Data Efficiency

EECE695D: Efficient ML Systems

Training cost

Roughly, the training cost is:

```
f(model size, dataset size, \cdots)
```

• Example.

```
Compute = (#data) × (#epochs) × (Fwd FLOPs + Bwd FLOPs)
```

Duration = (#data) × (#epochs) × (Processing Time/sample)

Paradigm shift

- In the past, the number of usable data was scarce
 - Why? Labeling cost was expensive
 - Strategy. Increase the epochs and see data many times

- Example.
 - ResNet. 90 epochs (later works extend it to 600 epochs)
 - DeiT. 300 epochs
 - BERT. 40 epochs

Paradigm shift

- Nowadays, one can utilize much more data
 - Why? Self-supervised pre-training techniques
 - Strategy. Reduce the data redundancy by reducing epochs
 - Computation is the new bottleneck
- Example. GPT-3 uses 0.8 epoch, on average

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Observation

- Some data have notably higher quality than others
- Example. Textbooks are all you need (2023)
 - Textbook-quality samples enable training powerful models with smaller model size and dataset
 - Used GPT-4 as a filter for telling the quality

Date	Model	Model size	Dataset size	HumanEval	MBPP
		(Parameters)	(Tokens)	(Pass@1)	(Pass@1)
2021 Jul	$Codex-300M [CTJ^{+}21]$	300M	100B	13.2%	_
2021 Jul	$Codex-12B [CTJ^+21]$	12B	100B	28.8%	-
$2022~\mathrm{Mar}$	CodeGen-Mono-350M [NPH ⁺ 23]	350M	577B	12.8%	-
$2022~\mathrm{Mar}$	CodeGen-Mono-16.1B [NPH ⁺ 23]	16.1B	577B	29.3%	35.3%
$2022~\mathrm{Apr}$	PaLM-Coder [CND+22]	540B	780B	35.9%	47.0%
$2022 \mathrm{\ Sep}$	$CodeGeeX$ [$ZXZ^{+}23$]	13B	850B	22.9%	24.4%
2022 Nov	$GPT-3.5$ $\underline{Ope23}$	175B	N.A.	47%	-
$2022 \mathrm{Dec}$	SantaCoder $[ALK^+23]$	1.1B	236B	14.0%	35.0%
$2023~{ m Mar}$	GPT-4 $Ope 23$	N.A.	N.A.	67%	-
$2023~\mathrm{Apr}$	$Replit \underline{[Rep23]}$	2.7B	525B	21.9%	-
$2023~\mathrm{Apr}$	Replit-Finetuned [Rep23]	2.7B	525B	30.5%	-
2023 May	CodeGen2-1B [NHX+23]	1B	N.A.	10.3%	-
2023 May	CodeGen2-7B [NHX ⁺ 23]	$7\mathrm{B}$	N.A.	19.1%	-
2023 May	$StarCoder [LAZ^+23]$	15.5B	$1\mathrm{T}$	33.6%	52.7%
2023 May	StarCoder-Prompted [LAZ ⁺ 23]	15.5B	$1\mathrm{T}$	40.8%	49.5%
2023 May	PaLM 2-S [ADF ⁺ 23]	N.A.	N.A.	37.6%	50.0%
2023 May	$CodeT5+[WLG^{+}23]$	$2\mathrm{B}$	$52\mathrm{B}$	24.2%	-
2023 May	$CodeT5+[WLG^{+}23]$	16B	$52\mathrm{B}$	30.9%	-
2023 May	InstructCodeT5+ $[WLG^{+}23]$	16B	$52\mathrm{B}$	35.0%	-
$2023 \mathrm{Jun}$	WizardCoder [LXZ ⁺ 23]	16B	$1\mathrm{T}$	57.3%	51.8%
2023 Jun	phi-1	1.3B	7B	50.6%	55.5%

Educational values deemed by the filter

High educational value

Low educational value

```
import torch
                                                   import re
import torch.nn.functional as F
                                                   import typing
def normalize(x, axis=-1):
    """Performs L2-Norm."""
                                                   class Default(object):
                                                       def ___init___(self, vim: Nvim) -> None:
    num = x
                                                           self._vim = vim
    denom = torch.norm(x, 2, axis, keepdim=True)
                                                           self._denite: typing.Optional[SyncParent]
    .expand_as(x) + 1e-12
    return num / denom
                                                       = None
                                                           self._selected_candidates: typing.List[int
                                                       ] = []
def euclidean_dist(x, y):
                                                           self._candidates: Candidates = []
    """Computes Euclidean distance."""
    m, n = x.size(0), y.size(0)
                                                           self._cursor = 0
                                                           self._entire_len = 0
    xx = torch.pow(x, 2).sum(1, keepdim=True).
                                                           self._result: typing.List[typing.Any] = []
    expand(m, n)
    yy = torch.pow(x, 2).sum(1, keepdim=True).
                                                           self._context: UserContext = {}
    expand(m, m).t()
                                                           self.\_bufnr = -1
                                                           self._winid = -1
    dist = xx + yy - 2 * torch.matmul(x, y.t())
    dist = dist.clamp(min=1e-12).sqrt()
                                                           self._winrestcmd = ''
                                                           self._initialized = False
    return dist
                                                           self._winheight = 0
                                                           self._winwidth = 0
def cosine_dist(x, y):
    """Computes Cosine Distance."""
                                                           self._winminheight = -1
    x = F.normalize(x, dim=1)
                                                           self._is_multi = False
    y = F.normalize(y, dim=1)
                                                           self._is_async = False
    dist = 2 - 2 * torch.mm(x, y.t())
                                                           self._matched_pattern = ''
    return dist
```

Key questions

- Given a large dataset, how can we automatically construct a **new dataset**, so that training with the dataset ensures **high quality of the trained model**?
 - Can we construct new data in a scalable way?
 - Distributional shift?
 - Synthesize or not?
 - Pick samples, or set?

Basic ideas

Formalism

- Suppose that we have a dataset $D = \{\mathbf{z}_1, ..., \mathbf{z}_N\}$
- ullet We use a learning algorithm $A(\,\cdot\,)$ which finds a parameter given the dataset

$$\hat{\theta} = A(D)$$

- Goal. Find another dataset $D' = \{\mathbf{z}_1', ..., \mathbf{z}_n'\}$ such that
 - $n \ll N$
 - $L(A(D)) \approx L(A(D'))$

Terminologies

- Data pruning. Select a subset, i.e., $D' \subseteq D$
- Data curation. Same, but involves human judgement
- Dataset distillation. Allows data to be synthetic, thus $D' \nsubseteq D$
 - Also called "dataset condensation"
- Data valuation. Measures the importance of each $d \in D$
 - Can be used for data pruning, via top-k

(theoreticians might call these "coresets")

Proof of Concept

- Recall the support vector machine (SVM)
 - Margin maximizer
 - Determined by support vectors,
 i.e., samples on the margin
 - Can keep only difficult samples to perfectly reconstruct the classifier

 Note. Not in deep learning, as we need samples for feature learning

Algorithms

- Data valuation
 - Leave-one-out, Influence function, Data Shapley
- Data pruning
 - Difficulty-based pruning
- Dataset distillation
 - Meta-Learning, Gradient Matching, Trajectory Matching, Distribution Matching

Data valuation

Data valuation

Measure how much a sample affects the training

• For instance, consider the leave-one-out (LOO) error

$$v(\mathbf{z}; D) = L(A(D \setminus \mathbf{z})) - L(A(D))$$

- Expensive to measure
 - Requires at least (N+1) full training
- Requires some easy-to-compute proxy...

Influence function

Assume that we are using ERM algorithm, with the loss

$$L(D; \theta) = \sum_{\mathbf{z} \in D} L(\mathbf{z}; \theta)$$

- Question. What if some $\mathbf{z} \in D$ has been upweighted by ϵ ?
 - Then, we get the parameter

$$\hat{\theta}_{\mathbf{z},\epsilon} = \operatorname{argmin}_{\theta} \left(L(D;\theta) + \epsilon L(\mathbf{z};\theta) \right)$$

instead of the original parameter $\hat{\theta} = \hat{\theta}_{\mathbf{z},0}$.

Influence function

• Definition. The influence function of the sample z on parameter is:

$$I_{\text{param}}(\mathbf{z}) = \lim_{\epsilon \to 0^{+}} \frac{\hat{\theta}_{\mathbf{z},\epsilon} - \hat{\theta}}{\epsilon}$$

• Using the fact that $\hat{\theta}$ is the argmin, we get

$$I_{\text{param}}(\mathbf{z}) = -H_{\hat{\theta}}^{-1} \nabla_{\theta} L(\mathbf{z}; \hat{\theta})$$

Influence function

Similarly, we have influence function on the loss as:

$$I_{loss}(\mathbf{z}, \mathbf{z}_{test}) = \lim_{\epsilon \to 0^{+}} \frac{L(\mathbf{z}_{test}; \hat{\theta}_{\mathbf{z}, \epsilon}) - L(\mathbf{z}_{test}; \hat{\theta})}{\epsilon}$$
$$= -\nabla_{\theta} L(\mathbf{z}_{test}; \hat{\theta})^{\mathsf{T}} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(\mathbf{z}; \hat{\theta})$$

Fortunately, this is much easier to compute

Further readings

- Influence function is good for D, but maybe not for any $S \subseteq D$
 - Data Shapley addresses this problem
 - https://proceedings.mlr.press/v97/ghorbani19c/ghorbani19c.pdf
 - However, Data Shapley remains very costly to approximate

Ghobarni and Zou, "Data Shapley: Equitable Valuation of Data for Machine Learning," ICML 2019

- Will only briefly discuss difficulty-based pruning
 - In particular, the results of Sorcher et al. (2022)

- Long-standing dispute:
 - Keep easy examples
 - Learning "prototype," e.g., K-Means
 - Keep hard examples
 - Like the case of SVM

- Suppose that we have a self-supervised feature map $\Phi(\,\cdot\,)$.
 - e.g., SWaV

- We measure the sample difficulty by:
 - Conduct K-means clustering with $\Phi(\mathbf{z}_1), ..., \Phi(\mathbf{z}_N)$
 - Difficulty is the cosine distance to the centroid

• Observation. A clear phase-transition

- (with some theory in paper)
- Abundant data, small model, or low sparsity. Keep hard examples
- Scarce data, large model, or high sparsity. Keep easy examples

Sorcher et al., "Beyond neural scaling laws: Beating power law scaling via data pruning," NeurIPS 2022

Dataset distillation

Approaches

• Allows data to be synthetic, i.e., $D' \not\subseteq D$

- Meta-learning
- Gradient matching
- Trajectory matching
- Distribution matching

- Idea. Use the full dataset as the validation set
 - By training on some synthetic set D^\prime , we wish to minimize the loss on the original dataset:

$$\min_{D'} L(A(D');D)$$

- ullet e.g., update pixels of randomly initialized images in D'
- Solvable via MAML-like bi-level optimization algorithms

- Initialize $D' = \{\mathbf{z}_i'\}_{i=1}^n$
- Outer loop:
 - Sample a batch of original data $B = \{\mathbf{z}_i\}$
 - Sample a batch of initial weights $heta_0^{(k)}$
 - Inner loop: for each initial weight $\theta_0^{(k)}$
 - ullet Update one step with D'
 - ullet Evaluate loss on B
 - ullet Update compressed dataset, with the loss summed over j

- Result. One can train a model, even with one image per class:
- When starting from a fixed initialization

(a) MNIST. Theses distilled images train a fixed initializations from 12.90% test accuracy to 93.76%.

(b) CIFAR10. These distilled images train a fixed initialization from 8.82% test accuracy to 54.03%.

- When starting from a random initialization
 - A bit more semantic, but lower accuracy

(a) MNIST. These distilled images unknown random initializations to $79.50\% \pm 8.08\%$ test accuracy.

(b) CIFAR10. These distilled images unknown random initializations to $36.79\% \pm 1.18\%$ test accuracy.

Further readings

- Combining data augmentation
 - https://proceedings.mlr.press/v139/zhao21a.html
- Shared information between classes
 - https://arxiv.org/abs/2206.02916
- NTK kernel for Meta-learning
 - https://arxiv.org/abs/2011.00050

ullet Idea. Gradient from D' should be similar to gradient from D

$$\nabla_{\theta} L(\theta; D) \approx \nabla_{\theta} L(\theta; D')$$

• Needs to hold for all heta in the learning trajectory (when training with D'):

$$\min_{D'} \mathbb{E} \left[\sum_{t=0}^{T} \operatorname{dist} \left(\nabla_{\theta} L(A_{t}(D'); D), \nabla_{\theta} L(A_{t}(D'); D') \right) \right]$$

- dist(·,·) can be some distance metric
- A_t denotes the t-step updated version
- Gradient is measured class-wise

- Initialize D'
- Outer loop:
 - Initialize the model weight
 - Inner loop: For t = 0, ..., T
 - For each class,
 - ullet Sample original data batch B and synthetic data batch B'
 - Compute gradients g and g'
 - Update synthetic data based on dist(g, g')
 - Update model weight

• Result. Interestingly, very semantically aligned

Also very transferable between architectures

$C \setminus T$	MLP	ConvNet	LeNet	AlexNet	VGG	ResNet
MLP	70.5 ± 1.2	63.9±6.5	77.3±5.8	70.9 ± 11.6	53.2±7.0	80.9±3.6
ConvNet	69.6 ± 1.6	91.7 ± 0.5	85.3 ± 1.8	85.1 ± 3.0	83.4 ± 1.8	90.0 ± 0.8
LeNet	71.0 ± 1.6	90.3 ± 1.2	85.0 ± 1.7	84.7 ± 2.4	80.3 ± 2.7	89.0 ± 0.8
AlexNet	72.1 ± 1.7	87.5 ± 1.6	84.0 ± 2.8	82.7 ± 2.9	81.2 ± 3.0	88.9 ± 1.1
VGG	70.3 ± 1.6	90.1 ± 0.7	83.9 ± 2.7	83.4 ± 3.7	81.7 ± 2.6	89.1 ± 0.9
ResNet	73.6 ± 1.2	91.6 ± 0.5	86.4 ± 1.5	85.4 ± 1.9	83.4 ± 2.4	89.4 ± 0.9

Further readings

- Class contrastive signals
 - https://arxiv.org/abs/2202.02916
- Less storage budget, by considering data regularity
 - https://arxiv.org/abs/2205.14959

- Idea. Match the trajectory itself, rather than gradients
 - Start at some model trained on original data for some steps:
 - ullet Train on D for M steps
 - ullet Train on D' for N steps

More concretely, minimize the normalized distance:

$$\min_{D'} \mathbb{E} \left[\sum_{t=0}^{T-M} \frac{\operatorname{dist}(A_{t+M}(D), A_{t+N}(D'))}{\operatorname{dist}(A_{t+M}(D), A_{t}(D))} \right]$$

- Can consider much longer horizon than previous approaches
- Can utilize pre-computed trajectories for original data

- Result. Much more visually appealing
 - Example. ImageNet dataset

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

• Example. CIFAR-10 dataset

- Much better model accuracy as well
 - But still much worse than full data

	Img/Cls	Ratio %	Co Random	reset Selecti Herding	on Forgetting	DD [†] [44]	LD [†] [2]	DC [47]	Training DSA [45]	g Set Synthe DM [46]		CAFE+DSA [43]	Ours	Full Dataset
CIFAR-10	1 10 50	0.02 0.2 1	26.0 ± 1.2	31.6 ± 0.7	13.5 ± 1.2 23.3 ± 1.0 23.3 ± 1.1	36.8 ± 1.2	38.3 ± 0.4		52.1 ± 0.5	48.9 ± 0.6		50.9 ± 0.5	$46.3 \pm 0.8^{\circ} \ 65.3 \pm 0.7^{\circ} \ 71.6 \pm 0.2$	84.8 ± 0.1
CIFAR-100	1 10 50	0.2 2 10	I	17.3 ± 0.3	$ 4.5 \pm 0.2 15.1 \pm 0.3 30.5 \pm 0.3 $	-	11.5 ± 0.4 - -		32.3 ± 0.3	29.7 ± 0.3	12.9 ± 0.3 27.8 ± 0.3 37.9 ± 0.3	31.5 ± 0.2	$24.3 \pm 0.3^{\circ} \ 40.1 \pm 0.4^{\circ} \ 47.7 \pm 0.2^{\circ}$	56.2 ± 0.3
Tiny ImageNet	1 10 50	0.2 2 10	$\begin{array}{ c c } 1.4 \pm 0.1 \\ 5.0 \pm 0.2 \\ 15.0 \pm 0.4 \end{array}$		$ \begin{array}{c c} 1.6 \pm 0.1 \\ 5.1 \pm 0.2 \\ 15.0 \pm 0.3 \end{array} $	- - -	- - -	- - -	- - -	3.9 ± 0.2 12.9 ± 0.4 24.1 ± 0.3	-	- - -	$8.8 \pm 0.3 \ 23.2 \pm 0.2 \ 28.0 \pm 0.3$	37.6 ± 0.4

Distribution matching

- ullet Idea. D and D' should have similar distributions
 - Use some random embedding $g(\cdot)$

(e.g., randomly initialized net)

Common to measure MMD as the distance

Distribution matching

• Tend to provide a more wholesome summary of the original distribution

Wrapping up

- Selecting only the useful data is crucial for more efficient training
 - However, still far from low-cost automation

That's it for today