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Causal Language Modeling

Given a language model M parameterized by θ, and a tokenized input 

sequence X = {x₁, x₂, ..., xₙ}, CLM aims to minimize the next-token 

prediction loss:
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Causal Language Modeling

Given a language model M parameterized by θ, and a tokenized input 

sequence X = {x₁, x₂, ..., xₙ}, CLM aims to minimize the next-token 

prediction loss:

This objective encourages the model to assign high likelihood to the 

(probably) correct next token, given the preceding context (left-to-right)

* Perplexity = exp(L)
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Large Language Models are trained on vast amount of corpus via casual language modeling, using up to 

billions and trillions of tokens collected from the internet [1,2]
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Large Language Models are trained on vast amount of corpus via casual language modeling, using up to 

billions and trillions of tokens collected from the internet [1,2]

e.g.) GPT-3 used 300B tokens [1], Chinchilla used 1.4T tokens [2]

> extremely large corpus are noisy

e.g. low-information, redundancy, mixed language, random words, etc.

● "asdfasdfasdfasdfasdfasdf..."(e.g., keyboard mashing, filler content)

● This article is about deep learning. Deep learning is a type of machine learning. Deep learning is…

● 오늘은 good day for learning! TensorFlowを使って..

● i want  hefawef ew><<3 to fjweoifajwemn eat banana.
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Deep learning is…

● 오늘은 good day for learning! TensorFlow

を使って..

● i want  hefawef ew><<3 to fjweoifajwemn 

eat banana.

● It was constructed in 1889 as the entrance 

arch to the World’s Fair.

● Today, it at tracts millions of tourists each 

year and offers a stunning view of the city.

● The tower stands approximately 300 

meters tall and was the tallest structure in 

the world when it was built

● Its design, by Gustave Eiffel, has become 

an iconic symbol of French architecture 

and engineering.
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Rho-loss

Removing noisy data - also known as data filtering - is crucial for improving LLM training 

performance/efficiency.

● line level filtering : removes individual data points (e.g., sentences) [5]

○ Rho-loss 

■ robust data selection method that filters data points based on reducible holdout loss
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Removing noisy data - also known as data filtering - is crucial for improving LLM training 

performance/efficiency.

> is there more fine-grained approach?

More Fine-grained Filtering?
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e.g. i want  hefawef ew><<3 to fjweoifajwemn eat banana.

Nature of Causal Language Modeling

23



e.g. i want hefawef ew><<3 to fjweoifajwemn eat banana.

● Humans can focus on important tokens to process the sentence

> I want to eat banana

Nature of Causal Language Modeling

24



e.g. i want hefawef ew><<3 to fjweoifajwemn eat banana.

● Humans can focus on important tokens to process the sentence

> I want to eat banana

● Language models can’t do this!

> i want  hefawef ew><<3 to fjweoifajwemn eat banana.

Nature of Causal Language Modeling
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Given that data filtering can improve performance and considering the nature of causal language 

modeling,

Q) Are all tokens necessary for pretraining? 

A) No! 

Q)Then, how can we select tokens?

Research Question
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Training Dynamics of Token Loss
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Not All Tokens Are Equal

30
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Can We Select Useful Tokens?
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Selective Language Modeling (SLM)
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Token Selection Example

“Tom had 4 apples. He ate 2. How many are left?”

Selected

4 1.85 0.90 0.95

apples 0.75 0.55 0.20

2 1.95 0.88 1.07

How 1.10 0.70 0.40

left 1.00 0.60 0.40

Tom 0.35 0.25 0.10

ate 0.65 0.55 0.10
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Experimental Setup
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● Reference Model (RM) Training
○ Dataset

■ Math domain
● 0.5B data from GPT and manually curated data

■ General domain
● 1.9B tokens from open-source datasets

○ Model
■ Tinyllama-1.1B (Pre-trained)
■ Mistral-7B (Pre-trained)

● Language Model (LM) Training
○ Dataset

■ Math domain
● 14B OpenWebMath (OWM) dataset

■ General domain
● 80B tokens from open-source datasets

○ Model
■ Tinyllama-1.1B (Pre-trained)
■ Mistral-7B (Pre-trained)
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○ Dataset

■ Math domain
● 14B OpenWebMath (OWM) dataset

■ General domain
● 80B tokens from open-source datasets

○ Model
■ Tinyllama-1.1B (Pre-trained)
■ Mistral-7B (Pre-trained)

● Baseline (-CT)
○ Without token selection

● RHO-1
○ With token selection



Experimental Setup

● Dataset
○ 14B OpenWebMath

● Model

○ Tinyllama-1.1B

○ Mistral-7B

● Task
○ Few-shot CoT Reasoning

Pre-training Results on Math Domain
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Experimental Setup

● Dataset
○ ToRA-69k

● Model

○ Rho-1-Math-1B

○ Rho-1-Math-7B

● Task
○ Tool-Integrated 

Reasoning

Supervised Fine-Tuning Results on Math Domain
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Results on General Domain

● Around 6% average boost in performance in general domain

● Improvement is significant on math-related benchmarks
○ Likely due to clear structure and explicit attention targets such as formulas.
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Can SLM Works w/o High-Quality Corpus?

● We can’t always assume there is a high-quality corpus

● What if there is no high-quality data?
○ We cannot do step 1 and 2
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Can SLM Works w/o High-Quality Corpus?

● Self-reference scenario
○ Case1: Train a model with full data to the end first, and use it as the reference model

○ Case2: Use different previous checkpoints as reference model

Self-Reference

Scoring

SLM Pre-training
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Can SLM Works w/o High-Quality Corpus?

● SLM also performs well in self-reference scenarios

● With information entropy scoring function, SLM achieves better results
○ Higher information entropy indicates greater uncertainty of a token in its context
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Take-Home Message

● Not all tokens are useful during language model (LM) pretraining
○ Some tokens are already learned or noisy, and training on them is a waste

● SLM enhances data efficiency in LM training through token selection
○ It selects tokens based on how much they help the model improve

● SLM is more efficient and works better
○ It needs fewer tokens but gives higher or comparable performance
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Limitation & Discussion

● SLM has only been validated on 1B and 7B models with <100B tokens
○ Scalability to larger models and corpora remains an open question

● SLM needs many steps like reference model training and scoring
○ Real training efficiency may not always improve

● Instead of training a LM after scoring, why not just use the RM directly? 
○ The RM is only used for scoring, but its performance is not shown in the result tables.
○ Including RM’s result  and analysis would help clarify whether SLM truly improves over it.

● SLM does not work for specific downstream tasks
○ Token selection is not directly based on downstream task performance
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Appendix: What Tokens are Selected with SLM?
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● Visualization of token selection during the training on OpenWebMath

● Blue tokens are retained during actual pretraining

● The majority of tokens chosen by the SLM method are closely related to math
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