DRoP: Distributionally Robust Data Pruning

Artem Vysogorets, Kartik Ahuja, Julia Kempe (ICLR 2025)

Presenter: Kyungmin Kim

Efficient ML Systems (EECE695E)

TL;DR

- <u>Data pruning</u>, a process of removing unnecessary data from the original dataset, is known to improve convergence speed, scaling, and resource efficiency.
- Solely focusing on the average performance, authors argue that existing data pruning methods suffer from distributional bias, a performance disparity across different sub-groups of distribution.
- They propose a distributionally-robust data pruning method coined DRoP, which is both theoretically and empirically validated.

Related Work

Related Work: Data Efficiency

- Dataset distillation: <u>Replaces</u> the original samples with synthetically generated counterparts that contain compressed training signal.
- CoreSet method: <u>Selects</u> representative samples that jointly capture the data manifold.
- Data pruning: <u>Removes</u> unnecessary samples in terms of model performance.

Related Work: Data Pruning

- Usually, they design scoring mechanisms to assess the utility of each sample, often measured by its uncertainty or difficulty.
- Data pruning is made in two fold as follows:
 - 1 Learn a query model ψ , trained on a full training dataset $\mathcal{D} = \{(X_i, y_i)\}_{i \in [N]}.$
 - 2 Prune the dataset \mathcal{D} based on a utility score $A(X, y; \psi)$ as

$$\mathcal{D}_{s} := \left\{ (X, y) \in \mathcal{D} : A(X, y; \psi) \ge \text{quantile} \left(\{ A(X_{i}, y_{i}; \psi) \}_{i \in [N]}, s \right) \right\}$$

✓ Note that a utility score $A(X, y; \psi)$ is defined for each training sample.

Related Work: Data Pruning (cont.)

- Data pruning methods vary by choosing different utility scores.
 - Forgetting [1]: The number of times (X, y) is both learned and forgotten while training $\psi(\cdot)$

- EL2N [2]: $A(X, y; \psi) = \|\sigma(\psi(X)) - \mathbf{y}\|_2$, where σ is a softmax function and \mathbf{y} is an one-hot vector.

Related Work: Data Pruning (cont.)

- Grand [2]: $A(X, y; \psi) = \|\nabla \mathcal{L}(\sigma_y(\psi(X)), y)\|_2$

- Dynamic Uncertainty [3]:
 - 1 Estimate the variance of the target probability $\{\sigma_y(\psi_j(X))\}_{j=k-J}^k$ across a fixed window of *J* previous epochs, for every training epoch k.
 - 2 Average across all k.
- Note that a utility score $A(X, y; \psi)$ is defined for each training sample.

- Distributional robustness in machine learning concerns the distributional bias problem: non-uniform accuracy across different sub-population groups.
- Followings are representative ML problems where distributional robustness matter.

ML Problem	Group Variable
Classification Bias	Class Label
Spurious Correlation	(Spurious Feature, Class Label)
Fairness	

 Certain fairness problems can be considered spurious correlation problems, where the spurious features correspond to demographic attributes.

- Waterbirds: (Water Bg., Water Bird), (Land Bg., Land Bird), (Water Bg., Land Bird), (Land Bg., Water Bird)
- CelebA: (Blond Hair, Female), (Black Hair, Male), (Blond Hair, Male), (Black Hair, Female)

• Many well-established algorithms consider <u>a weighted sum of</u> <u>group-wise expected losses</u> as an objective, <u>aiming to put higher</u> mass on high loss-groups as follows:

$$\min_{\theta \in \Theta} \sum_{g=1}^{G} q_g \underbrace{\mathbb{E}_{(x,y) \sim P_g} \{\ell(\theta; (x,y))\}}_{\text{Expected Loss of Grp. } g}.$$

- $\theta \in \Theta$: Model Parameter
- $q := (q_1, ..., q_G)$: Weight vector
- P_g : Data generating process of group g
- Unlike most group-wise cost weighting strategies that consider a fixed weight vector q [4], Group DRO [5] iteratively updates q for every training step.

 $\begin{array}{l} \mbox{Algorithm 1: Online optimization algorithm for group DRO} \\ \hline \mbox{Input: Step sizes } \eta_q, \eta_\theta; P_g \mbox{ for each } g \in \mathcal{G} \\ \hline \mbox{Initialize } \theta^{(0)} \mbox{ and } q^{(0)} \\ \mbox{for } t = 1, \ldots, T \mbox{ do} \\ \hline \mbox{g} \sim \mbox{Uniform}(1, \ldots, m) \\ \hline \mbox{g} \sim \mbox{Uniform}(1, \ldots, m) \\ \hline \mbox{g} \sim \mbox{Uniform}(1, \ldots, m) \\ \hline \mbox{g} ' \leftarrow q^{(t-1)}; q'_g \leftarrow q'_g \exp(\eta_q \ell(\theta^{(t-1)}; (x, y))) \\ \hline \mbox{g}^{(t)} \leftarrow q^{(t-1)} - \eta_\theta q'_g^{(t)} \nabla \ell(\theta^{(t-1)}; (x, y)) \\ \hline \mbox{end} \end{array} \right) \\ \hline \mbox{Homomorphism} \left(\begin{array}{c} // \mbox{ Choose a group } g \mbox{ at random} \\ // \mbox{ Sample } x, y \mbox{ from group } g \\ // \mbox{ Update weights for group } g \\ // \mbox{ Renormalize } q \\ // \mbox{ Update } \psi \mbox{ to update } \theta \\ \hline \mbox{end} \end{array} \right) \\ \hline \mbox{end} \end{array} \right) \\ \hline \mbox{end} \left(\begin{array}{c} \mbox{Algorithm 1: Choose a group } g \mbox{ at random} \\ // \mbox{ Sample } x, y \mbox{ from group } g \\ // \mbox{ Update weights for group } g \\ // \mbox{ Update weights for group } g \\ // \mbox{ Update weighte } \psi \mbox{ to update } \theta \\ \hline \mbox{end} \end{array} \right) \\ \hline \mbox{end} \end{array} \right) \\ \hline \mbox{end} \left(\begin{array}{c} \mbox{Algorithm 1: Choose a group } g \mbox{ at random} \\ // \mbox{ Sample } x, y \mbox{ from group } g \\ // \mbox{ Update weights for group } g \\ // \mbox{ Update weighte } \psi \mbox{ at the optimized } \psi \mbox{ for the optimized } \psi \mbox{ for the optimized } \psi \mbox{ at the optimized } \psi \mbox{ for the optimized } \psi \mbox{$

 Actually, group DRO aims to minimize an expected loss of the worst group, not a weighted sum of group-wise expected losses.

- In this paper, they mainly consider the <u>classification bias</u> problem.
- Given accuracy *r_k* for each class *k* ∈ [*K*], the following evaluation metrics are considered:
 - Worst-class accuracy: $\min_k r_k$
 - Difference between the maximum and minimum accuracy: $\max_k r_k - \min_k r_k$
 - Standard deviation: $std_k r_k$

Distributional Bias in Existing Data Pruning Methods

Notation

- Dataset Density: The degree of data pruning
- Class Density: The degree of data pruning within each class
- min SPC @ 10%: Minimum sample per class at Dataset Density 10%
- Class Accuracy: Test accuracy for each class evaluated on the model trained will full dataset

Data Pruning is Not Robust

- Authors conducted experiments on class-wise robustness for two computer vision benchmarks, CIFAR-100 and TinyImageNet.
- They considered four different data pruning baselines:
 - Forgetting [1]: The number of times (X, y) is both learned and forgotten while training $\psi(\cdot)$
 - EL2N [2]: $A(X, y; \psi) = \|\sigma(\psi(X)) \mathbf{y}\|_2$, where σ is a softmax function and \mathbf{y} is an one-hot vector.
 - Grand [2]: $A(X, y; \psi) = \|\nabla \mathcal{L}(\sigma_y(\psi(X)), y)\|_2$
 - Dynamic Uncertainty [3]:
 - **1** Estimate the variance of the target probability $\{\sigma_y(\psi_j(X))\}_{j=k-J}^k$ across a fixed window of *J* previous epochs, for every training epoch k.
 - 2 Average across all k.

Data Pruning is Not Robust (cont.)

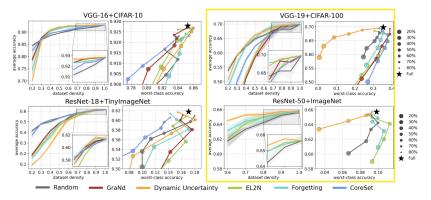


Figure 1: Average test performance of baseline pruning algorithms against dataset density and worst-class accuracy.

Data Pruning is Not Robust (cont.)

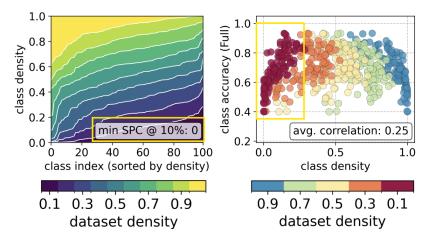


Figure 2: Dynamic Uncertainty applied to CIFAR-100. Sorted class densities by dataset density (left). Test class accuracy against class density by dataset density (right).

Theoretical Analysis

Toy Binary Classification Problem

- Authors derived analytical results regarding their proposed method DRoP in a toy binary classification problem.
- Specifically, they consider a linear classification model with a univariate feature $x \in \mathbb{R}$, where a true data generating process is a mixture of two Gaussian distributions as follows:

$$p(x) = \mathbb{P}(y=0) \times p(x|y=0) + \mathbb{P}(y=1) \times p(x|y=1)$$
$$= \phi_0 \times \mathcal{N}(\mu_0, \sigma_0^2) + \phi_1 \times \mathcal{N}(\mu_1, \sigma_1^2)$$

- Assume $\mu_0 < \mu_1$ and $\sigma_0 < \sigma_1$.

Toy Binary Classification Problem (cont.)

- Let us consider linear decision rules t ∈ ℝ ∪ {±∞} with a prediction function ŷ_t(x) = 1(x > t).
- Then, the 0-1 risks of the two classes are as follows:

$$\begin{aligned} R_0(t) &:= \mathbb{E}_{x|y=0}\{\hat{y}_t(x) = 1\} = \mathbb{P}_{x|y=0}\{x > t\} = \Phi\left(\frac{\mu_0 - t}{\sigma_0}\right), \\ R_1(t) &:= \mathbb{E}_{x|y=1}\{\hat{y}_t(x) = 0\} = \mathbb{P}_{x|y=1}\{x < t\} = \Phi\left(\frac{t - \mu_1}{\sigma_1}\right), \end{aligned}$$

where Φ is a cumulative distribution of the standard normal distribution.

Optimal Decision Rule Minimizing the Average Risk

• Under some technical assumptions on means, variances, and priors, the optimal decision rule minimizing the average risk

$$R(t) = \mathbb{E}_{x,y}\{\hat{y}_t(x) \neq y\} = \phi_0 \times R_0(t) + \phi_1 \times R_1(t)$$

is given as

$$t^{*}\left(\frac{\phi_{0}}{\phi_{1}}\right) = \frac{\mu_{0}\sigma_{1}^{2} - \mu_{1}\sigma_{0}^{2} + \sigma_{0}\sigma_{1}\sqrt{(\mu_{0} - \mu_{1})^{2} - 2(\sigma_{0}^{2} - \sigma_{1}^{2})\log\frac{\phi_{0}\sigma_{1}}{\phi_{1}\sigma_{0}}}{\sigma_{1}^{2} - \sigma_{0}^{2}}$$

• In the balaned case where $\phi_0 = \phi_1 = 0.5$, the heavier-tailed class is more difficult in the sense that

$$R_1(t^*(1)) > R_0(t^*(1)).$$

Optimal Decision Rule Minimizing the Average Risk (cont.)

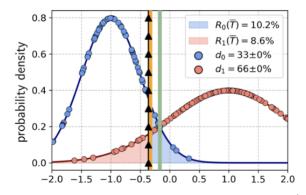


Figure 3: Green line corresponds to the optimal decision rule $t^*\left(\frac{\phi_0}{\phi_1}\right)$ minimizing the average risk R(t).

Optimal Decision Rule Minimizing the Worst-class Risk

• The optimal decision rule minimizing the worst-class risk

$$R_{\text{worst}}(t) = \max\{R_0(t), R_1(t)\}$$

is given as \hat{t} that satisfies $R_0(\hat{t}) = R_1(\hat{t})$.

• Based on the definition of $R_0(t)$ and $R_1(t)$,

$$\hat{t} = (\mu_0 \sigma_1 + \mu_1 \sigma_0) / (\sigma_0 + \sigma_1).$$

DRoP: Distributionally Robust Data Pruning

- Authors aim to prune the data in a way that <u>average risk</u> minimization achieves the best worst-class risk.
- In other words, they are trying to find a mixture ratio $\frac{\phi_0}{\phi_1}$ that satisfies

$$t^*\left(\frac{\tilde{\phi}_0}{\tilde{\phi}_1}\right) = \hat{t},$$

where $\frac{\sigma_0}{\sigma_1}$ satisfies the condition.

• In terms of optimization, we can adopt ERM objective without concerning much about the classification bias.

DRoP: Distributionally Robust Data Pruning (cont.)

• In practice, letting d_k and N_k be the fraction of samples to be retained and the number of training samples in class k, we aim to find d_0 and d_1 s.t.

$$d_0 N_0 / d_1 N_1 = \sigma_0 / \sigma_1.$$
 (1)

• As a proxy to (1), authors replace $d_0N_0\sigma_1 = d_1N_1\sigma_0$ condition to

$$d_0R_1(t^*(N_0/N_1)) = d_1R_0(t^*(N_0/N_1)).$$

• After the class-wise quota selection, random pruning within each class is performed.

DRoP: Distributionally Robust Data Pruning (cont.)

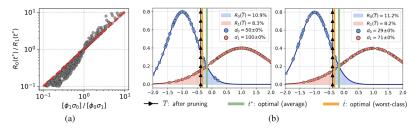


Figure 4: (a): Class-wise risk ratios of the optimal solution $t^* = t^*(\phi_0/\phi_1)$ vs. optimal ratios based on Equation 5 computed for various $\sigma_0 < \sigma_1$ drawn uniformly from $[10^{-2}, 10^2]$ and $\phi_0 \sim U[0, 1]$ and $\phi_1 = 1 - \phi_0$. The results are independent of μ_0, μ_1 . (b): Random pruning with DRoP. Left: d = 75%; Right: d = 50%.

• Class risks of the average and worst-class optimal decisions - $R_0(t^*(1)) = 4.8\%, R_1(t^*(1)) = 12.1\%$

$$- R_0(\hat{t}) = R_1(\hat{t}) = 9.1\%$$

How About Other Data Pruning Methods in the Toy Example?

- Authors empirically and theoretically proved that a supervised variant of self-supervised pruning (SSP) [6] sticks to the average optimal solutions even after pruning.
 - Remove samples located within a certain margin M > 0 of each class mean.
 - Removes the easier class more aggressively.

How About Other Data Pruning Methods in the Toy Example? (cont.)

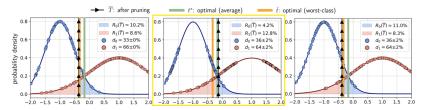


Figure 3: The effect of different pruning procedures on the solution mixture of Gaussians problem with $\mu_0 = -1$, $\mu_1 = 1$, $\sigma_0 = 0.5$, $\sigma_1 = 1$, and $\phi_0 = \phi_1$. Pruning to dataset density d = 50%. Left: Random pruning with the optimal class-wise densities that satisfy $d_1\phi_1\sigma_0 = d_0\phi_0\sigma_1$. Middle: SSP. Right: Random pruning with respect to class ratios provided by the SSP algorithm. All results averaged across 10 datasets $\{D_i\}_{i=1}^{10}$ ach with 400 points. The average ERM is $\overline{T} = \frac{1}{10} \sum_{i=1}^{10} T(D'_i)$ fitted to pruned datasets D'_i . The class risks of the average and worst-class optimal decisions for this Gaussian mixture are $R_0[t^*(1)] = 4.8\%$, $R_1[t^*(1)] = 12.1\%$, and $R_0(\hat{t}) = R_1(\hat{t}) = 9.1\%$.

Proposed Algorithm and Experiments

DRoP for K-way Classification

- Input
 - Dataset Density d

- Class sample size
$$N_k$$
 for $k \in [K]$
 $\checkmark N = \sum_{k=1}^K N_k$

- Validation accuracy r_k for $k \in [K]$
 - $\checkmark\,$ Evaluated given a query model ψ which is trained on a full dataset.
- Output: Class Density $d_k = d(1 r_k)/Z$ for $k \in [K]$, where *Z* is a normalizing constant s.t.

$$dN = \sum_{k=1}^{K} d_k N_k.$$

DRoP for K-way Classification (cont.)

Algorithm 1: DRoP

Input: Target dataset density $d \in [0, 1]$. For each class $k \in [K]$: original size N_k , validation recall $r_k \in [0, 1]$. Initialize: Unsaturated set of classes $U \leftarrow [K]$, excess $E \leftarrow dN$, class densities $d_k \leftarrow 0 \ \forall k \in [K]$. while E > 0 do $Z \leftarrow \frac{1}{E} \sum_{k \in U} N_k (1 - r_k);$ for $k \in U$ do $d'_k \leftarrow (1 - r_k)/Z;$ $d_k \leftarrow d_k + d'_k;$ $E \leftarrow E - N_k d'_k$ if $d_k > 1$ then $\begin{array}{c}
U \leftarrow U \setminus \{k\};\\
E \leftarrow E + N_k(d_k - 1);\\
d_k \leftarrow 1
\end{array}$ end end end **Return**: $\{d_k\}_{k=1}^K$.

Experimental Results

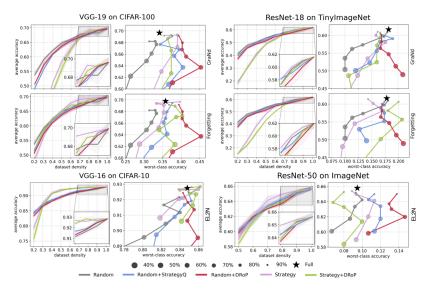


Figure 5: The average test performance of various data pruning protocols against dataset density and worst-class accuracy. All results averaged over 3 random seeds. Error bands represent min/max.

Experimental Results (cont.)

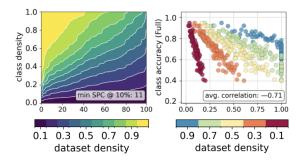


Figure 6: DRoP. Left: Sorted class densities at different dataset density levels. We report the minimum number of samples per class (SPC) at 10% dataset density. Right: Full dataset test class-wise accuracy against dataset density. We also report the correlation coefficient between these two quantities across classes, averaged over 5 dataset densities.

Experimental Results: Imbalanced Dataset

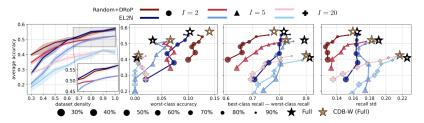


Figure 8: The average test performance of Random+DRoP (red-toned curves) and EL2N (blue-toned curves) against dataset density and measures of class robustness across dataset imbalance factors I = 2, 5, 20. ResNet-18 on imbalanced TinyImageNet. Results averaged over 3 random seeds. Error bands represent min/max.

Experimental Results: Spurious Correlation

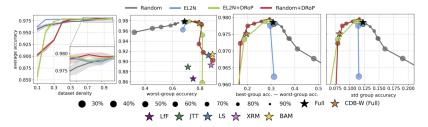


Figure 9: The average test performance of data pruning protocols and existing baselines against measures of group-wise robustness (ResNet-50 on Waterbirds). The results of data pruning and CDB-W averaged over 3 random seeds. Error bands represent min/max. To conform with Sagawa* et al. (2020), for this dataset, we compute average accuracy as a sum of group accuracies weighted by the original training group proportions. This explains the sharp degradation of the average performance of DRoP-backed pruning at low densities ($d \le 0.4$): these datasets are skewed towards minority groups that weigh much less than severely pruned majority groups.

Limitations

- A Gap between the proposed algorithm and corresponding theoretical guarantees
- Cherry-picked experimental results

References

- Mariya Toneva et al. "An Empirical Study of Example Forgetting During Deep Neural Network Learning". In: International Conference on Learning Representations (2019).
- [2] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. "Deep Learning on a Data Diet: Finding Important Examples Early in Training". In: Advances in Neural Information Processing Systems 34 (2021), pp. 20596–20607.
- [3] Muyang He et al. "Large-scale Dataset Pruning with Dynamic Uncertainty". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, pp. 7713–7722.
- [4] Saptarshi Sinha, Hiroki Ohashi, and Katsuyuki Nakamura. "Class-difficulty Based Methods for Long-tailed Visual Recognition". In: International Journal of Computer Vision 130.10 (2022), pp. 2517–2531.
- [5] Shiori Sagawa et al. "Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-case Generalization". In: International Conference on Learning Representations (2020).
- [6] Ben Sorscher et al. "Beyond Neural Scaling Laws: Beating Power Law Scaling via Data Pruning". In: Advances in Neural Information Processing Systems 35 (2022), pp. 19523–19536.

Thank You!