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Tokenization

GPT-40 & GPT-4o mini GPT-3.5& GPT-4  GPT-3 (Legacy)

Bombardillo crocodillo beats tralaleo tralala.

https://platform.openai.com/tokenizer



Tokenization

Bombardillo crocodillo beats tralaleo tralala.

Iy

Text Token IDs



Tokenization

[96273, 597, 16726, 149484, 16726, 54439, 498, 280, 195399, 498, 105994,
13]

Text Token IDs



Causal Language Modeling

Given a language model M parameterized by 0, and a tokenized input
sequence X = {Xqy, Xz, ..., Xp}, CLM aims to minimize the next-token
prediction loss:
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Causal Language Modeling

Given a language model M parameterized by 8, and a tokenized input
sequence X = {Xqy, Xz, ..., Xp}, CLM aims to minimize the next-token

predict~= '~~~
mjn L(X,Mz) where L(X,M;s)= —logP(z,.1|X, Mg)

This objective encourages the model to assign high likelihood to the
(probably) correct next token, given the preceding context (left-to-right)

* Perplexity = exp(L)



Introduction

Large Language Models are trained on vast amount of corpus via casual language modeling, using up to
billions and trillions of tokens collected from the internet [1,2]
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Training Large Language Models

Large Language Models are trained on vast amount of corpus via casual language modeling, using up to
billions and trillions of tokens collected from the internet [1,2]

e.g.) GPT-3 used 300B tokens [1], Chinchilla used 1.4T tokens [2]
> extremely large corpus are noisy
e.g. low-information, redundancy, mixed language, random words, etc.

e '"asdfasdfasdfasdfasdfasdf..."(e.g., keyboard mashing, filler content)

e This article is about deep learning. Deep learning is a type of machine learning. Deep learning is...
e 2=2 good day for learning! TensorFlow# {#-> T..

e iwant hefawef ew><<3 to fiweoifajwemn eat banana.
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Data Filtering

Removing noisy data - also known as data filtering - is crucial for improving LLM training
performance/efficiency.
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performance/efficiency.

e document level filtering : removes entire low-quality documents based on repetition, content safety,
etc. [3,4]
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Data Filtering

Removing noisy data - also known as data filtering - is crucial for improving LLM training

performance/efficiency.

e document level filtering : removes entire low-quality documents based on repetition, content safety,

etc. [3,4]

. Mv name is kwanhee |
. "asdfasdfasdfasdfasdfasdf . "(e. a |
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. It was constructed in 1889 as the entrance
arch to the World's Fair.
. Today, it attracts millions of tourists each
year and offers a stunning view of the city.
| ) The tower stands approximately 300
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the world when it was built

— . Its design, by Gustave Eiffel, has become
aniconic symbol of French architecture

My name is kwanhee
Hi this is kwanhee speaking
Deen learnina is fin!

and engineering.

. It was constructed in 1889 as the entrance
arch to the World's Fair.

. Today, it attracts millions of tourists each
year and offers a stunning view of the city.

. The tower stands approximately 300

meters tall and was the tallest structure in
the world when it was built

. Its design, by Gustave Eiffel, has become
aniconic symbol of French architecture

and engineering.
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Data Filtering

Removing noisy data - also known as data filtering - is crucial for improving LLM training
performance/efficiency.

e line level filtering : removes individual data points (e.g., sentences) [5]
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Data Filtering

Removing noisy data - also known as data filtering - is crucial for improving LLM training
performance/efficiency.

e line level filtering : removes individual data points (e.g., sentences) [5]

My name is kwanhee

Hi this is kwanhee speaking

Deep learning is fun!

252 good day for leaming! TensorFlow
EE-T.
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My name is kwanhee

Hi this is kwanhee speaking

Deep learning is fun!

252 good day for leaming! TensorFlow
Z#E-oT.

i want hefawef ew><<3 to fijweoifajwemn
eatbanana
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Rho-loss

Removing noisy data - also known as data filtering - is crucial for improving LLM training
performance/efficiency.

e line level filtering : removes individual data points (e.g., sentences) [5]
o Rho-loss
m robust data selection method that filters data points based on reducible holdout loss
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Rho-loss

Removing noisy data - also known as data filtering - is crucial for improving LLM training
performance/efficiency.

e line level filtering : removes individual data points (e.g., sentences) [5]
o Rho-loss
m robust data selection method that filters data points based on reducible holdout loss

reducible holdout loss

argmax Lly|[z;D] —  Lly|a;Dyol

(E ) y] eB, - e e
training loss irreducible holdout loss (IL)

21



More Fine-grained Filtering?

Removing noisy data - also known as data filtering - is crucial for improving LLM training
performance/efficiency.

> is there more fine-grained approach?
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Nature of Causal Language Modeling

e.g. i want hefawef ew><<3 to fjweoifajwemn eat banana.
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Nature of Causal Language Modeling

e.g @R hefawef ew><<3 @ fiweoifajwemn EElDENGNEN

o FIMERSIcan focus on important tokens to process the sentence

> | want to eat banana
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Nature of Causal Language Modeling

e.g. @RI hefawef ew><<3 [@ fiweoifajwemn EaliDaNaneN

o FIMERSIcan focus on important tokens to process the sentence
> | want to eat banana

e Language models can’t do this!

> i want hefawef ew><<3 to fijweoifajwemn eat banana.
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Research Question

Given that data filtering can improve performance and considering the nature of causal language
modeling,

Q) Are all tokens necessary for pretraining?
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Research Question

Given that data filtering can improve performance and considering the nature of causal language
modeling,

Q) Are all tokens necessary for pretraining?

A) No!

Q)Then, how can we select tokens?
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Training Dynamics of Token Loss

Base Model: Token Types:
Tinyllama-1B
* H2>H:
Math Dataset: « L3H:
15B OpenWebMath
* H=2>L:

Loss Evaluation:
Evaluate token loss every 1B tokens
Fit loss trends for each token
Classify into four categories

« L2>L :

(=02 < AL <02andl, > Loeqn)
(AL>0.2)

(AL<0.2)

(=02 < AL <02andl, < Lpnean)
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Not All Tokens Are Equal

(a) Loss for different token types

——
3
)]
8 2  —— H-H(11%)
- — L=H (12%)
= H-L (26%)
1 — L-L(51%)
0
0 5 10 15

Trained Tokens(B)

Token Types:

* H=>H (11%):

¢ LOH (12%):

* H=>L (26%):

e L>L (51%):

Persistent high loss, stay hard

Increasing loss, may indicate noise

Decreasing loss, ideal for learning

Consistent low loss, already known
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Not All Tokens Are Equal

0.3 (b) Example L-L tokens (c) Example H—=H tokens
' —— L-L Token 1 ~—— H-H Token 1
—— L-L Token 2 3.5 —— H-+H Token 2
- L-L Token 3 —— H-*H Token 3
0.2 3.0
w w
u un
3 S 25
0.1
2.0
0.0 1.5
0 5 10 15 0 5 10 15
Trained Tokens(B) Trained Tokens(B)

“fluctuating” tokens that resist convergence
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Can We Select Useful Tokens?

(] Desired Tokens | | Undesired Tokens

[ Noisy Pretraining Corpus ]
| The farm has 35 hens <Apr12 1:24> and 12 pigs. ##davidjl123 says totaling 47 animals. |

[x-a] [x:l] [xZ] [xz] [x4] [xs] [xs] [xs']
| T T T T T

Causal Language Modeling

N N
[xl] [sz [xa] [x4] [st [xfs] [x'?] [E“S]
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Can We Select Useful Tokens?

(] Desired Tokens | | Undesired Tokens /' Keep loss X Remove loss

[ Noisy Pretraining Corpus ]
[ The farm has 35 hens <Aprl2 1:24> and 12 pigs. ##davidjl123 says totaling 47 animals. ]

[xU] [xl] [xz] [xa] [x4] [xs} [xs] [x?]
| T T T T

Selective Language Modeling

TECLELL
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Selective Language Modeling (SLM)

High-quality
Corpus
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Selective Language Modeling (SLM)

Step 1
. ) Train a
Hign-quality’| _,, JEESeol
Corpus model on
high-quality Reference

L2 Model
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Selective Language Modeling (SLM)

Step 1 Step 2
. . Train a Calculate .
High-quality __ e —p cachtoken’s g CPretramning |
Corpus model on ppl in the Corpus
high-quality Reference pretraining
text. Model COrpus.
[ Token Scoring ] Lalz;) = Lolx;) — Lrml(zi)

Margin ~ Target model Reference model
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Selective Language Modeling (SLM)

Step 1 Step 2 Step 3
. _ Tt Calculate Train an
High-quality - EEN —ap cachtoken’s Pretraining |—p LM with --I-
Corpus model on ppl in the Corpus loss focused D)
high-qual lt)l' Reference prf:trammg on hlg]’l-SCGl'E La nguage
text. Model Ccorpus. tokens. Model
[ Token Scoring J La(z:) =Lo(xi) — Lam(z:)

Margin  Target model Reference model

* 1 if x; ranks in the top k% by S(x;)
[ oken Selection T (i) {0 otherwise
o 1
[ SLM Training ] Lsim(0) = TN A% E I (z;) - log P(x;|x<;;0)
1]
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Token Selection Example La(@i) = Lo(@i) — Lrm(z:)

Margin  Target model Reference model

“Tom had 4 apples. He ate 2. How many are left?”

Lo Lpm Ly Selected
4 1.85 0.90 0.95 (V]
apples 0.75 0.55 0.20 (V]
2 1.95 0.88 1.07 (V]
How 1.10 0.70 0.40 (V]
left 1.00 0.60 0.40 &
Tom 0.35 0.25 0.10 %
ate 0.65 0.55 0.10 X
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Experimental Setup

e Reference Model (RM) Training
o Dataset
m  Math domain
e 0.5B data from GPT and manually curated data
m  General domain
e 1.9B tokens from open-source datasets
o  Model
m  Tinyllama-1.1B (Pre-trained)
m  Mistral-7B (Pre-trained)
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Experimental Setup

e Reference Model (RM) Training
o Dataset
m Math domain

e 0.5B data from GPT and manually curated data

m  General domain
e 1.9B tokens from open-source datasets
o Model
m  Tinyllama-1.1B (Pre-trained)
m  Mistral-7B (Pre-trained)

e Language Model (LM) Training
o Dataset
m  Math domain
e 14B OpenWebMath (OWM) dataset
m  General domain
e 80B tokens from open-source datasets
o  Model
m  Tinyllama-1.1B (Pre-trained)
m  Mistral-7B (Pre-trained)

—

Baseline (-CT)

o  Without token selection
RHO-1

o  With token selection
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Pre-training Results on Math Domain

Model 6| Data Uniq: el GSMEK MATH' SYAMP ASDiv MAWPS TAB MQA DAL SAT? | AVG Ex pe rl me ntal Setu p
Toks* Toks STEM
1-2B Base Models
Tinyllama LI - - - 29 3.2 11.0 18.1 204 125 1446 160 219 | 134
Phi-1.5 138 - - -| 324 4.2 434 531 662 244 143 1B 183 | 310 ® Dataset
Chwenl 5 1.8B - - -l 3461 68 48.5 63.6 790 202 251 313 406 | 400
Gemma 208 - - < 188 1.4 380 566 725 369 268 344 500 | 384 © 14B Ope nwebMath
DecpSeekLLM 1.3B OW 14B 150B 11.5 59 - - - - - me 33| -
DeepSeekMath 138 - 1208 1508 238 13.6 - - - - - 30 s65| -

Continual Pretraining on Tinyllama-1B

T'ln}'“m—’l:]" 1.1B OWM 148 158 G4 24 21.7 6.7 477 179 139 230 250 | 21.6
RHo-1-Math 1.1IE OWM 14B O 298 14.0 49.2 6l.4 T8 258 304 M7 281 | 381
A AD% 4234 4116 4275 +247 4321 +719 +165 +17 431 +165 e Model

RHO-1-Math  1.1IB M 4B 3B 362 15.6 521 67.0 B39 290 325 233 2K | 409 H
Ho oW ’ : ‘ ! o Tinyllama-1.1B

> 7B Ease Models .
o Mistral-7B

LLaMA-2 8 - -] 140 36 395 517 635 309 124 327 344|314

Mistral 7B - .| 412 116 647 685 KIS 529 330 495 594 520

Minerva 8B - 39B 164B| 162 14, - - - - - /6 - | -

Minerva 62 - 3B 9B 524 27.6 - - - - . 539 [

Minerva S40B - 39B 26B S88 336 - - - - - me - |-

LLemma 7B PRl S55B 200B| 388 172 561 69.0 824 487 410 454 594|509

LLemma 3B PPile 558 S0B| 542 30 679 75T 900 5T0 498 547 688 | 60.1

Intem-Math 7B - 3IB I125B| 418 144 616 668 837 500 573 248 375|487 e Task

Intern-Math s - 31B 125B| 654 00 757 793 40 309 385 531 719|621 :
DeepSeckMath 7B - 120B 500B| 64.1 342 740 £39 924 634 624 564 844 I 68.4 o Few-shot CoT Reasoning

Continual Pretraining om Mistral-TH

1stral- . . £ L . i . A .
RHO- 1 -Math 7B OWM 10,58 66,9 3.0 77.8 T9.0 039 499 587 844 | 66.2

A -30% +240  +BE 492 480 478 448 4110 +18.8 +10.4
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Supervised Fine-Tuning Results on Math Domain

Muodel Size Tools SFT Data | GSMEK MATH SVAMP ASDiv MAWPS TAB GSM-H | AVG
Used for SFT? | v v X & X X X
Previous Models

GPT4-0314 = X = [ 92.0 42.5 93.1 al1.3 916 67.1 64.7 T8.3
GPT4-0314 (PAL) - v - 04.2 51.8 94.8 026 97.7 95.9 77.6 864
MAmmoTH TOB o MI- 260k T6.9 41.8 824 = = = = =
ToRA TB v ToRA-69k | 688 40.1 68.2 739 288 42.4 54.6 62.4
ToRA TIB v ToRA-GOk | 843 497 827 6.8 938 74.0 67.2 6.9
DeepSeeckMath TB v ToRA-69k | 798 52.0 801 87.1 93.8 85.8 63.1 774

Our Pretrained Models
TinyLlama-CT 1B o ToRA-G9k | 514 k4 534 667 81.7 2.5 428 507 )
RHO- 1-Math 1B v ToRA-69k 59.4 40.6 60.7 74,2 28.6 26.7 48.1 56.9
A +8.0 +2.2 +7.3 +7.5 +6.9 +6.2 +5.3 +6.2 )
[ Mistral-CT TB v ToRA-69k | T77.5 48.4 T6.9 338 93.4 67.5 til).4 726
RHO- 1-Math 7B v ToRA-GDk | H1.3 51.8 RS 5.5 045 T0.1 631 753
fa | +3.8 +3.4 439 +1.7 +1.1 +2.6 427 | +27

Experimental Setup

e Dataset
o ToRA-69k
e Model

o Rho-1-Math-1B
o Rho-1-Math-7B

e Task
o Tool-Integrated
Reasoning

43



Results on General Domain

e Around 6% average boost in performance in general domain

e Improvement is significant on math-related benchmarks
o Likely due to clear structure and explicit attention targets such as formulas.

Performance of General Pretrained Base Model

~

+11.3

En)
(=1

I
(=1

Metrics (%) \

-
(=]

o

+28.2

MFTER

(AN iyl oL o (]
\ L G coW BFPL'D@ ME??RP@I mgua"-w@ Eua-“?@i j
AL +0.9 = Tinyllama
" +8.6 s == Tinyllama-CT
F 60 +1.4 = =1 Rho-1-1B
(%]
8 s
-]
E “ +1.1 +5.0
n
204
poE  pacC pRCE poo'@ plak Hemgwﬂ oGrane® pBOP  gaah
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Can SLM Works w/o High-Quality Corpus?

e We can’'t always assume there is a high-quality corpus
e What if there is no high-quality data?

o We cannot do step 1 and 2

Step 3
: : Calculate - S Train an .
High-quality —ap cachtoken’s Pretraining —>  LLM with —
Corpus on lin the Corpus ‘ loss focused )
high-quality Reference on high-score Language
text. Model tokens. Model
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Can SLM Works w/o High-Quality Corpus?

e Self-reference scenario
o Case1: Train a model with full data to the end first, and use it as the reference model
o Case2: Use different previous checkpoints as reference model

Scoring

N

Pretrainin
Self-Reference 8

U COI‘pHS

MOCIEI SLM Pre-training
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Can SLM Works w/o High-Quality Corpus?

e SLM also performs well in self-reference scenarios

e With information entropy scoring function, SLM achieves better results
o Higher information entropy indicates greater uncertainty of a token in its context

Hpwmlzi) = —Z Plts|x<i) log Pl |xci)
Model Score ) q Uniq. Train| o000 v ATH SVAMP ASDiv MAWPS MOQA |AVG
ode Function P2 Toks Toks v Q

Tinyllama-CT (RM) - OWM . :

Tinyllama-SLM Lrm OWM 14B 10.5B| 6.7 4.6 23.3 40.0 54.5 14.3 | 23.9
Tinyllama-SLM Hrm OWM 14B 10.5B| 7.0 4.8 23.0 393 50.5 13.5 | 23.0
Tinyllama-SLM Lrvy NHrv OWM 14B 9B 7.1 5.0 23.5 41.2 53.8 18.0 | 24.8
Tinyllama-CT - PPile 55B 52B 8.0 6.6 23.8 41.0 54.7 14.2 | 24.7

Tinyllama-SLM Lrm N"Hrm PPile 55B  36B 8.6 8.4 244 436 57.9 16.1 |26.5
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Take-Home Message

e Not all tokens are useful during language model (LM) pretraining
o Some tokens are already learned or noisy, and training on them is a waste

e SLM enhances data efficiency in LM training through token selection
o |t selects tokens based on how much they help the model improve

e SLM is more efficient and works better
o It needs fewer tokens but gives higher or comparable performance
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Limitation & Discussion

SLM has only been validated on 1B and 7B models with <100B tokens

o  Scalability to larger models and corpora remains an open question

SLM needs many steps like reference model training and scoring
o Realtraining efficiency may not always improve

Instead of training a LM after scoring, why not just use the RM directly?
o The RMis only used for scoring, but its performance is not shown in the result tables.

o Including RM'’s result and analysis would help clarify whether SLM truly improves over it.

SLM does not work for specific downstream tasks
o  Token selection is not directly based on downstream task performance
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Appendix: What Tokens are Selected with SLM?

e Visualization of token selection during the training on OpenWebMath
e DBlue tokens are retained during actual pretraining

e The majority of tokens chosen by the SLM method are closely related to math
Token Selected Examples

* Process the student answer as a Math Object Formula, and break down its parse tree by its top-level operators.
The idea is to create an array of the student’s primitive factors, so say 3(x+1)(x+2)"2 gives (3.x+1,x+2). » Because
we may want factoring over Z, checking the ged of coefficients within each factor. « Pass each of these things to
SAGE and ask if the nonconstant factors are reducible over £ or Q). Also ask if they are monic. These things at
least we learned how to do at the Vancouver code camp. The end goal is to count the following forms as correct,
possibly controlled by flags: n'\{ |prod (factor) power, where each factor is irreducible in Z[X], n in Z ¢ \{ }prod
(factor)"power, where each factor is irreducible and monic in Q[X], r in Q I suppose on the last one the monic
requirement could be dropped with a flag. I have no plans to check that the form is fully condensed, e.g. forcing
(x+1)"2 and rejecting (x+1)(1+x)

The equation of the path traversed by a projectile 15 called equation of trajectory. \n \n Suppose, the body reaches
the point P after time (t ). \n ‘n Horizontal motion has no acceleration. Thus, using kinematic equation, horizontal
distance covered will be —\n 'n X =u‘cos \theta t\n ‘n Or, YWquad t = ( \frac { x }{ u'cos \theta } )\n ‘n Vertical
motion has constant acceleration { g ) . Thus, distance covered will be ='\n \n ¥ = ( u\sin \theta ) t - \left ( \frac
[1H2} wright) g "2 'n '\n = ( u\sin \theta ) \eft ( \frac {x}{ucos \theta} \right ) - \left (\frac {1}{2} \right ) g \left (
\frac {x}{u \cos \theta} \right )"2 \n \n =\left ( Mtan ‘\theta \right ) x - \left ( \frac {g}{2 u"2 \cos"2 \theta} \right ) x"2
‘\n \n In this equation, ( theta, \ u\Mext {and} \ g ) are constants. Thus, \n \n 1. Term \left ( \tan \theta \right )is a
constant, let itis ( p ) \n 2. Term \left [ \left ( Mrac {g}{2 u™2 ‘cos 2 \theta} \right ) \right ] is also a constant, let it is
{g)\n ‘\nSo,\quady=p=x-qx"2'n \n Therefore, ( y \propto x°2 ), which is a required condition of a parabola.
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