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Introduction

Three A100-80Gs are needed for 
inference only.

100B(FP16) ≈ 200GB
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Introduction

Quantization is the solution!

Llama-2-70b-hf
FP16

140GB

INT8

INT4

INT2

70GB

17.5GB

35GB

2 x A100-80G(160GB)

1 x A100-80G(80GB)

1 x A6000(48GB)

1 x RTX3090(24GB)

Problem: Need many GPUs.
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GPU Memory 
Hierarchy

Store

Operation

(Llama-2-13b-hf)Token/s: 27.01
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Introduction

Decoding latency is dominated
by Memory Bound.

13B(FP16) ≈ 26GB
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Introduction

Quantization is the solution!

Llama-2-13b-hf
FP16

27.01 Token/s

INT4

CUDA Graph Capture & Replay

43.94 Token/s

322.17 Token/s

Problem: Low Speed.
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Introduction

However, current 
quantization methods[1, 2, 3]…

Need to optimize independently 

to target precision.

FP16
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[1] Lee, Changhun, et al. "Owq: Outlier-aware weight quantization for efficient fine-tuning and inference of large language models." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 12. 2024.
[2] Lin, Ji, et al. "Awq: Activation-aware weight quantization for on-device llm compression and acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.
[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).
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However, current 
quantization methods[1, 2, 3]…

[1] Lee, Changhun, et al. "Owq: Outlier-aware weight quantization for efficient fine-tuning and inference of large language models." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 12. 2024.
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Introduction

Question: Can I extract multiple low-precision
from a single optimization?

FP16
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Introduction

Jointly optimize the loss 
for each precision level.



Preliminaries
Quantization Aware Training (QAT)

• Quantization Aware Training (QAT) learns a c-bit quantized model by minimizing end-to-end cross-entropy loss via gradient descent. 

• It uses quantized weights during the forward pass and applies a Straight-Through Estimator (STE) to backpropagate gradients through 
the non-differentiable quantization operation.
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OmniQuant (ICLR2024, Spotlight)

• Unlike QAT, OmniQuant does not update the model parameters.

• Instead, it learns additional scaling and shifting parameters through gradient descent over layer-wise L2 error reconstruction.

QAT OmniQuant
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Preliminaries
OmniQuant (ICLR2024, Spotlight)

• Unlike QAT, OmniQuant does not update the model parameters.

• Instead, it learns additional scaling and shifting parameters through gradient descent over layer-wise L2 error reconstruction.

QAT OmniQuant

Cross Entropy Loss Layer-Wise L2 Error

Smoothing Factor



Preliminaries
Smoothing Factor ; s

• The smoothing factor redistributes the quantization difficulty caused by activation outliers to the weights.

• The smoothing factor enables a mathematically equivalent transformation.

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models



Preliminaries
Shifting Factor ; δ

• The shifting factor aligns channel centers to remove asymmetric outliers, making the distribution easier to quantize.

• The shifting factor enables a mathematically equivalent transformation.

Shifting

Outlier Suppression+ : Accurate quantization of large language models by equivalent and optimal shifting and scaling



Preliminaries
Shifting Factor ; δ

• The shifting factor aligns channel centers to remove asymmetric outliers, making the distribution easier to quantize.

• The shifting factor enables a mathematically equivalent transformation.

Shifting
Assuming c = 8 (bit)

(Before shifting)

(After shifting)

Outlier Suppression+ : Accurate quantization of large language models by equivalent and optimal shifting and scaling



Method
MatQuant

• If we want to extract a 𝑟-bit model from a 𝑐-bit model (0 < 𝑟 < 𝑐), we can just slice out the 𝑟 most significant bits (MSBs) – using a right shift, 

followed by a left shift of the same order.

• Example

• c=8, r=4 (8bit → 4bit)

• q8=234

1 1 1 0 0 0 0 0

INT8

1 1 1 0

INT4

1 1 1 0 1 0 1 0 → →



Method
MatQuant

• If we want to extract a 𝑟-bit model from a 𝑐-bit model (0 < 𝑟 < 𝑐), we can just slice out the 𝑟 most significant bits (MSBs) – using a right shift, 

followed by a left shift of the same order.

• MatQuant’s overall objective (Weight Quantization on FFN)

R  = {8,4,2}

= Loss reweighing factor for bit-width r
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Experiment Setting

MatQuant working with two popular learning based quantization methods: 

1. OmniQuant

2. QAT

Models & Target Bit precisions

■ Gemma-2 2B, 9B / Mistral 7B models.

■ Default target quantization precisions : int8, int4, int2
+  the interpolative nature of MatQuant through evaluations on int6 and int3
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Training

OmniQuant

■ 128 examples with a sequence length of 2048 from the C4 dataset train using a batch size of 4

■ train for a total of 10M tokens for all models except the int2 baseline, 
where we train the model for 20M tokens

QAT

■ sample a fixed set of 100M tokens from the C4 dataset ,
and train all our models using a batch size of 16 and a sequence length of 8192 for a single epoch
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Evaluation Datasets

Calculating Perplexity with C4’s test set

Downstream evaluations with zero-shot accuracy

■ ARC-c, ARC-e. 

■ BoolQ

■ HellaSwag

■ PIQA 

■ Winogrande

Q. What is PPL ?

A. Perplexity (PPL) is a metric 
that measures 
how well a language model 
predicts a sequence.
lower PPL values indicate 
better performance.
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MatQuant with OmniQuant
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MatQuant with OmniQuant

Baseline (OmniQuant) is better, but MatQuant shows comparable performance
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MatQuant with OmniQuant

In int2, MatQuant shows more accurate performance
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MatQuant with OmniQuant

Naïve bit slicing shows significant drop in accuracy
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MatQuant with OmniQuant

Sliced Interpolation.

■ Beyond the target quantization granularities (int8, int4, and int2),
MatQuant allows for bit-width interpolation to bit-widths not optimized during training
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MatQuant with QAT
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MatQuant with QAT

Baseline (QAT) is better, but MatQuant shows comparable performance
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MatQuant with QAT

In int2, MatQuant shows more accurate performance
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MatQuant with QAT

Naïve bit slicing shows significant drop in accuracy
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MatQuant with QAT

Sliced Interpolation.

■ Models trained using MatQuant with QAT exhibit strong interpolative performance 
similar to that of MatQuant with OmniQuant.
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Comparison OmniQuant vs QAT

■ While OmniQuant only trains the auxiliary parameters needed for quantization, 
QAT also updates the weight parameters.
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Comparison OmniQuant vs QAT

■ While OmniQuant only trains the auxiliary parameters needed for quantization, 
QAT also updates the weight parameters.

QAT ➔ overfitting to the C4 subset
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Comparison OmniQuant vs QAT

■ While OmniQuant only trains the auxiliary parameters needed for quantization, 
QAT also updates the weight parameters.

QAT ➔ overfitting to the C4 subset

OmniQuant exhibits

higher Task Accuracy 
than QAT

QAT exhibits 
lower ppl 
than Omniquant

1. the need for high-quality data for QAT

2. Users are better off using resource-
friendly methods like OmniQuant.
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Additional: Layerwise Mix’n’Match

■ Mix’n’Match provides a mechanism to obtain a combinatorial number of strong models 
by using layerwise different quantization granularities , 
from the target bit-widths – i.e., int8, int4, and int2 across layers
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Ablation studies: Weightings (𝜆𝑟) for MatQuant

< overall objective of MatQuant>

Loss coefficient for each target bits (8,4,2 bits)

8 4 2
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Ablation studies: Weightings (𝜆𝑟) for MatQuant

< overall objective of MatQuant>

Loss coefficient for each target bits (8,4,2 bits)

8 4 2

Low coefficient for 8bit/4bit

→ Higher accuracy in int8/int4

→ Lower accuracy in int2
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Ablation studies: Weightings (𝜆𝑟) for MatQuant

< overall objective of MatQuant>

Loss coefficient for each target bits (8,4,2 bits)

8 4 2

High coefficient for 8bit/4bit

→ Higher accuracy in int2

→ Lower accuracy in int8/int4



MIT HAN Lab 66

Ablation studies: Single Precision (S.P.) MatQuant

■ Eliminate other target bits loss (8bit & 4bit),
except for 2bit loss

Loss a for each target bits (8,4,2 bits)

𝜆𝑟 : r is a target bit,  𝜆8, 𝜆4 : 0,  𝜆2 : 1

< overall objective of MatQuant>
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Ablation studies: Co-distillation for MatQuant

■ Outputs from a higher-precision model ➔ used for lower-precision nested model training.
either in a standalone fashion or alongside the ground truth target (weighted equally).
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Ablation studies: Co-distillation for MatQuant

■ Outputs from a higher-precision model ➔ used for lower-precision nested model training.
either in a standalone fashion or alongside the ground truth target (weighted equally).

8→ 4: use int8 outputs for int4 training

8→2 : use int8 outputs for int2 training
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Ablation studies: Co-distillation for MatQuant

■ Outputs from a higher-precision model ➔ used for lower-precision nested model training.
either in a standalone fashion or alongside the ground truth target (weighted equally).
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Ablation studies: FFN + ATTN Weight Quantization

■ Using QAT, apply MatQuant to FFN, and also ATTN
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Ablation studies: FFN + ATTN Weight Quantization

■ Using QAT, apply MatQuant to FFN, and also ATTN
< FFN MatQaunt > < ATTN + FFN MatQaunt >

Very Poor Performance when Quantize ATTN & FFN Both!!
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Additional Consideration

Deployment Considerations

■ Current hardware accelerators ➔ native support for int8 and int4 quantized models.

■ Custom-implemented CUDA kernels ➔ can support int2 and int3
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Additional Consideration

Deployment Considerations

■ Current hardware accelerators ➔ native support for int8 and int4 quantized models.

■ Custom-implemented CUDA kernels ➔ can support int2 and int3

➔ To apply it to various settings as above, you need to be prepared for all kinds of configurations.

MatQuant can be a simple solution for deployment!

■ MatQuant can generate a large number of models at inference time. 

■ Depending on the serving environment,
we can choose between Mix’n’Match models and homogeneous sliced models.
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Additional Consideration

Extension to Floating Point

■ Extending MatQuant to floating-point representations, 
such as FP8 and FP4, presents significant challenges.➔Why?
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■ Extending MatQuant to floating-point representations, 
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For example, 

■ slicing the first two or 4bits from 8bits is easy

■ However, this would not be the case when slicing two exponent bits from FP8.
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Additional Consideration

Extension to Floating Point

■ Extending MatQuant to floating-point representations, 
such as FP8 and FP4, presents significant challenges.➔Why?

For example, 

■ slicing the first two or 4bits from 8bits is easy

■ However, this would not be the case when slicing two exponent bits from FP8.

➔ needs further research !
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Summary for MatQuant

Strength

1. Eliminates the need to perform quantization optimization multiple times for different bit precisions, 
as it can be handled with a single optimization.
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Summary for MatQuant

Strength
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2. For various deployment environments, the required bit precision can be allocated at the inference. 
In other words, specific optimization for each environment is not necessary.
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Summary for MatQuant

Strength

1. Eliminates the need to perform quantization optimization multiple times for different bit precisions, 
as it can be handled with a single optimization.

2. For various deployment environments, the required bit precision can be allocated at the inference. 
In other words, specific optimization for each environment is not necessary.

3. Even with int8 and int4, it shows performance comparable to the baseline, and in particular, 
it demonstrates clear performance improvements over the baseline at int2.
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Summary for MatQuant

Weakness

1. Poor Performance

■ Most recent quantized models are deployed with 8-bit or 4-bit precision. 
➔ because the performance degradation with 2-bit quant is too severe to justify the memory savings.

■ However, MatQuant shows little to no performance improvement at int8 or int4, 
raising concerns about its practicality in real-world deployment scenarios.

< MatQuant with 
OmniQuant >
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Summary for MatQuant

Weakness

2. no justification for poor performance in ATTN/FFN Quant

■ The paper merely states that applying QAT to both the attention and FFN modules 
leads to instability at extremely low bit settings.

■ However, it does not provide any justification or further explanation for this observation.
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Thank you.



Appendix


	Slide 1
	Slide 2: Preliminary
	Slide 3: Preliminary
	Slide 4: Preliminary
	Slide 5: Preliminary
	Slide 6: Preliminary
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Introduction
	Slide 11: Introduction
	Slide 12: Introduction
	Slide 13: Introduction
	Slide 14: Introduction
	Slide 15: Introduction
	Slide 16: Introduction
	Slide 17: Introduction
	Slide 18: Introduction
	Slide 19: Introduction
	Slide 20: Introduction
	Slide 21: Introduction
	Slide 22: Introduction
	Slide 23: Introduction
	Slide 24: Introduction
	Slide 25: Introduction
	Slide 26: Introduction
	Slide 27: Introduction
	Slide 28: Introduction
	Slide 29: Introduction
	Slide 30: Introduction
	Slide 31: Preliminaries
	Slide 32: Preliminaries
	Slide 33: Preliminaries
	Slide 34: Preliminaries
	Slide 35: Preliminaries
	Slide 36: Preliminaries
	Slide 37: Preliminaries
	Slide 38: Preliminaries
	Slide 39: Preliminaries
	Slide 40: Preliminaries
	Slide 41: Method
	Slide 42: Method
	Slide 43: Experiment Setting
	Slide 44: Training
	Slide 45: Evaluation Datasets
	Slide 46: MatQuant with OmniQuant 
	Slide 47: MatQuant with OmniQuant 
	Slide 48: MatQuant with OmniQuant 
	Slide 49: MatQuant with OmniQuant 
	Slide 50: MatQuant with OmniQuant 
	Slide 51: MatQuant with QAT
	Slide 52: MatQuant with QAT
	Slide 53: MatQuant with QAT
	Slide 54: MatQuant with QAT
	Slide 55: MatQuant with QAT
	Slide 56: Comparison OmniQuant vs QAT
	Slide 57: Comparison OmniQuant vs QAT
	Slide 58: Comparison OmniQuant vs QAT
	Slide 59: Comparison OmniQuant vs QAT
	Slide 60: Comparison OmniQuant vs QAT
	Slide 61: Comparison OmniQuant vs QAT
	Slide 62: Additional: Layerwise Mix’n’Match
	Slide 63: Ablation studies: Weightings (𝜆𝑟) for MatQuant
	Slide 64: Ablation studies: Weightings (𝜆𝑟) for MatQuant
	Slide 65: Ablation studies: Weightings (𝜆𝑟) for MatQuant
	Slide 66: Ablation studies: Single Precision (S.P.) MatQuant
	Slide 67: Ablation studies: Co-distillation for MatQuant
	Slide 68: Ablation studies: Co-distillation for MatQuant
	Slide 69: Ablation studies: Co-distillation for MatQuant
	Slide 70: Ablation studies: FFN + ATTN Weight Quantization
	Slide 71: Ablation studies: FFN + ATTN Weight Quantization
	Slide 72: Ablation studies: FFN + ATTN Weight Quantization
	Slide 73: Additional Consideration
	Slide 74: Additional Consideration
	Slide 75: Additional Consideration
	Slide 76: Additional Consideration
	Slide 77: Additional Consideration
	Slide 78: Additional Consideration
	Slide 79: Summary for MatQuant
	Slide 80: Summary for MatQuant
	Slide 81: Summary for MatQuant
	Slide 82: Summary for MatQuant
	Slide 83: Summary for MatQuant
	Slide 84: Thank you.
	Slide 85: Appendix

