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TL;DR

• Data pruning, a process of removing unnecessary data from the
original dataset, is known to improve convergence speed,
scaling, and resource efficiency.

• Solely focusing on the average performance, authors argue that
existing data pruning methods suffer from distributional bias, a
performance disparity across different sub-groups of distribution.

• They propose a distributionally-robust data pruning method
coined DRoP, which is both theoretically and empirically
validated.
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Related Work
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Related Work: Data Efficiency

• Dataset distillation: Replaces the original samples with
synthetically generated counterparts that contain compressed
training signal.

• CoreSet method: Selects representative samples that jointly
capture the data manifold.

• Data pruning: Removes unnecessary samples in terms of model
performance.
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Related Work: Data Pruning

• Usually, they design scoring mechanisms to assess the utility of
each sample, often measured by its uncertainty or difficulty.

• Data pruning is made in two fold as follows:
1 Learn a query model ψ, trained on a full training dataset

D = {(Xi, yi)}i∈[N].

2 Prune the dataset D based on a utility score A(X, y;ψ) as

Ds :=
{
(X, y) ∈ D : A(X, y;ψ) ≥ quantile

(
{A(Xi, yi;ψ)}i∈[N], s

)}
✓ Note that a utility score A(X, y;ψ) is defined for each training

sample.
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Related Work: Data Pruning (cont.)

• Data pruning methods vary by choosing different utility scores.
– Forgetting [1]: The number of times (X, y) is both learned

and forgotten while training ψ(·)

– EL2N [2]: A(X, y;ψ) = ∥σ(ψ(X))− y∥2, where σ is a softmax
function and y is an one-hot vector.
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Related Work: Data Pruning (cont.)

– Grand [2]: A(X, y;ψ) = ∥∇L(σy(ψ(X)), y)∥2

– Dynamic Uncertainty [3]:
1 Estimate the variance of the target probability {σy(ψj(X))}k

j=k−J

across a fixed window of J previous epochs, for every training
epoch k.

2 Average across all k.

• Note that a utility score A(X, y;ψ) is defined for each training
sample.
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Related Work: Distributional Robustness

• Distributional robustness in machine learning concerns the
distributional bias problem: non-uniform accuracy across
different sub-population groups.

• Followings are representative ML problems where distributional
robustness matter.

ML Problem Group Variable
Classification Bias Class Label

Spurious Correlation
(Spurious Feature, Class Label)

Fairness

– Certain fairness problems can be considered spurious correlation
problems, where the spurious features correspond to demographic
attributes.
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Related Work: Distributional Robustness (cont.)

• Waterbirds: (Water Bg., Water Bird), (Land Bg., Land Bird),
(Water Bg., Land Bird), (Land Bg., Water Bird)

• CelebA: (Blond Hair, Female), (Black Hair, Male), (Blond
Hair, Male), (Black Hair, Female)
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Related Work: Distributional Robustness (cont.)

• Many well-established algorithms consider a weighted sum of
group-wise expected losses as an objective, aiming to put higher
mass on high loss-groups as follows:

min
θ∈Θ

G∑
g=1

qg E(x,y)∼Pg{ℓ(θ; (x, y))}︸ ︷︷ ︸
Expected Loss of Grp. g

.

– θ ∈ Θ: Model Parameter
– q := (q1, ..., qG): Weight vector
– Pg: Data generating process of group g

• Unlike most group-wise cost weighting strategies that consider a
fixed weight vector q [4], Group DRO [5] iteratively updates q
for every training step.
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Related Work: Distributional Robustness (cont.)

• Actually, group DRO aims to minimize an expected loss of the
worst group, not a weighted sum of group-wise expected losses.
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Related Work: Distributional Robustness (cont.)

• In this paper, they mainly consider the classification bias
problem.

• Given accuracy rk for each class k ∈ [K], the following
evaluation metrics are considered:

– Worst-class accuracy: mink rk

– Difference between the maximum and minimum accuracy:
maxk rk − mink rk

– Standard deviation: stdk rk
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Distributional Bias in Existing Data Pruning Methods
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Notation

• Dataset Density: The degree of data pruning

• Class Density: The degree of data pruning within each class

• min SPC @10%: Minimum sample per class at Dataset
Density 10%

• Class Accuracy: Test accuracy for each class evaluated on
the model trained will full dataset
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Data Pruning is Not Robust

• Authors conducted experiments on class-wise robustness for two
computer vision benchmarks, CIFAR-100 and TinyImageNet.

• They considered four different data pruning baselines:
– Forgetting [1]: The number of times (X, y) is both learned

and forgotten while training ψ(·)

– EL2N [2]: A(X, y;ψ) = ∥σ(ψ(X))− y∥2, where σ is a softmax
function and y is an one-hot vector.

– Grand [2]: A(X, y;ψ) = ∥∇L(σy(ψ(X)), y)∥2

– Dynamic Uncertainty [3]:
1 Estimate the variance of the target probability {σy(ψj(X))}k

j=k−J

across a fixed window of J previous epochs, for every training
epoch k.

2 Average across all k.
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Data Pruning is Not Robust (cont.)

Figure 1: Average test performance of baseline pruning algorithms against
dataset density and worst-class accuracy.
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Data Pruning is Not Robust (cont.)

Figure 2: Dynamic Uncertainty applied to CIFAR-100. Sorted class
densities by dataset density (left). Test class accuracy against class density
by dataset density (right).
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Theoretical Analysis
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Toy Binary Classification Problem

• Authors derived analytical results regarding their proposed
method DRoP in a toy binary classification problem.

• Specifically, they consider a linear classification model with a
univariate feature x ∈ R, where a true data generating process is
a mixture of two Gaussian distributions as follows:

p(x) = P(y = 0)× p(x|y = 0) + P(y = 1)× p(x|y = 1)

= ϕ0 ×N (µ0, σ
2
0) + ϕ1 ×N (µ1, σ

2
1)

– Assume µ0 < µ1 and σ0 < σ1.
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Toy Binary Classification Problem (cont.)

• Let us consider linear decision rules t ∈ R ∪ {±∞} with a
prediction function ŷt(x) = 1(x > t).

• Then, the 0-1 risks of the two classes are as follows:

R0(t) := Ex|y=0{ŷt(x) = 1} = Px|y=0{x > t} = Φ

(
µ0 − t
σ0

)
,

R1(t) := Ex|y=1{ŷt(x) = 0} = Px|y=1{x < t} = Φ

(
t − µ1

σ1

)
,

where Φ is a cumulative distribution of the standard normal
distribution.
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Optimal Decision Rule Minimizing the Average Risk

• Under some technical assumptions on means, variances, and
priors, the optimal decision rule minimizing the average risk

R(t) = Ex,y{ŷt(x) ̸= y} = ϕ0 × R0(t) + ϕ1 × R1(t)

is given as

t∗
(

ϕ0
ϕ1

)
=

µ0σ
2
1−µ1σ

2
0+σ0σ1

√
(µ0−µ1)

2−2(σ2
0−σ2

1) log
ϕ0σ1
ϕ1σ0

σ2
1−σ2

0
.

• In the balaned case where ϕ0 = ϕ1 = 0.5, the heavier-tailed
class is more difficult in the sense that

R1
(
t∗(1)

)
> R0

(
t∗(1)

)
.
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Optimal Decision Rule Minimizing the Average Risk (cont.)

Figure 3: Green line corresponds to the optimal decision rule t∗
(
ϕ0
ϕ1

)
minimizing the average risk R(t).
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Optimal Decision Rule Minimizing the Worst-class Risk

• The optimal decision rule minimizing the worst-class risk

Rworst(t) = max{R0(t),R1(t)}

is given as t̂ that satisfies R0(̂t) = R1(̂t).

• Based on the definition of R0(t) and R1(t),

t̂ = (µ0σ1 + µ1σ0)/(σ0 + σ1).
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DRoP: Distributionally Robust Data Pruning

• Authors aim to prune the data in a way that average risk
minimization achieves the best worst-class risk.

• In other words, they are trying to find a mixture ratio ϕ̃0
ϕ̃1

that
satisfies

t∗
( ϕ̃0

ϕ̃1

)
= t̂,

where σ0
σ1

satisfies the condition.

• In terms of optimization, we can adopt ERM objective without
concerning much about the classification bias.
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DRoP: Distributionally Robust Data Pruning (cont.)

• In practice, letting dk and Nk be the fraction of samples to be
retained and the number of training samples in class k, we aim to
find d0 and d1 s.t.

d0N0/d1N1 = σ0/σ1. (1)

• As a proxy to (1), authors replace d0N0σ1 = d1N1σ0 condition to

d0R1
(
t∗(N0/N1)

)
= d1R0

(
t∗(N0/N1)

)
.

• After the class-wise quota selection, random pruning within each
class is performed.
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DRoP: Distributionally Robust Data Pruning (cont.)

• Class risks of the average and worst-class optimal decisions
– R0

(
t∗(1)

)
= 4.8%, R1

(
t∗(1)

)
= 12.1%

– R0(̂t) = R1(̂t) = 9.1%
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How About Other Data Pruning Methods in the Toy Example?

• Authors empirically and theoretically proved that a supervised
variant of self-supervised pruning (SSP) [6] sticks to the average
optimal solutions even after pruning.

– Remove samples located within a certain margin M > 0 of each
class mean.

– Removes the easier class more aggressively.
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How About Other Data Pruning Methods in the Toy Example? (cont.)
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Proposed Algorithm and Experiments
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DRoP for K-way Classification

• Input
– Dataset Density d

– Class sample size Nk for k ∈ [K]

✓ N =
∑K

k=1 Nk

– Validation accuracy rk for k ∈ [K]

✓ Evaluated given a query model ψ which is trained on a full dataset.

• Output: Class Density dk = d(1 − rk)/Z for k ∈ [K], where
Z is a normalizing constant s.t.

dN =

K∑
k=1

dkNk.
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DRoP for K-way Classification (cont.)
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Experimental Results
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Experimental Results (cont.)
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Experimental Results: Imbalanced Dataset
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Experimental Results: Spurious Correlation
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Limitations

• A Gap between the proposed algorithm and corresponding
theoretical guarantees

• Cherry-picked experimental results
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Thank You!
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