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TL;DR

Data pruning, a process of removing unnecessary data from the

original dataset, is known to improve convergence speed,
scaling, and resource efficiency.

Solely focusing on the average performance, authors argue that
existing data pruning methods suffer from distributional bias, a

performance disparity across different sub-groups of distribution.

They propose a distributionally-robust data pruning method

coined DRoP, which is both theoretically and empirically
validated.
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Related Work
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Related Work: Data Efficiency

® Dataset distillation: Replaces the original samples with
synthetically generated counterparts that contain compressed
training signal.

® CoreSet method: Selects representative samples that jointly
capture the data manifold.

® Data pruning: Removes unnecessary samples in terms of model
performance.
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Related Work: Data Pruning

e Usually, they design scoring mechanisms to assess the utility of
each sample, often measured by its uncertainty or difficulty.

® Data pruning is made in two fold as follows:

I Learn a query model v, trained on a full training dataset
D = {(Xi, i) }ie-

2 Prune the dataset D based on a utility score A(X, y; 1) as
D, = {(Xay) €D A(Xa)’ﬂ/)) > quantﬂe({A(Xiayi;’lp)}iE[N]aS)}

v" Note that a utility score A(X, y; ¢) is defined for each training
sample.
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Related Work: Data Pruning (cont.)

® Data pruning methods vary by choosing different utility scores.

— Forgetting [l]: The number of times (X, y) is both learned
and forgotten while training ) (+)

Algorithm 1 Computing forgetting statistics.

initialize prev_acc; = 0,7 € D
initialize forgetting T'[i] = 0,7 € D
while not training done do
B ~ D # sample a minibatch
for example i € B do
compute acc;
if prev_acc; > acc; then
TE =T} +1
prev_acc; = acc;
gradient update classifier on B
return 7’

— EL2N [2]: A(X,y;v) = |lo(¥(X)) — y]|2, where o is a softmax
function and y is an one-hot vector.
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Related Work: Data Pruning (cont.)

— Grand [2]: A(X,y;9) = [|[VL(o, (¥ (X)), y)]|2

— Dynamic Uncertainty [3]:

1 Estimate the variance of the target probability {o (4;(X)) ey,
across a fixed window of J previous epochs, for every training
epoch k.

2 Average across all k.

¢ Note that a utility score A(X, y; ) is defined for each training
sample.
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Related Work: Distributional Robustness

® Distributional robustness in machine learning concerns the
distributional bias problem: non-uniform accuracy across
different sub-population groups.

® Followings are representative ML problems where distributional
robustness matter.

ML Problem Group Variable
Classification Bias Class Label
Spurlous.COrrelatlon (Spurious Feature, Class Label)
Fairness

— Certain fairness problems can be considered spurious correlation
problems, where the spurious features correspond to demographic

attributes.
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Related Work: Distributional Robustness (cont.)

Common training examples

y: waterbird y: landbird .
a: water a: land
Waterbirds Packground background 4
y: blond hair o y: dark hair —~ _wuepg
a: female a: male \
CelebA |
X

® Waterbirds: (Water Bg., Water Bird), (Land Bg., Land Bird),

Test examples

y: waterbird
a: land
background

y: blond hair

a: male

(Water Bg., Land Bird), (Land Bg., Water Bird)

® CelebA: (Blond Hair, Female), (Black Hair, Male), (Blond

Hair, Male), (Black Hair, Female)
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Related Work: Distributional Robustness (cont.)

® Many well-established algorithms consider a weighted sum of
group-wise expected losses as an objective, aiming to put higher
mass on high loss-groups as follows:

0cO

G
min Z dg Eey)p, 14003 (x,5))} -
g=1

Expected Loss of Grp. g

— 0 € ©: Model Parameter
- q:=(q,-..,q9c): Weight vector
— P,: Data generating process of group g

® Unlike most group-wise cost weighting strategies that consider a
fixed weight vector g [4], Group DRO [5] iteratively updates g
for every training step.
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Related Work: Distributional Robustness (cont.)

Algorithm 1: Online optimization algorithm for group DRO

Input: Step sizes 7,,n9; P, foreachg € G
Initialize 6(®) and ¢(©
fort=1,...,Tdo

~ Uniform(1,...,m // Choose a group ¢ at random

g
z,y~ b, // Sample z,y from group g
q ¢t qy + dq exp(ng£(0¢; (z,y))) // Update weights for group g
q® H‘1’/29/ Qg // Renormalize q
00 — 0= — a9t (2, y // Use ¢ to update 6

Nodg
end

® Actually, group DRO aims to minimize an expected loss of the
worst group, not a weighted sum of group-wise expected losses.
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Related Work: Distributional Robustness (cont.)

¢ In this paper, they mainly consider the classification bias
problem.

® Given accuracy ry for each class k € [K], the following
evaluation metrics are considered:

— Worst-class accuracy: ming ry

— Difference between the maximum and minimum accuracy:

maxy ry — ming r

— Standard deviation: std; r
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Distributional Bias in Existing Data Pruning Methods
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Notation

Dataset Density: The degree of data pruning

Class Density: The degree of data pruning within each class

min SPC @ 10%: Minimum sample per class at Dataset
Density 10%

Class Accuracy: Test accuracy for each class evaluated on
the model trained will full dataset
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Data Pruning is Not Robust

® Authors conducted experiments on class-wise robustness for two
computer vision benchmarks, CIFAR-100 and TinyImageNet.

® They considered four different data pruning baselines:

— Forgetting [1]: The number of times (X, y) is both learned
and forgotten while training 1)(+)

— EL2N [2]: A(X,y;¢) = |lo(¥(X)) — y||2, where o is a softmax
function and y is an one-hot vector.

Grand [2]: A(X,y; %) = |[VL(ay(¥(X)),y) |2

— Dynamic Uncertainty [3]:

1 Estimate the variance of the target probability {o (¥;(X)) ey,
across a fixed window of J previous epochs, for every training
epoch k.

2 Average across all k.
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Data Pruning is Not Robust (cont.)

VGG-16+CIFAR-10
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Figure 1: Average test performance of baseline pruning algorithms against
dataset density and worst-class accuracy.
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Data Pruning is Not Robust (cont.)
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Figure 2: Dynamic Uncertainty applied to CIFAR-100. Sorted class
densities by dataset density (left). Test class accuracy against class density
by dataset density (right).
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Theoretical Analysis
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Toy Binary Classification Problem

® Authors derived analytical results regarding their proposed
method DRoP in a toy binary classification problem.

® Specifically, they consider a linear classification model with a
univariate feature x € R, where a true data generating process is
a mixture of two Gaussian distributions as follows:

p(x) =P(y=0) xp(xly=0)+P(y=1) xp(xly = 1)
= ¢o x N (1o, 05) + ¢1 x N'(p1, 01)

— Assume pp < p1 and og < 0.
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Toy Binary Classification Problem (cont.)

® Let us consider linear decision rules r € R U {£oc} with a
prediction function y,(x) = 1(x > 1).

® Then, the 0-1 risks of the two classes are as follows:

Ro(t) = Eqy—o{3i(x) = 1} = Pyyo{x > 1} = @ (“O - t)j

a0

Ri(1) = Eqym1{Vi(x) = 0} = Pyy—i{x <1} = (I)<t ;lm >’

where ® is a cumulative distribution of the standard normal
distribution.
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Optimal Decision Rule Minimizing the Average Risk

® Under some technical assumptions on means, variances, and
priors, the optimal decision rule minimizing the average risk

R(1) = Exy{3:(x) # y} = do X Ro(1) + ¢1 X Ri (1)

is given as

2. 2 2 —2(02 — 02 Joe 2091
(% :Molﬂ u|00+0001\/(u0 m1)*=2(eg—0o7) o2 5 o0
®1 012—0'(2)

® In the balaned case where ¢y = ¢ = 0.5, the heavier-tailed
class is more difficult in the sense that

R (*(1)) > Ro(r*(1)).
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Optimal Decision Rule Minimizing the Average Risk (cont.)
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Figure 3: Green line corresponds to the optimal decision rule #* (%?)
minimizing the average risk R(7).
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Optimal Decision Rule Minimizing the Worst-class Risk

® The optimal decision rule minimizing the worst-class risk

Ryorst (t) = maX{RO(t) Ri (t)}

is given as 7 that satisfies Ro(7) = Ry (7).

® Based on the definition of Ry(7) and R;(¢),

i = (oot + p109)/ (00 + 01).
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DRoP: Distributionally Robust Data Pruning

® Authors aim to prune the data in a way that average risk
minimization achieves the best worst-class risk.

® [n other words, they are trying to find a mixture ratio % that
1
satisfies

t (g?) =1,

where Z—(l’ satisfies the condition.

® In terms of optimization, we can adopt ERM objective without
concerning much about the classification bias.
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DRoP: Distributionally Robust Data Pruning (cont.)

® In practice, letting di and Ny be the fraction of samples to be
retained and the number of training samples in class k, we aim to
find dy and d; s.t.

doNo/diN\ = o9/ 07. (D

® As a proxy to (1), authors replace dyNoo; = d1N10¢ condition to

d()R] (l*(N()/N1)) = d]Ro(l*<No/N1)).

o After the class-wise quota selection, random pruning within each
class is performed.
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DRoP: Distributionally Robust Data Pruning (cont.)
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Figure 4: (a): Class-wise risk ratios of the optimal solution ¢* = ¢*(¢o/¢1) vs. optimal ratios based on Equation
5 computed for various o9 < o1 drawn uniformly from [1072,107] and ¢ ~ U[0,1] and ¢1 = 1 — ¢o. The
results are independent of 4o, pi1. (b): Random pruning with DRoP. Left: d = 75%; Right: d = 50%.

® (lass risks of the average and worst-class optimal decisions
= Ro(r*(1)) = 4.8%, R, (r*(1)) = 12.1%

- Ro(}) =R((1) =9.1%
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How About Other Data Pruning Methods in the Toy Example?

® Authors empirically and theoretically proved that a supervised
variant of self-supervised pruning (SSP) [0] sticks to the average
optimal solutions even after pruning.

— Remove samples located within a certain margin M > 0 of each
class mean.

— Removes the easier class more aggressively.
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How About Other Data Pruning Methods in the Toy Example? (cont.)
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Figure 3: The effect of different pruning procedures on the solution mixture of Gaussians problem with j1o = —1,

pu1 =1,00 =0.5,01 =1, and ¢po = ¢1. Pruning to dataset density d = 50%. Left: Random pruning with the
optimal class-wise densities that satisfy d1¢100 = dogoo1. Middle: SSP. Right: Random pruning with respect
to class ratios provided by the SSP algorithm. All results averaged across 10 datasets { D; }12; each with 400
points. The average ERM is T = Tlo 27121 T(Dj) fitted to pruned datasets Dj. The class risks of the average
and worst-class optimal decisions for this Gaussian mixture are Ro[t*(1)] = 4.8%, R1[t"(1)] = 12.1%, and
Ro(f) = Ri(f) = 9.1%.
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Proposed Algorithm and Experiments
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DRoP for K-way Classification
® Input
— Dataset Densityd

— Class sample size Ny for k € [K]
v N= Z/I::lNk

— Validation accuracy ry for k € [K]

v Evaluated given a query model ¢ which is trained on a full dataset.

® Qutput: Class Density dy = d(1 — ry)/Z for k € [K], where
Z is a normalizing constant s.t.

K
dN = Z diNy.
k=1
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DRoP for K-way Classification (cont.)

Algorithm 1: DRoP

Input: Target dataset density d € [0, 1].
For each class k € [K]: original size N,
validation recall 74 € [0, 1].
Initialize: Unsaturated set of classes
U <+ [K], excess E < dN, class
densities di, < 0 Vk € [K].
while £ > 0 do
Z 4+ 5 > rev Ne(1 — 1)
for k € U do
d, +— (1—1)/Z;
dy < di + d;c;
E «— E — Nidy;
if di, > 1 then
U« U\ {k};
E <+ FE+ Nk(dk — 1);
dp +— 1

end

end
end
Return: {dx }r—;.
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Experimental Result

VGG-19 on CIFAR-100
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Figure 5: The average test performance of various data pruning protocols against dataset density and worst-class
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accuracy. All results averaged over 3 random seeds. Error bands represent min/max.
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Experimental Results (cont.)
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Figure 6: DRoP. Left: Sorted class densities at different
dataset density levels. We report the minimum number of
samples per class (SPC) at 10% dataset density. Right: Full
dataset test class-wise accuracy against dataset density. We
also report the correlation coefficient between these two quan-
tities across classes, averaged over 5 dataset densities.
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Experimental Results: Imbalanced Dataset
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34/38



Experimental Results: Spurious Correlation
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Figure 9: The average test performance of data pruning protocols and existing baselines against measures of
group-wise robustness (ResNet-50 on Waterbirds). The results of data pruning and CDB-W averaged over 3
random seeds. Error bands represent min/max. To conform with Sagawa* et al. (2020), for this dataset, we
compute average accuracy as a sum of group accuracies weighted by the original training group proportions. This
explains the sharp degradation of the average performance of DRoP-backed pruning at low densities (d < 0.4):
these datasets are skewed towards minority groups that weigh much less than severely pruned majority groups.
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Limitations

® A Gap between the proposed algorithm and corresponding
theoretical guarantees

® Cherry-picked experimental results
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