,”NeurIPS 2022
Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Activation Quantization
• (2) Migrate the difficulty to weight

• Can be scaled using the scaling factors in the LayerNorm

Wei et al., “Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models,”NeurIPS 2022
Xiao et al., “SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models,” ICML 2023

Weight Quantization
• Activation distribution helps discover important weights

Lin et al., “AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration,” MLSys 2024

Weight Pruning
• Activation distribution helps discover important weights

Sun et al., “A Simple and Effective Pruning Approach for Large Language Models,” ICLR 2024

Rotation
• Idea. Mitigate the outliers by multiplying the rotation matrix

• For some orthogonal rotation matrix (,) R R⊤R = RR⊤ = I Rij ∈ {±1}

WX = (WR⊤)(RX)

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024

Rotation
• To get the rotation matrix:

• Random Hadamard rotation

• Learned rotation (e.g., SpinQuant, via Cayley SGD)

• Often represented as blockwise rotation + permutation

Ashkboos et al., “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,” ICLR 2024

Prefix Tuning
• Idea. Add some special “attention sink” tokens as the prompt token

• These suck up all attention, and mitigates outliers in later tokens

• Apply further fine-tuning

Son et al., “Prefixing Attention Sinks can Mitigate Activation Outliers for Large Language Model Quantization,” EMNLP 2024

Wrapping up
• LLM compression = Model compression + LLM-specific constraints

• Much focus on practicality

That’s it for today 🙌

