Matryoshka Quantization

Google DeepMind

2025. 04. 21

Efficient ML

Seung-taek Woo, Chiwoong Lee, Byeongho Yu

Quantization?

FP16

1.3	-0.5	-1.2
-0.4	0.2	1.1
0.1	-0.1	0.7

LLM Service

Foundation LLM

LLM Service

Foundation LLM

100B(FP16) ≈ 200GB

Three A100-80Gs are needed for inference only.

Problem: Need many GPUs.

Llama-2-70b-hf
$$\xrightarrow{\text{FP16}}$$
 140GB \longrightarrow 2 x A100-80G(160GB)

Problem: Need many GPUs.

Problem: Need many GPUs.

Problem: Need many GPUs.

GPU Memory Hierarchy SRAM: 19 TB/s (20 MB) GPU HBM: 1.5 TB/s (40 GB) Main Memory (CPU DRAM) DRAM: 12.8 GB/s (>1 TB) Memory Hierarchy with

Bandwidth & Memory Size

GPU Memory Hierarchy

Memory Hierarchy with Bandwidth & Memory Size

GPU Memory

13B(FP16) ≈ 26GB

Decoding latency is dominated by Memory Bound.

Memory Hierarchy With

Bandwidth & Memory Size

Problem: Low Speed.

Problem: Low Speed.

Problem: Low Speed.

However, current quantization methods^[1, 2, 3]...

FP16

1.3	-0.5	-1.2
-0.4	0.2	1.1
0.1	-0.1	0.7

Need to <u>optimize independently</u> to target precision.

^[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

^[1] Lee, Changhun, et al. "Owq: Outlier-aware weight quantization for efficient fine-tuning and inference of large language models." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 12. 2024.

^[2] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device Ilm compression and acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.

However, current quantization methods^[1, 2, 3]...

^[1] Lee, Changhun, et al. "Owq: Outlier-aware weight quantization for efficient fine-tuning and inference of large language models." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 12. 2024.

^[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

^[2] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device Ilm compression and acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.

However, current quantization methods^[1, 2, 3]...

^[1] Lee, Changhun, et al. "Owq: Outlier-aware weight quantization for efficient fine-tuning and inference of large language models." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 12. 2024.

^[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

^[2] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device Ilm compression and acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.

However, current quantization methods^[1, 2, 3]...

^[1] Lee, Changhun, et al. "Owq: Outlier-aware weight quantization for efficient fine-tuning and inference of large language models." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 12. 2024.

^[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

^[2] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device Ilm compression and acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.

Question: Can I extract <u>multiple low-precision</u> from <u>a single optimization?</u>

Jointly optimize the loss for each precision level.

Quantization Aware Training (QAT)

- Quantization Aware Training (QAT) learns a c-bit quantized model by minimizing end-to-end cross-entropy loss via gradient descent.
- It uses quantized weights during the forward pass and applies a **Straight-Through Estimator (STE)** to backpropagate gradients through the non-differentiable quantization operation.

Figure 5: Illustration of Quantization-Aware Training procedure, including the use of Straight Through Estimator (STE).

Quantization Aware Training (QAT)

- Quantization Aware Training (QAT) $Q_{MM}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^c 1\right)$ nizing end-to-end cross-entropy loss via gradient descent.
- It uses quantized weights during the $\alpha = \frac{\alpha(w) \alpha(w)}{2^c 1}$, $\alpha = \frac{\alpha(w) \alpha(w)}{2^c 1}$, $\alpha = \frac{\alpha(w) \alpha(w)}{\alpha(w)}$, $\alpha = \frac{\alpha(w) \alpha(w)}{\alpha(w)}$

Figure 5: Illustration of Quantization-Aware Training procedure, including the use of Straight Through Estimator (STE).

Gradient dL/dr

(FP)

Quantization Aware Training (QAT) Problem? = Not Differentiable Quantization Aware Training (QAT) nizing end-to-end cross-entropy loss via gradient descent. $Q_{\text{MM}}(w,c) = \text{clamp}$ It uses quantized weights during the **'hrough Estimator (STE)** to backpropagate gradients through $\alpha = \frac{\max(w) - \min(w)}{}$ the non-differentiable quantization $\min(w)$ Quantized Weight Q Weigh r(FP) (INT) Quantizer 1.1 2.2 **Forward Pass** -2 -1 -1.7 3.6 -2 STE 0.1 0.1 -0.1 -0.1 **Backward Pass** -2 -1 -0.2 -0.2 0.2 0.2

Figure 5: Illustration of Quantization-Aware Training procedure, including the use of Straight Through Estimator (STE).

Gradient dL/dQ (FP)

Quantization Aware Training (QAT)

Problem?

- = Not Differentiable
- Quantization Aware Training (QAT) $Q_{MM}(w,c) = \text{clamp}\left(\left[\frac{w}{-} + z\right]\right) 0, 2^c 1$ nizing end-to-end cross-entropy loss via gradient descent.
- It uses quantized weights during the max(w) = chain $\left(\frac{a}{\alpha} + z\right)^{0, 2}$ hrough Estimator (STE) to backpropagate gradients through the non-differentiable quantization $\alpha = \frac{\max(w) \min(w)}{2^c 1}$, $z = -\frac{\min(w)}{\alpha}$

Figure 5: Illustration of Quantity $\frac{d\mathcal{L}}{dr} = \frac{d\mathcal{L}}{dQ} \cdot \frac{dQ}{dr} \approx \frac{d\mathcal{L}}{dQ}$ procedure, including the use of Straight Through Estimator (STE).

OmniQuant (ICLR2024, Spotlight)

- Unlike QAT, OmniQuant does not update the model parameters.
- Instead, it learns additional scaling and shifting parameters through gradient descent over layer-wise L2 error reconstruction.

$$Q_{\text{MM}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^c - 1\right)$$

$$\alpha = \frac{\max(w) - \min(w)}{2^c - 1}, \quad z = -\frac{\min(w)}{\alpha}$$

$$Q_{\text{MM}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^{c} - 1\right)$$

$$\alpha = \frac{\max(w) - \min(w)}{2^{c} - 1}, \quad z = -\frac{\min(w)}{\alpha}$$

$$Q_{\text{Omni}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^{c} - 1\right)$$

$$\alpha = \frac{y \cdot \max(w) - \beta \cdot \min(w)}{2^{c} - 1}, \quad z = -\frac{\beta \cdot \min(w)}{\alpha}$$

QAT

OmniQuant

OmniQuant (ICLR2024, Spotlight)

- Unlike QAT, OmniQuant does not update the model parameters.
- Instead, it learns additional scaling and shifting parameters through gradient descent over layer-wise L2 error reconstruction.

$$Q_{\text{MM}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^c - 1\right)$$

$$\alpha = \frac{\max(w) - \min(w)}{2^c - 1}, \quad z = -\frac{\min(w)}{\alpha}$$

$$XW+b \rightarrow X \cdot Q_{MM}(W) + b$$

$$Q_{\text{Omni}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^{c} - 1\right)$$

$$\alpha = \frac{\gamma \cdot \max(w) - \beta \cdot \min(w)}{2^{c} - 1}, \quad z = -\frac{\beta \cdot \min(w)}{\alpha}$$

$$XW + b \to ((X - \underbrace{\delta}) \oslash \underbrace{s}) \cdot Q_{\text{Omni}}(W \odot s) + b + \underbrace{\delta} \cdot W$$
 Shifting Factor

$$X \in \mathbb{R}^{n \times d}$$

$$W \in \mathbb{R}^{d \times d_0}$$

$$b \in \mathbb{R}^{d_0}$$

$$\delta \in \mathbb{R}^d$$

$$s \in \mathbb{R}^d$$

QAT

OmniQuant

OmniQuant (ICLR2024, Spotlight)

- Unlike QAT, OmniQuant does not update the model parameters.
- Instead, it learns additional scaling and shifting parameters through gradient descent over layer-wise L2 error reconstruction.

$$Q_{\text{MM}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^c - 1\right)$$

$$\alpha = \frac{\max(w) - \min(w)}{2^c - 1}, \quad z = -\frac{\min(w)}{\alpha}$$

$$XW+b \rightarrow X \cdot Q_{\mathrm{MM}}(W) + b$$

Cross Entropy Loss

$$\min_{W_F} \frac{1}{N} \sum_{i \in [N]} \mathcal{L}_{CE} \left(F(x_i; Q_{MM}(W_F, c)), y_i \right)$$

QAT

$$Q_{\text{Omni}}(w,c) = \text{clamp}\left(\left\lfloor \frac{w}{\alpha} + z \right\rfloor, 0, 2^{c} - 1\right)$$

$$\alpha = \frac{\gamma \cdot \max(w) - \beta \cdot \min(w)}{2^{c} - 1}, \quad z = -\frac{\beta \cdot \min(w)}{\alpha}$$

$$XW + b \to ((X - \underbrace{\delta}) \oslash \underbrace{s}) \cdot Q_{\text{Omni}}(W \odot s) + b + \underbrace{\delta} \cdot W$$
Shifting Factor

Layer-Wise L2 Error

$$\min_{\gamma,\beta,\delta,s} ||F_l(W_F^l),X_l) - F_l(Q_{\mathrm{Omni}}(W_F^l),X_l)||_2^2$$

 $\delta \in \mathbb{R}^d$ $s \in \mathbb{R}^d$

 $X \in \mathbb{R}^{n \times d}$

 $W \in \mathbb{R}^{d \times d_0}$

 $b \in \mathbb{R}^{d_0}$

OmniQuant

Smoothing Factor; s $XW+b \rightarrow ((X-\delta) \oslash s) \cdot Q_{\text{Omni}}(W \odot s) + b + \delta \cdot W$

- The smoothing factor redistributes the quantization difficulty caused by activation outliers to the weights.
- The smoothing factor enables a mathematically equivalent transformation. $\mathbf{Y} = (\mathbf{X} \operatorname{diag}(\mathbf{s})^{-1}) \cdot (\operatorname{diag}(\mathbf{s})\mathbf{W}) = \hat{\mathbf{X}}\hat{\mathbf{W}}$

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Shifting Factor; δ

$$XW+b \rightarrow ((X-\delta) \oslash s) \cdot Q_{\text{Omni}}(W \odot s) + b + \delta \cdot W$$

- The shifting factor aligns channel centers to remove asymmetric outliers, making the distribution easier to quantize.
- The shifting factor enables a mathematically equivalent transformation.

Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling

Shifting Factor; δ

$$XW+b \rightarrow ((X-\delta) \oslash s) \cdot Q_{\text{Omni}}(W \odot s) + b + \delta \cdot W$$

- The shifting factor aligns channel centers to remove asymmetric outliers, making the distribution easier to quantize.
- The shifting factor enables a **mathematically equivalent** transformation.

$$\alpha = \frac{\max(w) - \min(w)}{2^c - 1}$$

Assuming c = 8 (bit)

(Before shifting)

$$lpha = rac{43 - (-97)}{255} = 0.549$$

(After shifting)

$$lpha = rac{20 - (-20)}{255} = 0.157$$

Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling

Method

MatQuant

• If we want to extract a r-bit model from a c-bit model (0 < r < c), we can just slice out the r most significant bits (MSBs) – using a right shift, followed by a left shift of the same order.

$$q^c = Q(w,c) = ext{clamp} \Big(ig\lfloor rac{w}{lpha} + z ig
ceil, \; 0, \; 2^c - 1\Big)$$

$$S(q^{c}, r) = \text{clamp}\left(\left[\frac{q^{c}}{2^{c-r}}\right], 0, 2^{r} - 1\right) * 2^{c-r}$$

- Example
 - c=8, r=4 (8bit \rightarrow 4bit)
 - q8=234

$$\underbrace{\begin{bmatrix} 234/16 \end{bmatrix}}_{=|14.625|=14} \xrightarrow{\operatorname{clamp}} 14 \xrightarrow{\times 16} 224$$

$$11101010 \rightarrow 11110 \rightarrow 111100000$$

Method

MatQuant

• If we want to extract a *r*-bit model from a *c*-bit model (0 < *r* < *c*), we can just **slice out** the *r* most significant bits (MSBs) – using a right shift, followed by a left shift of the same order.

$$q^c = Q(w,c) = ext{clamp} \Big(ig\lfloor rac{w}{lpha} + z ig
ceil, \; 0, \; 2^c - 1\Big)$$

$$S(q^c, r) = \operatorname{clamp}\left(\left\lfloor \frac{q^c}{2^{c-r}} \right\rfloor, 0, 2^r - 1\right) * 2^{c-r}$$

MatQuant's overall objective (Weight Quantization on FFN)

$$\min_{P} \frac{1}{N} \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$

$$R = \{8,4,2\}$$

 λ_r = Loss reweighing factor for bit-width r

Experiment Setting

MatQuant working with two popular **learning based quantization methods**:

- 1. OmniQuant
- 2. QAT

Models & Target Bit precisions

- Gemma-2 2B, 9B / Mistral 7B models.
- Default target quantization precisions: int8, int4, int2
 - + the interpolative nature of MatQuant through evaluations on **int6 and int3**

Training

OmniQuant

- 128 examples with a sequence length of 2048 from the **C4 dataset** train using a batch size of 4
- train for a total of 10M tokens for all models except the int2 baseline,
 where we train the model for 20M tokens

QAT

■ sample a fixed set of 100M tokens from the **C4 dataset**, and train all our models using a batch size of 16 and a sequence length of 8192 for a single epoch

Evaluation Datasets

Calculating Perplexity with C4's test set

Downstream evaluations with zero-shot accuracy

- ARC-c, ARC-e.
- BoolQ
- HellaSwag
- PIQA
- Winogrande

Q. What is PPL?

A. Perplexity (PPL) is a metric that measures how well a language model predicts a sequence. lower PPL values indicate better performance.

Data type	Method	Gemm	a-2 2B	Gemma-2 9B		Mistral 7B	
	OmniQuant	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline	68.25	2.552	74.59	2.418	73.77	2.110
	MatQuant	68.02	2.570	74.05	2.438	73.65	2.125
int4	Sliced int8	62.87	2.730	72.26	2.480	38.51	4.681
	Baseline	67.03	2.598	74.33	2.451	73.62	2.136
	MatQuant	66.58	2.618	73.83	2.491	73.06	2.153
int2	Sliced int8	39.78	17.030	38.11	15.226	37.29	11.579
	Baseline	51.33	3.835	60.24	3.292	59.74	3.931
	MatQuant	52.37	3.800	63.35	3.187	62 . 75	3.153

Data type	Method	Gemm	Gemma-2 2B Gemma-2 9B			Mistral 7B	
	OmniQuant	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline MatQuant	68.25 68.02	2.552 2.570	74.59 74.05	2.418 2.438	73.77 73.65	2.110 2.125
	Baseline (Om	niQuant) is be	tter, but MatC	Quant shows co	omparable pe	erformance	81
int4	Baseline MatQuant	67.03 66.58	2.598 2.618	74.33 73.83	2.451 2.491	73.62 73.06	2.136 2.153
int2	Sliced int8 Baseline MatQuant	39.78 51.33 52 . 37	17.030 3.835 3.800	38.11 60.24 63 .35	15.226 3.292 3.187	37.29 59.74 62 . 75	11.579 3.931 3.153

Data type	Method	Gemm	a-2 2B	Gemma-2 9B		Mistral 7B	
	OmniQuant	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline	68.25	2.552	74.59	2.418	73.77	2.110
	MatQuant	68.02	2.570	74.05	2.438	73.65	2.125
int4	Sliced int8	62.87	2.730	72.26	2.480	38.51	4.681
	Baseline	67.03	2.598	74.33	2.451	73.62	2.136
	MatQuant	66.58	2.618	73.83	2.491	73.06	2.153
int2	Sliced int8	39.78	17.030	38.11	15.226	37.29	11.579
	Baseline	51.33	3.835	60.24	3.292	59.74	3.931
	MatQuant	52.37	3.800	63.35	3.187	62.75	3.153

In int2, MatQuant shows more accurate performance

Data type	Method	Gemm	a-2 2B	Gemm	a-2 9B	Mistral 7B	
	OmniQuant	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline	68.25	2.552	74.59	2.418	73.77	2.110
IIIto		Naïve	bit slicing sho	ws significant	drop in accur	acy	
	Sliced int8	62.87	2.730	72.26	2.480	38.51	4.681
int4	Baseline	67.03	2.598	74.33	2.451	73.62	2.136
	MatQuant	66.58	2.618	73.83	2.491	73.06	2.153
	Sliced int8	39.78	17.030	38.11	15.226	37.29	11.579
int2	Baseline	51.33	3.835	60.24	3.292	59.74	3.931
	MatQuant	52.37	3.800	63.35	3.187	62.75	3.153

Sliced Interpolation.

Beyond the target quantization granularities (int8, int4, and int2),
 MatQuant allows for bit-width interpolation to bit-widths not optimized during training

Data type	Method	Gemma-2 2B		Gemma-2 9B		Mistral 7B	
	OmniQuant	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
int6	Sliced int8	67.72	2.497	74.64	2.353	73.00	2.071
	Baseline	68.06	2.554	74.23	2.420	74.10	2.112
	MatQuant	67.52	2.574	73.92	2.440	73.63	2.127
int3	Sliced int8	41.35	6.024	54.18	3.977	39.21	10.792
	Baseline	64.37	2.727	73.23	2.549	71.68	2.211
	MatQuant	64.47	2.618	72.87	2.607	71.16	2.238

Data type	Method	Gemm	a-2 2B	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline	67.82	2.458	74.17	2.29	73.48	2.084
	MatQuant	67.44	2.449	74.52	2.262	72.58	2.104
int4	Sliced int8	67.13	2.483	73.36	2.276	71.76	2.18
	Baseline	67.03	2.512	73.26	2.324	72.13	2.105
	MatQuant	66.59	2.499	73.24	2.429	71.99	2.148
int2	Sliced int8	39.27	10.217	40.40	7.259	37.41	9.573
	Baseline	47.74	3.433	56.02	2.923	54.95	2.699
	MatQuant	52.20	3.055	62.29	2.265	61.97	2.524

Data type	Method	Gemm	Gemma-2 2B		Gemma-2 9B		ıl 7B
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline MatQuant	67.82 67.44	2.458 2.449	74.17 74.52	2.29 2.262	73.48 72.58	2.084 2.104
	Baseline	(QAT) is bette	r, but MatQua	nt shows com	parable perfor	rmance	.8
int4	Baseline MatQuant	67.03 66.59	2.512 2.499	73.26 73.24	2.324 2.429	72.13 71.99	2.105 2.148
int2	Sliced int8 Baseline MatQuant	39.27 47.74 52.20	10.217 3.433 3.055	40.40 56.02 62.29	7.259 2.923 2.265	37.41 54.95 61.97	9.573 2.699 2.524

Data type	Method	Gemm	a-2 2B	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110
int8	Baseline	67.82	2.458	74.17	2.29	73.48	2.084
	MatQuant	67.44	2.449	74.52	2.262	72.58	2.104
int4	Sliced int8	67.13	2.483	73.36	2.276	71.76	2.18
	Baseline	67.03	2.512	73.26	2.324	72.13	2.105
	MatQuant	66.59	2.499	73.24	2.429	71.99	2.148
int2	Sliced int8	39.27	10.217	40.40	7.259	37.41	9.573
	Baseline	47.74	3.433	56.02	2.923	54.95	2.699
	MatQuant	52.20	3.055	62.29	2.265	61.97	2.524

In int2, MatQuant shows more accurate performance

Data type	nta type Method		a-2 2B	Gemm	Gemma-2 9B		1 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.	
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110	
int8	Baseline	67.82	2.458	74.17	2.29	73.48	2.084	
		Naïve bit slicing shows significant drop in accuracy						
	Sliced int8	67.13	2.483	73.36	2.276	71.76	2.18	
int4	Baseline	67.03	2.512	73.26	2.324	72.13	2.105	
	MatQuant	66.59	2.499	73.24	2.429	71.99	2.148	
	Sliced int8	39.27	10.217	40.40	7.259	37.41	9.573	
int2	Baseline	47.74	3.433	56.02	2.923	54.95	2.699	
	MatQuant	52.20	3.055	62.29	2.265	61.97	2.524	

Sliced Interpolation.

■ Models trained using MatQuant with QAT exhibit strong interpolative performance similar to that of MatQuant with OmniQuant.

Data type	Method	Gemm	a-2 2B	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
int6	Sliced int8	67.72	2.497	74.64	2.353	73.00	2.071
	Baseline	68.06	2.554	74.23	2.420	74.10	2.112
	MatQuant	67.52	2.574	73.92	2.440	73.63	2.127
int3	Sliced int8	41.35	6.024	54.18	3.977	39.21	10.792
	Baseline	64.37	2.727	73.23	2.549	71.68	2.211
	MatQuant	64.47	2.618	72.87	2.607	71.16	2.238

While OmniQuant only trains the auxiliary parameters needed for quantization,
 QAT also updates the weight parameters.

Data type	Method	Gemm	a-2 2B	Data type	Method	Gemm	a-2 2B
	OmniQuant	Task Avg.	log pplx.		QAT	Task Avg.	log pplx.
bfloat16		68.21	2.551	bfloat16		68.21	2.551
int8	Baseline MatQuant	68.25 68.02	2.552 2.570	int8	Baseline MatQuant	67.82 67.44	2.458 2.449
int4	Sliced int8 Baseline MatQuant	62.87 67.03 66.58	2.730 2.598 2.618	int4	Sliced int8 Baseline MatQuant	67.13 67.03 66.59	2.483 2.512 2.499
int2	Sliced int8 Baseline MatQuant	39.78 51.33 52.37	17.030 3.835 3.800	int2	Sliced int8 Baseline MatQuant	39.27 47.74 52.20	10.217 3.433 3.055
int6	Sliced int8 Baseline MatQuant	67.72 68.06 67.52	2.497 2.554 2.574	int6	Sliced int8 Baseline MatQuant	67.53 67.75 67.33	2.401 2.460 2.453
int3	Sliced int8 Baseline MatQuant	41.35 64.37 64.47	6.024 2.727 2.618	int3	Sliced int8 Baseline MatQuant	59.56 61.75 60.76	2.882 2.678 2.734

While OmniQuant only trains the auxiliary parameters needed for quantization,
 QAT also updates the weight parameters.

Data type	Method	Gemma	ı-2 2B	Data type	Method	Gemma	a-2 2B
	OmniQuant	Task Avg.	log pplx.		QAT	Task Avg.	log pplx.
bfloat16		68.21	2.551	bfloat16		68.21	2.551
int8	Baseline MatQuant	68.25 68.02	2.552 2.570	int8	Baseline MatQuant	67.82 67.44	2.458 2.449
int4	Sliced int8 Baseline MatQuant	62.87 67.03 66.58	2.730 2.598 2.618	int4	Sliced int8 Baseline MatQuant	67.13 67.03 66.59	2.483 2.512 2.499
int2	Sliced int8 Baseline MatQuant	39.78 51.33 52.37	17.030 3.835 3.800	int2	Sliced int8 Baseline MatQuant	39.27 47.74 52.20	10.217 3.433 3.055
int6	Sliced int8 Baseline MatQuant	67.72 68.06 67.52	2.497 2.554 2.574	int6	Sliced int8 Baseline MatQuant	67.53 67.75 67.33	2.401 2.460 2.453
int3	Sliced int8 Baseline MatQuant	41.35 64.37 64.47	6.024 2.727 2.618	int3	Sliced int8 Baseline MatQuant	59.56 61.75 60.76	2.882 2.678 2.734

QAT exhibits lower ppl than Omniquant

While OmniQuant only trains the auxiliary parameters needed for quantization,
 QAT also updates the weight parameters.

	Data type	Method	Gemm	a-2 2B	Data type	Method	Gemm	na-2 2B
		OmniQuant	Task Avg.	log pplx.	-	QAT	Task Avg.	log pplx.
•	bfloat16		68.21	2.551	bfloat16		68.21	2.551
	int8	Baseline MatQuant	68.25 68.02	2.552 2.570	int8	Baseline MatQuant	67.82 67.44	2.458 2.449
OmniQuant exhibits	11114	Sliced int8 Baseline MatQuant	62.87 67.03 66.58	2.730 2.598 2.618	int4	Sliced int8 Baseline MatQuant	67.13 67.03 66.59	2.483 2.512 2.499
higher Task Accuracy than QAT	int2	Sliced int8 Baseline MatQuant	39.78 51.33 52.37	17.030 3.835 3.800	int2	Sliced int8 Baseline MatQuant	39.27 47.74 52.20	10.217 3.433 3.055
	int6	Sliced int8 Baseline MatQuant	67.72 68.06 67.52	2.497 2.554 2.574	int6	Sliced int8 Baseline MatQuant	67.53 67.75 67.33	2.401 2.460 2.453
	int3	Sliced int8 Baseline MatQuant	41.35 64.37 64.47	6.024 2.727 2.618	int3	Sliced int8 Baseline MatQuant	59.56 61.75 60.76	2.882 2.678 2.734

While OmniQuant only trains the auxiliary parameters needed for quantization,
 QAT also updates the weight parameters.

	Data type	Method	Gemma-2 2B D		Data type	Method	Gemma-2 2B	
		OmniQuant	Task Avg.	log pplx.		QAT	Task Avg.	log pplx.
	bfloat16		68.21	2.551	bfloat16		68.21	2.551
	int8	Baseline MatQuant	68.25 68.02	2.552 2.570	int8	Baseline MatQuant	67.82 67.44	2.458 2.449
OmniQuant exhibits	1111.4	Sliced int8 Baseline MatQuant	62.87 67.03 66.58	2.730 2.598 2.618	int4	Sliced int8 Baseline MatQuant	67.13 67.03 66.59	2.483 2.512 2.499
higher Task Accuracy than QAT		Sliced int8 Baseline MatQuant	39.78 51.33 52.37	17.030 3.835 3.800	int2	Sliced int8 Baseline MatQuant	39.27 47.74 52.20	10.217 3.433 3.055
	int6	Sliced int8 Baseline MatQuant	67.72 68.06 67.52	2.497 2.554 2.574	int6	Sliced int8 Baseline MatQuant	67.53 67.75 67.33	2.401 2.460 2.453
	int3	Sliced int8 Baseline MatQuant	41.35 64.37 64.47	6.024 2.727 2.618	int3	Sliced int8 Baseline MatQuant	59.56 61.75 60.76	2.882 2.678 2.734

QAT exhibits lower ppl than Omniquant

While OmniQuant only trains the auxiliary parameters needed for quantization,
 QAT also updates the weight parameters.

	Data type	Method	Gemm	a-2 2B	Data type	Method	Gemm	na-2 2B
		OmniQuant	Task Avg.	log pplx.		QAT	Task Avg.	log pplx.
	bfloat16		68.21	2.551	bfloat16		68.21	2.551
	int8	N QA	∖T → ov	erfittin	g to the	C4 subse	et	2.458 2.449
OmniQuant exhibits	шч	Sliced int8 Baseline MatQuant	62.87 67.03 66.58	2.730 2.598 2.618	int4	Sliced int8 Baseline MatQuant	67.13 67.03 66.59	2.483 2.512 2.499
higher Task Accuracy than QAT		Sliced int8 Baseline MatQuant	39.78 51.33 52.37	17.030 3.835 3.800	int2	Sliced int8 Baseline MatQuant	39.27 47.74 52.20	10.217 3.433 3.055
	int6	Sliced int8 Baseline MatQuant	67.72 68.06 67.52	2.497 2.554 2.574	int6	Sliced int8 Baseline MatQuant	67.53 67.75 67.33	2.401 2.460 2.453
	int3	Sliced int8 Baseline MatQuant	41.35 64.37 64.47	6.024 2.727 2.618	int3	Sliced int8 Baseline MatQuant	59.56 61.75 60.76	2.882 2.678 2.734

QAT exhibits
lower ppl
than Omniquant

While OmniQuant only trains the auxiliary parameters needed for quantization,
 QAT also updates the weight parameters.

	Data type	Data type Method		a-2 2B	Data type	Method	Gemm	a-2 2B
		OmniQuant	Task Avg.	log pplx.		QAT	Task Avg.	log pplx.
	bfloat16		68.21	2.551	bfloat16		68.21	2.551
	int8	N QA	AT → ov	erfittin	g to the	C4 subse	et	2.458 2.449
OmniQuant exhibits	11114	N				data for		2.483 2.512 2.499
higher Task Accuracy than QAT		S	friendly methods like OmniQuant.					10.217 3.433
		MatQuant	52.37	3.800		MatQuant	52.20	3.055
	int6	Sliced int8 Baseline MatQuant	67.72 68.06 67.52	2.497 2.554 2.574	int6	Sliced int8 Baseline MatQuant	67.53 67.75 67.33	2.401 2.460 2.453
	int3	Sliced int8 Baseline MatQuant	41.35 64.37 64.47	6.024 2.727 2.618	int3	Sliced int8 Baseline MatQuant	59.56 61.75 60.76	2.882 2.678 2.734

QAT exhibits lower ppl than Omniquant

Additional: Layerwise Mix'n'Match

 Mix'n'Match provides a mechanism to obtain a combinatorial number of strong models by using layerwise different quantization granularities, from the target bit-widths – i.e., int8, int4, and int2 across layers

Ablation studies: Weightings (λr) for MatQuant

$$\min_{P} \frac{1}{N} \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$

$$= \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$
Loss coefficient for each target bits (8,4,2 bits)

< overall objective of MatQuant>

Data type	Weightings	Gemma-2 2B Gemma-2 9B Mistra					
	8 4 2		Task Avg.				
	(0.1, 0.1, 1)	68.02	74.05	73.27			
int8	(0.2, 0.2, 1)	67.91	73.91	73.44			
11110	(0.3, 0.3, 1)	68.01	73.88	73.56			
	(0.4, 0.4, 1)	67.95	73.84	73.65			
	(0.1, 0.1, 1)	66.58	73.83	72.76			
int4	(0.2, 0.2, 1)	67.47	73.8	73.16			
11114	(0.3, 0.3, 1)	66.97	73.25	73.47			
	(0.4, 0.4, 1)	67.48	74.32	73.66			
	(0.1, 0.1, 1)	52.37	63.35	63.25			
int?	(0.2, 0.2, 1)	51.88	64.04	63.99			
int2	(0.3, 0.3, 1)	51.05	64.1	63.6			
	(0.4, 0.4, 1)	51.69	61.98	62.75			

Ablation studies: Weightings (λr) for MatQuant

$$\min_{P} \frac{1}{N} \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$

$$= \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$
Loss coefficient for each target bits (8,4,2 bits)

< overall objective of MatQuant>

	Data type	Weightings	Gemma-2 2B	Gemma-2 9B	Mistral 7B
		8 4 2		Task Avg.	
		(0.1, 0.1, 1)	68.02	74.05	73.27
	int8	(0.2, 0.2, 1)	67.91	73.91	73.44
Low coefficient for 8bit/4bit	Шю	(0.3, 0.3, 1)	68.01	73.88	73.56
		(0.4, 0.4, 1)	67.95	73.84	73.65
→ Higher accuracy in int8/int4		(0.1, 0.1, 1)	66.58	73.83	72.76
	int4	(0.2, 0.2, 1)	67.47	73.8	73.16
→ Lower accuracy in int2	шт	(0.3, 0.3, 1)	66.97	73.25	73.47
		(0.4, 0.4, 1)	67.48	74.32	73.66
		(0.1, 0.1, 1)	52.37	63.35	63.25
	int2	(0.2, 0.2, 1)	51.88	64.04	63.99
	11112	(0.3, 0.3, 1)	51.05	64.1	63.6
		(0.4, 0.4, 1)	51.69	61.98	62.75

Ablation studies: Weightings (λr) for MatQuant

$$\min_{P} \frac{1}{N} \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$

$$= \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$
Loss coefficient for each target bits (8,4,2 bits)

< overall objective of MatQuant>

Data type	Weightings	Gemma-2 2B Gemma-2 9B Mistral 7B					
	8 4 2		Task Avg.				
	(0.1, 0.1, 1)	68.02	74.05	73.27			
int8	(0.2, 0.2, 1)	67.91	73.91	73.44			
	(0.3, 0.3, 1)	68.01	73.88	73.56			
	(0.4, 0.4, 1)	67.95	73.84	73.65			
	(0.1, 0.1, 1)	66.58	73.83	72.76			
int1	(0.2, 0.2, 1)	67.47	73.8	73.16			
int4	(0.3, 0.3, 1)	66.97	73.25	73.47			
	(0.4, 0.4, 1)	67.48	74.32	73.66			
	(0.1, 0.1, 1)	52.37	63.35	63.25			
int?	(0.2, 0.2, 1)	51.88	64.04	63.99			
int2	(0.3, 0.3, 1)	51.05	64.1	63.6			
	(0.4, 0.4, 1)	51.69	61.98	62.75			

High coefficient for 8bit/4bit

- → Higher accuracy in int2
- → Lower accuracy in int8/int4

Ablation studies: Single Precision (S.P.) MatQuant

■ Eliminate other target bits loss (8bit & 4bit), except for 2bit loss

$$\min_{P} \frac{1}{N} \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$

$$= \sum_{i \in [N]} \sum_{r \in R} \lambda_r \cdot \mathcal{L}\left(F(S(Q(\theta, c), r), x_i'), y_i'\right)$$
Loss a for each target bits (8,4,2 bits)

< overall objective of MatQuant>

 λ_r : r is a target bit, λ_8 , λ_4 : 0, λ_2 : 1

int2	Gemma-2 2B		Gemm	a-2 9B	Mistral 7B	
Method	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.
OmniQuant	51.33	3.835	60.24	3.292	59.74	3.931
S.P. MatQuant	53.42	3.631	64.02	3.171	63.58	2.976
MatQuant	52.37	3.800	63.35	3.187	62.75	3.153
QAT	47.74	3.433	56.02	2.923	54.95	2.699
S.P. MatQuant	52.08	3.054	62.66	2.656	61.48	2.509
MatQuant	52.20	3.055	62.29	2.660	61.97	2.524

Ablation studies: Co-distillation for MatQuant

• Outputs from a higher-precision model \rightarrow used for lower-precision nested model training. either in a standalone fashion or alongside the ground truth target (weighted equally).

	Gemma-2 9B	OmniQuant		QAT	
Data type	Config.	Task Avg.	log pplx.	Task Avg.	log pplx.
	[8, 4, 2]	74.05	2.438	74.52	2.262
in+0	$[8, 4, 8 \rightarrow 2]$	72.76	2.473	74.75	2.242
int8	$[8, 4, 2, 8 \rightarrow 2]$	73.99	2.435	74.87	2.240
	$[8, 4, 2, 8 \rightarrow 4; 2]$	73.85	2.437	74.81	2.240
	[8, 4, 2]	73.83	2.491	73.24	2.295
int4	$[8, 4, 8 \rightarrow 2]$	72.65	2.519	73.76	2.279
11114	$[8, 4, 2, 8 \rightarrow 2]$	73.63	2.486	73.77	2.276
	$[8, 4, 2, 8 \rightarrow 4; 2]$	73.55	2.478	73.93	2.277
	[8, 4, 2]	63.35	3.187	62.29	2.660
int?	$[8, 4, 8 \rightarrow 2]$	62.64	3.289	62.31	2.670
int2	$[8, 4, 2, 8 \rightarrow 2]$	62.91	3.138	62.70	2.673
	$[8, 4, 2, 8 \rightarrow 4; 2]$	64.32	3.227	62.60	2.670

Ablation studies: Co-distillation for MatQuant

lacktriangle Outputs from a higher-precision model ightharpoonup used for lower-precision nested model training. either in a standalone fashion or alongside the ground truth target (weighted equally).

		Gemma-2 9B	Omni(Quant	QA	T
	Data type	Config.	Task Avg.	log pplx.	Task Avg.	log pplx.
8→ 4: use int8 output	s for int4 training	[8, 4, 2]	74.05	2.438	74.52	2.262
8→2 : use int8 output	s for int2 training	$[8, 4, 8 \rightarrow 2]$	72.76	2.473	74.75	2.242
	_	$[8, 4, 2, 8 \rightarrow 2]$	73.99	2.435	74.87	2.240
		$[8, 4, 2, 8 \rightarrow 4; 2]$	73.85	2.437	74.81	2.240
		[8, 4, 2]	73.83	2.491	73.24	2.295
	in+1	$[8, 4, 8 \rightarrow 2]$	72.65	2.519	73.76	2.279
	int4	$[8, 4, 2, 8 \rightarrow 2]$	73.63	2.486	73.77	2.276
		$[8, 4, 2, 8 \rightarrow 4; 2]$	73.55	2.478	73.93	2.277
		[8, 4, 2]	63.35	3.187	62.29	2.660
	in+0	$[8, 4, 8 \rightarrow 2]$	62.64	3.289	62.31	2.670
	int2	$[8, 4, 2, 8 \rightarrow 2]$	62.91	3.138	62.70	2.673
OSTECH		$[8, 4, 2, 8 \rightarrow 4; 2]$	64.32	3.227	62.60	2.670

Ablation studies: Co-distillation for MatQuant

• Outputs from a higher-precision model \rightarrow used for lower-precision nested model training. either in a standalone fashion or alongside the ground truth target (weighted equally).

	Gemma-2 9B	OmniQuant		QAT	
Data type	Config.	Task Avg.	log pplx.	Task Avg.	log pplx.
	[8, 4, 2]	74.05	2.438	74.52	2.262
int8	$[8, 4, 8 \rightarrow 2]$	72.76	2.473	74.75	2.242
шю	$[8, 4, 2, 8 \rightarrow 2]$	73.99	2.435	74.87	2.240
	$[8, 4, 2, 8 \rightarrow 4; 2]$	73.85	2.437	74.81	2.240
	[8, 4, 2]	73.83	2.491	73.24	2.295
int4	$[8, 4, 8 \rightarrow 2]$	72.65	2.519	73.76	2.279
11114	$[8, 4, 2, 8 \rightarrow 2]$	73.63	2.486	73.77	2.276
	$[8, 4, 2, 8 \rightarrow 4; 2]$	73.55	2.478	73.93	2.277
	[8, 4, 2]	63.35	3.187	62.29	2.660
int?	$[8, 4, 8 \rightarrow 2]$	62.64	3.289	62.31	2.670
int2	$[8, 4, 2, 8 \rightarrow 2]$	62.91	3.138	62 .70	2.673
	$[8, 4, 2, 8 \rightarrow 4; 2]$	64.32	3.227	62.60	2.670

Ablation studies: FFN + ATTN Weight Quantization

Using QAT, apply MatQuant to FFN, and also ATTN

Data type	Method	Gemm	a-2 9B	Mistra	Mistral 7B		
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.		
bfloat16		74.38	2.418	73.99	2.110		
int8	Baseline	74.61	2.353	73.73	2.091		
	MatQuant	74.85	2.333	73.88	2.182		
int4	Sliced int8	73.15	2.362	71.46	2.290		
	Baseline	72.98	2.40	71.87	2.132		
	MatQuant	74.01	2.396	71.44	2.441		
int2	Sliced int8	38.97	23.467	35.06	10.640		
	Baseline	-	-	-	-		
	S.P. MatQuant	45.69	3.780	35.35	7.761		
	MatQuant	44.19	3.826	38.36	10.971		
int6	Sliced int8	74.49	2.290	73.61	2.104		
	Baseline	74.65	2.357	73.72	2.093		
	MatQuant	74.57	2.340	74.04	2.161		
int3	Sliced int8	64.19	2.895	39.01	6.018		
	Baseline	-	-	-	-		
	S.P. MatQuant	67.68	2.520	67.59	2.335		
	MatQuant	63.63	2.937	40.55	4.776		

Ablation studies: FFN + ATTN Weight Quantization

■ Using QAT, apply MatQuant to **FFN**, and **also ATTN**

< FFN MatQaunt >

Data type	Method	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		74.38	2.418	73.99	2.110
int8	Baseline	74.17	2.29	73.48	2.084
	MatQuant	74.52	2.262	72.58	2.104
int4	Sliced int8	73.36	2.276	71.76	2.18
	Baseline	73.26	2.324	72.13	2.105
	MatQuant	73.24	2.429	71.99	2.148
int2	Sliced int8	40.40	7.259	37.41	9.573
	Baseline	56.02	2.923	54.95	2.699
	MatQuant	62.29	2.265	61.97	2.524
int6	Sliced int8	74.15	2.232	73.35	2.097
	Baseline	74.31	2.293	72.71	2.077
	MatQuant	74.30	2.265	72.59	2.106
int3	Sliced int8	68.70	2.512	64.33	2.493
	Baseline	69.9	2.43	68.82	2.197
	MatQuant	70.41	2.429	67.16	2.324

< ATTN + FFN MatQaunt >

Data type	Method	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		74.38	2.418	73.99	2.110
int8	Baseline	74.61	2.353	73.73	2.091
	MatQuant	74.85	2.333	73.88	2.182
	Sliced int8	73.15	2.362	71.46	2.290
int4	Baseline	72.98	2.40	71.87	2.132
	MatQuant	74.01	2.396	71.44	2.441
	Sliced int8	38.97	23.467	35.06	10.640
int?	Baseline	-	-	-	-
int2	S.P. MatQuant	45.69	3.780	35.35	7.761
	MatQuant	44.19	3.826	38.36	10.971
int6	Sliced int8	74.49	2.290	73.61	2.104
	Baseline	74.65	2.357	73.72	2.093
	MatQuant	74.57	2.340	74.04	2.161
int3	Sliced int8	64.19	2.895	39.01	6.018
	Baseline	-	-	-	-
	S.P. MatQuant	67.68	2.520	67.59	2.335
	MatQuant	63.63	2.937	40.55	4.776

Ablation studies: FFN + ATTN Weight Quantization

Using QAT, apply MatQuant to FFN, and also ATTN

< FFN MatQaunt >

Data type	Method	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		74.38	2.418	73.99	2.110
int8	Baseline	74.17	2.29	73.48	2.084
	MatQuant	74.52	2.262	72.58	2.104
int4	Sliced int8	73.36	2.276	71.76	2.18
	Baseline	73.26	2.324	72.13	2.105
	MatQuant	73.24	2.429	71.99	2.148
int2	Sliced int8	40.40	7.259	37.41	9.573
	Baseline	56.02	2.923	54.95	2.699
	MatQuant	62.29	2.265	61.97	2.524
int6	Sliced int8	74.15	2.232	73.35	2.097
	Baseline	74.31	2.293	72.71	2.077
	MatQuant	74.30	2.265	72.59	2.106
int3	Sliced int8	68.70	2.512	64.33	2.493
	Baseline	69.9	2.43	68.82	2.197
	MatQuant	70.41	2.429	67.16	2.324
		_			

< ATTN + FFN MatQaunt >

Data type	Method	Gemma-2 9B		Mistral 7B	
	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		74.38	2.418	73.99	2.110
int8	Baseline	74.61	2.353	73.73	2.091
	MatQuant	74.85	2.333	73.88	2.182
	Sliced int8	73.15	2.362	71.46	2.290
int4	Baseline	72.98	2.40	71.87	2.132
	MatQuant	74.01	2.396	71.44	2.441
int2	Sliced int8	38.97	23.467	35.06	10.640
	Baseline	-	-	-	-
	S.P. MatQuant	45.69	3.780	35.35	7.761
	MatQuant	44.19	3.826	38.36	10.971
int6	Sliced int8	74.49	2.290	73.61	2.104
	Baseline	74.65	2.357	73.72	2.093
	MatQuant	74.57	2.340	74.04	2.161
int3	Sliced int8	64.19	2.895	39.01	6.018
	Baseline	-	-	-	-
	S.P. MatQuant	67.68	2.520	67.59	2.335
	MatQuant	63.63	2.937	40.55	4.776

Very Poor Performance when Quantize ATTN & FFN Both!!

Deployment Considerations

- Current hardware accelerators
- Custom-implemented CUDA kernels
- → native support for int8 and int4 quantized models.
- → can support int2 and int3

Deployment Considerations

- Current hardware accelerators → native support for int8 and int4 quantized models.
- Custom-implemented CUDA kernels → can support int2 and int3
- → To apply it to various settings as above, you need to be prepared for all kinds of configurations.

Deployment Considerations

- Current hardware accelerators → native support for int8 and int4 quantized models.
- Custom-implemented CUDA kernels → can support int2 and int3
- → To apply it to various settings as above, you need to be prepared for all kinds of configurations.

MatQuant can be a simple solution for deployment!

- MatQuant can generate a large number of models at inference time.
- Depending on the serving environment,
 we can choose between Mix'n'Match models and homogeneous sliced models.

Extension to Floating Point

■ Extending MatQuant to floating-point representations, such as FP8 and FP4, presents significant challenges. → Why?

Extension to Floating Point

■ Extending MatQuant to floating-point representations, such as FP8 and FP4, presents significant challenges. → Why?

For example,

- slicing the first two or 4bits from 8bits is easy
- However, this would not be the case when slicing two exponent bits from FP8.

Extension to Floating Point

■ Extending MatQuant to floating-point representations, such as FP8 and FP4, presents significant challenges. → Why?

For example,

- slicing the first two or 4bits from 8bits is easy
- However, this would not be the case when slicing two exponent bits from FP8.
- → needs further research!

Strength

1. Eliminates the need to perform quantization optimization multiple times for different bit precisions, as it can be handled with a single optimization.

Strength

- 1. Eliminates the need to perform quantization optimization multiple times for different bit precisions, as it can be handled with a single optimization.
- 2. For various deployment environments, the required bit precision can be allocated at the inference. In other words, specific optimization for each environment is not necessary.

Strength

- Eliminates the need to perform quantization optimization multiple times for different bit precisions, as it can be handled with a single optimization.
- 2. For various deployment environments, the required bit precision can be allocated at the inference. In other words, specific optimization for each environment is not necessary.
- 3. Even with int8 and int4, it shows performance comparable to the baseline, and in particular, it demonstrates clear performance improvements over the baseline at int2.

Weakness

1. Poor Performance

- Most recent quantized models are deployed with 8-bit or 4-bit precision.
 - → because the performance degradation with 2-bit quant is too severe to justify the memory savings.
- However, MatQuant shows little to no performance improvement at int8 or int4, raising concerns about its practicality in real-world deployment scenarios.

Data type	Method	Gemma-2 2B		Gemm	a-2 9B	Mistral 7B		
	OmniQuant	Task Avg.	log pplx.	Task Avg.	log pplx.	Task Avg.	log pplx.	
bfloat16		68.21	2.551	74.38	2.418	73.99	2.110	
int8	Baseline	68.25	2.552	74.59	2.418	73.77	2.110	
	MatQuant	68.02	2.570	74.05	2.438	73.65	2.125	
int4	Sliced int8	62.87	2.730	72.26	2.480	38.51	4.681	
	Baseline	67.03	2.598	74.33	2.451	73.62	2.136	
	MatQuant	66.58	2.618	73.83	2.491	73.06	2.153	
int2	Sliced int8	39.78	17.030	38.11	15.226	37.29	11.579	
	Baseline	51.33	3.835	60.24	3.292	59.74	3.931	
	MatQuant	52.37	3.800	63.35	3.187	62.75	3.153	

Weakness

2. no justification for poor performance in ATTN/FFN Quant

- The paper merely states that applying QAT to both the attention and FFN modules leads to instability at extremely low bit settings.
- However, it does not provide any justification or further explanation for this observation.

< FFN <u>MatQaunt</u> >						< ATTN + FFN MatQaunt >					
Data type	Method	Gemma-2 9B		Mistral 7B		Data type	Method	Gemma-2 9B		Mistral 7B	
0.0 0.00	QAT	Task Avg.	log pplx.	Task Avg.	log pplx.		QAT	Task Avg.	log pplx.	Task Avg.	log pplx.
bfloat16		74.38	2.418	73.99	2.110	bfloat16		74.38	2.418	73.99	2.110
int8	Baseline	74.17	2.29	73.48	2.084	int8	Baseline	74.61	2.353	73.73	2.091
	MatQuant	74.17	2.262	72.58	2.104		MatQuant	74.85	2.333	73.88	2.182
	MatQualit	74.32	2.202	72.50	2.104	int4	Sliced int8	73.15	2.362	71.46	2.290
int4	Sliced int8	73.36	2.276	71.76	2.18		Baseline	72.98	2.40	71.87	2.132
	Baseline	73.26	2.324	72.13	2.105		MatQuant	74.01	2.396	71.44	2.441
	MatQuant	73.24	2.429	71.99	2.148		Sliced int8	38.97	23.467	35.06	10.640
int2	Sliced int8	40.40	7.259	37.41	9.573	int2	Baseline	=	-	-	-
	Baseline	56.02	2.923	54.95	2.699		S.P. MatQuant	45.69	3.780	35.35	7.761
	MatQuant	62.29	2.265	61.97	2.524		MatQuant	44.19	3.826	38.36	10.971
int6	Sliced int8	74.15	2.232	73.35	2.097	int6	Sliced int8	74.49	2.290	73.61	2.104
	Baseline	74.13	2.293	72.71	2.077		Baseline	74.65	2.357	73.72	2.093
			2.265	72.71			MatQuant	74.57	2.340	74.04	2.161
	MatQuant	74.30	2.203	12.59	2.106	· ·	Sliced int8	64.19	2.895	39.01	6.018
int3	Sliced int8	68.70	2.512	64.33	2.493	int3	Baseline	-	-	-	-
	Baseline	69.9	2.43	68.82	2.197		S.P. MatQuant	67.68	2.520	67.59	2.335
	MatQuant	70.41	2.429	67.16	2.324		MatQuant	63.63	2.937	40.55	4.776

Thank you.

Appendix

