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1. IntroductiuonData influence estimation

• Data influence estimation?
◦ Aims to provide insights into the impact of specific data points 

on the model’s predictive bahaviors.
◦ How would the model’s behavior change if we removed 

a specific training data point?

• Why?
◦ Model transparency

⇒How it works?
◦ Model accountability

⇒Can we believe model?
◦ Significant role in addressing AI copyright debate

⇒Who made this model?



Influence function

• How small difference on training data influences test loss?

• Influence on test loss

◦ 𝐈𝐅 𝓏𝑖 ≔ −∇𝜃ℓ 𝜃, 𝓏 𝑣𝑎𝑙 ⊤
𝐇−1∇𝜃ℓ 𝜃, 𝓏𝑖

where 𝐇 =
1

𝑁
σ𝑖=1
𝑁 ∇𝜃

2ℓ(𝜃, 𝓏𝑖) is Hessian of total loss,
∇𝜃ℓ 𝜃, 𝓏𝑖 : gradient of loss regard to data point z

• Huge computation on Hessian inverse

• Neglects training procedure
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1. Introductiuon

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning. PMLR, 2017.



Data shapley

• Check data point’s marginal contribution on final model.

• 𝜙𝑖 𝓋 = σ𝑆⊆𝑁\ 𝑖
𝑆 ! 𝑁 − 𝑆 −1 !

𝑁 !
𝓋 𝑆 ∪ 𝑖 − 𝓋 𝑆

◦ 𝑁: all dataset, 𝑆: subsets doesn’t have 𝑖, 𝓋 𝑆 : score only with S, 
𝓋 𝑆 ∪ 𝑖 − 𝓋 𝑆 : how much score increase with 𝑖

• For all combinations, calculate average contribution when 𝑖 is included.
◦ E.g.)Want to check C’s contribution on data set 𝐴, 𝐵, 𝐶

• Make all combinations without C ⇒ ∅, 𝐴 , 𝐵 , {𝐴, 𝐵}

• Put C in that combination ⇒ 𝐶 , 𝐴, 𝐶 , 𝐵, 𝐶 , {𝐴, 𝐵, 𝐶}

• And compare the score to calculate marginal contribution.

• Considering and computing all combination is hard.
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1. Introductiuon

Ghorbani, Amirata, and James Zou. "Data shapley: Equitable valuation of data for machine learning." International conference on machine learning. PMLR, 2019.
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1. IntroductiuonLeave-one-out influence

• Leave-one-out influence (LOO)
◦ The model’s loss change on a validation data 𝓏(𝑣𝑎𝑙) 

when the training data point 𝓏∗ is removed from the training set 𝒟
◦ As formula (𝒜 is learning algorithm),

LOO 𝓏∗; 𝓏 𝑣𝑎𝑙 ≔ ℓ 𝒜 𝒟 , 𝓏 𝑣𝑎𝑙 − ℓ 𝒜 𝒟\{𝓏∗} , 𝓏 𝑣𝑎𝑙

◦ E.g) 𝒜: Linear Regression

LOO 𝓏∗; 𝓏 𝑣𝑎𝑙

= 16 − 18.2 − 16 − 12.77
= −5.43
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1. IntroductiuonData influence estimation

• Traditional literature usually assumes that learning altorithm 𝒜 
is permutation invariant.
◦ The order of data point does not affect the outcome.
◦ This assumption holds for strongly convex loss functions.

• Does Mordern training algorithms are permutation invariant?
◦ No!!

⇒Non-convex nature of neural networks
⇒Multi-stage training curricula
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1. IntroductiuonData influence estimation

• Additionally, LLM(Large Language Models) often undergo just one training 
epoch, meaning each data point is encdountered only once during training.

• For that reason, data order make influence of data points!

• So, how can we calculate influence of data on non-convex, sequence 
dependent scenario?
◦ Trajectory-specific LOO
⇒Characterizes the loss change resulting from removing a data point 

from the specific iteration.
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1. IntroductiuonData influence estimation

• But, Computationally challenging evaluating trajectory-specific LOO…

• To avoid this, author introduced data value embedding ⇒ approximation

model

data

data

data

} 3 mini batch

val loss model

data

data

data

val loss’ model

data

data

data

val loss’’

…
Without 𝓏∗ 

on iter 1

Without 𝓏∗ 
on iter 2

Retrain Retrain again And again..

val loss val loss’ val loss’’val loss

Calculate 
TSLOO (1)

Calculate 
TSLOO(2)

…
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2. Data value embeddingTrajecctory-specific LOO

• Originally introduced as ‘SGD-influence’ [1]

• In standard SGD, parameters are updated as
◦ 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 σ𝓏∈ℬ𝑡

∇ℓ 𝜃𝑡, 𝓏

◦ 𝜂𝑡: learning rate

• In this scenario, parameters are updated as
◦ 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 σ𝓏∈ℬ𝑡

∇ℓ 𝜃𝑡, 𝓏 for 𝑡 = 0,… , 𝑡𝑠 − 1

◦ 𝜃𝑡𝑠+1
′ = 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡, 𝓏 for iteration 𝑡𝑠 which 𝓏∗ is removed

◦ 𝜃𝑡+1
′ = 𝜃′𝑡 − 𝜂𝑡 σ𝓏∈ℬ𝑡

∇ℓ 𝜃′𝑡, 𝓏 for 𝑡 = 𝑡𝑠 + 1,… , 𝑇 − 1

⇒It just says that we use standard SGD for update, 
simply removing specific datapoint on specific iteration.

[1] Hara, Satoshi, Atsushi Nitanda, and Takanori Maehara. "Data cleansing for models trained with SGD." Advances in Neural Information Processing Systems 32 (2019)



13

2. Data value embeddingTrajecctory-specific LOO

• 𝑇𝑆𝐿𝑂𝑂 𝑡𝑠 𝓏∗; 𝑧𝑣𝑎𝑙 ≔ ℓ 𝜃𝑇
′ , 𝓏𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙

◦ 𝓏∗: data point, 𝑡𝑠: iteration, 𝓏 𝑣𝑎𝑙 : validation point
◦ 𝜃𝑇: final model in original SGD, 𝜃𝑇

′ : final model in this scenario
⇒Means change in the validation loss ℓ(⋅, 𝓏(𝑣𝑎𝑙)), when the data point 
𝓏∗ ∈ ℬ𝑡𝑠 is removed from iteration 𝑡𝑠.

• TSLOO depends on the “timing” that data is used.
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2. Data value embeddingData value embedding
• Like said previous, TSLOO’s computation is significant challenge.

⇒Data value embedding!

• We will establish approximation for 
𝑇𝑆𝐿𝑂𝑂 𝑡𝑠 𝓏∗; 𝑧𝑣𝑎𝑙 = ℓ 𝜃𝑇

′ , 𝓏𝑣𝑎𝑙 − ℓ 𝜃𝑇, 𝓏
𝑣𝑎𝑙

• First, define interpolation between 𝜃𝑇 , 𝜃𝑇
′

◦ 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘, 𝓏 : before 𝑡𝑠

◦ 𝜃𝑡𝑠+1 𝜀 ≔ 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡𝑠 , 𝓏 − 𝜂𝑡𝑠 1 − 𝜀 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ : 𝑡𝑠

◦ 𝜃𝑘+1 𝜀 ≔ 𝜃𝑘 𝜀 − 𝜂𝑘 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘 𝜀 , 𝓏 : after 𝑡𝑠

∴ 𝜃𝑇 0 = 𝜃𝑇, 𝜃𝑇 1 = 𝜃𝑇
′
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2. Data value embeddingData value embedding
• Then apply first-order Taylor expansion around 𝜀 = 0,

◦ ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙 ≈ ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

• Proof.

◦ Let ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙 = 𝑓 𝜀

◦ 𝑓 𝜀 ≈ 𝑓 0 + ቚ
𝑑𝑓 𝜀

𝑑𝜀 𝜀=0
× 𝜀 − 0 ∵ 𝑛𝑒𝑎𝑟 𝜀 = 0

◦ 𝑓 1 ≈ 𝑓 0 + ቚ
𝑑𝑓 𝜀

𝑑𝜀 𝜀=0
× 1 − 0

∴ 𝑓 1 − 𝑓 0 ≈ ቚ
𝑑𝑓 𝜀

𝑑𝜀 𝜀=0

⇒ℓ 𝜃𝑇 1 , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 0 , 𝓏 𝑣𝑎𝑙 ≈ ቚ
𝜕

𝜕𝜀
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙

𝜀=0
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2. Data value embeddingData value embedding
• Then apply first-order Taylor expansion around 𝜀 = 0,

◦ ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙 ≈ ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

• Proof. (cont.)

◦ ℓ 𝜃𝑇 1 , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 0 , 𝓏 𝑣𝑎𝑙 ≈ ቚ
𝜕

𝜕𝜀
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙

𝜀=0

◦ And since 𝜀 is not directly related to ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙 , 
we need to apply the chain rule.

◦ ቚ
𝜕

𝜕𝜀
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙

𝜀=0
= ቚ

𝜕

𝜕𝜃𝑇(𝜀)
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

◦ Simply, ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
∵ 𝜃𝑇 = 𝜃𝑇 0

⇒ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇, 𝓏

𝑣𝑎𝑙 ≈ ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
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2. Data value embeddingData value embedding

• ቚ
𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
satisfies a recursive relation!

◦ Parameter update using SGD interpolation
• 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 σ𝓏∈ℬ𝑘

∇ℓ 𝜃𝑘, 𝓏 : before 𝑡𝑠
• 𝜃𝑡𝑠+1 𝜀 = 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡𝑠 , 𝓏 − 𝜂𝑡𝑠 1 − 𝜀 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ : 𝑡𝑠

• 𝜃𝑘+1 𝜀 = 𝜃𝑘 𝜀 − 𝜂𝑘 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘 𝜀 , 𝓏 : after 𝑡𝑠

◦ Derivative is 0 before 𝑡𝑠 since 𝜀 not occurred yet.
◦ Calculate partial derivative regard to 𝜀 after 𝑡𝑠

•
𝜕𝜃𝑘+1 𝜀

𝜕𝜀
=

𝜕𝜃𝑘(𝜀)

𝜕𝜀
− 𝜂𝑘 σ𝓏∈ℬ𝑘

∇2 ℓ 𝜃𝑘 𝜀 , 𝓏
𝜕𝜃𝑘 𝜀

𝜕𝜀

=
𝜕𝜃𝑘 𝜀

𝜕𝜖
𝑰 − 𝜂𝑘𝐇𝑘 𝜀 𝑤ℎ𝑒𝑟𝑒 𝐇𝑘 𝜀 = σ𝓏∈ℬ𝑘

∇2 ℓ 𝜃𝑘 𝜀 , 𝓏
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2. Data value embeddingData value embedding

• ቚ
𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
satisfies a recursive relation!

◦ Since SGD interpolation update on iter 𝑡𝑠 is different, get partial 
derivative separately.
• 𝜃𝑡𝑠+1 𝜀 = 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡𝑠 , 𝓏 − 𝜂𝑡𝑠 1 − 𝜀 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

◦ Calculate partial derivative regard to 𝜀

•
𝜕𝜃𝑡𝑠+1 𝜀

𝜕𝜀
= 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

◦ So, ቚ
𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
= หς𝑘=𝑡𝑠+1

𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝜀 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏
∗

𝜀=0

= ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

(𝐇𝑘 0 = 𝐇𝑘 since 𝜀 = 0 means 𝓏∗ included)
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2. Data value embeddingData value embedding

• Finally, the approximation of 𝑇𝑆𝐿𝑂𝑂 𝑡𝑠 𝓏∗; 𝑧𝑣𝑎𝑙 is

◦ ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙

≈ ቚ∇ℓ 𝜃𝑇, 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
(∵ 𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑇𝑎𝑙𝑦𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛)

=𝜂𝑡𝑠∇ℓ 𝜃𝑇, 𝓏
𝑣𝑎𝑙 ⊤

ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

• Next, extract the test-data-independent components and define
“data value embedding” for a training point 𝓏∗ ∈ ℬ𝑡𝑠

◦ DVEmb 𝑡𝑠 𝓏∗ ≔ 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

◦ Of course, we can quickly determine training data 𝓏∗’s influence by

• ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤

DVEmb 𝑡𝑠 𝓏∗
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3. Efficient computation and storageEfficient computation and storage
• Still, there are some problem…

◦ Computing data value embedding
• Need gradient per sample
• Need Hessian per step

◦ Storing data value embedding
• dim DVEmb𝑡 𝓏

∗ = dim(𝑚𝑜𝑑𝑒𝑙)

• Hard to storing individual embeddings for each training data point.

• How to deal with it?
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3. Efficient computation and storageRecursive approximation of DVEmb
• Use Generalized Gauss-Newton (GGN) for Hessian matrix 𝐇𝑘

◦ 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤ (in context of cross-entropy loss)

• Proof.
◦ Assume that using cross entropy loss function with one-hot encoded 

label

𝐿 𝑦, 𝑓 = −෍

𝑖=1

𝐶

𝑦𝑖 log 𝑓𝑖

◦ 𝒚 = 𝑦1, 𝑦2, … , 𝑦𝐶
⊤ is true label vector

𝒇 = 𝑓1, 𝑓2, … , 𝑓𝐶
⊤ is predicted probability vector

◦ ∇𝜃𝐿 = σ𝑖=1
𝐶 𝜕𝐿

𝜕𝑓𝑖

𝜕𝑓𝑖

𝜕𝜃
= σ𝑖=1

𝐶 −
𝑦𝑖

𝑓𝑖

𝜕𝑓𝑖

𝜕𝜃
= −

1

𝑓𝑘

𝜕𝑓𝑘

𝜕𝜃
(∵ 𝑜𝑛𝑒ℎ𝑜𝑡 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑙𝑎𝑏𝑒𝑙)

• 𝑦𝑘 = 1 for correct class 𝑘, 𝑦𝑖 = 0 for 𝑖 ≠ 𝑘
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3. Efficient computation and storageRecursive approximation of DVEmb
• Use Generalized Gauss-Newton (GGN) for Hessian matrix 𝐇𝑘

◦ 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤ (in context of cross-entropy loss)

• Proof. (cont.)

◦ 𝐇 = ∇𝜃
2𝐿 =

𝜕

𝜕𝜃
−

1

𝑓𝑘

𝜕𝑓𝑘

𝜕𝜃
=

1

𝑓𝑘
2

𝜕𝑓𝑘

𝜕𝜃

𝜕𝑓𝑘

𝜕𝜃

⊤
−

1

𝑓𝑘

𝜕2𝑓𝑘

𝜕𝜃2

◦ we update parameter near the current parameter.
◦ Plus, 𝑓𝑘 is approximately linear in 𝜃 near the current parameter values.

◦ Thus, − 1

𝑓𝑘

𝜕2𝑓𝑘

𝜕𝜃2
can be removed. ((linear function)’’ = 0)
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3. Efficient computation and storageRecursive approximation of DVEmb
• Use Generalized Gauss-Newton (GGN) for Hessian matrix 𝐇𝑘

◦ 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤ (in context of cross-entropy loss)

• Proof. (cont.)

◦ So 𝐇 ≈
1

𝑓𝑘
2

𝜕𝑓𝑘

𝜕𝜃

𝜕𝑓𝑘

𝜕𝜃

⊤

◦ ∇𝜃𝐿 = −
1

𝑓𝑘

𝜕𝑓𝑘

𝜕𝜃
⇒ 𝐇 ≈ ∇𝜃𝐿∇𝜃𝐿

⊤

⇒Outer product of the gradient of loss, approximates Hessian.
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3. Efficient computation and storageRecursive approximation of DVEmb

• Using approximation of Hessian 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤

• DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

= 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝑰 − 𝜂𝑡𝑠+1𝐇𝑡𝑠+1 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

≈ 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝑰 − 𝜂𝑡𝑠+1σ𝓏∈ℬ𝑡𝑠+1

∇ℓ 𝜃𝑡𝑠+1, 𝓏 ∇ℓ 𝜃𝑡𝑠+1, 𝓏
⊤

∇ℓ 𝜃𝑡𝑠 , 𝓏
∗

= 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ − 𝜂𝑡𝒔 σ𝓏∈ℬ𝑡𝑠+1
𝜂𝑡𝒔+1 ς𝑘=𝑡𝑠+2

𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠+1, 𝓏 ∇ℓ 𝜃𝑡𝑠+1, 𝓏
⊤
∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

= 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ − 𝜂𝑡𝒔 σ𝓏∈ℬ𝑡𝑠+1
∇ℓ 𝜃𝑡𝑠+1, 𝓏

⊤
∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ DVEmb 𝑡𝑠+1 𝓏

= …

= 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔 σ𝑘=𝑡𝑠+1

𝑇−1 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘, 𝓏

⊤∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ DVEmb 𝑘 𝓏
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3. Efficient computation and storageRecursive approximation of DVEmb

• DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔 σ𝑡=𝑡𝑠+1

𝑇−1 σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡 , 𝓏

⊤∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ DVEmb 𝑡 𝓏

• This provides crucial insight
◦ Gradient similarity term ∇ℓ 𝜃𝑡, 𝓏

⊤∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ increases when 𝓏 and 𝓏∗

are similar.
⇒The more similar data point to 𝓏∗ appears, the more 𝓏∗’s influence 

decreases.

• Plus, this equation suggests the possibility of a back-propagation 
algorithm for computing data value embeddings.
(only using gradients)
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3. Efficient computation and storageStep1: Storing gradient at each iteration
• During training, we need to store the per-sample gradient for each data 

point in the training batch.

• There are two challenges
1. Storage

• 𝑝: # of model parameters, 𝑇: number of iteration, 𝐵: batch size
• Requireing 𝒪 𝑇𝐵𝑝 disk space

2. Efficiency
• Computing per-sample gradients need to separate 

backpropagation for each 𝓏 ∈ ℬ𝑡
⇒Increasing computational cost by a factor of 𝐵
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3. Efficient computation and storageStep1: Storing gradient at each iteration
• Gradient decomposition technique [1]

◦ Illustrate this technique with a simple linear layer 
where the output is 𝐬 = 𝐚𝐖

◦ 𝐖 ∈ ℝ𝑑1×𝑑2 : weight matrix, 𝐚 = 𝐚 1 , … , 𝐚 𝐵 ⊤
∈ ℝ𝐵×𝑑1 : input, 

𝒔 = 𝒔 1 , … , 𝒔 𝐵 ⊤
∈ ℝ𝐵×𝑑2 : pre-activation tensor.

◦ Since we can express the gradient of an individual loss ℓ 𝑖 ≔ ℓ 𝜃, 𝓏𝑖
with respect to 𝐖 as
𝜕ℓ 𝑖

𝜕𝐖
=

𝜕ℓ 𝑖

𝜕𝒔 𝑖 ⊗
𝜕𝒔 𝑖

𝜕𝐖
=

𝜕ℓ 𝑖

𝜕𝒔 𝑖 ⊗𝐚 𝑖 =
𝜕ℓ

𝜕𝒔 𝑖 ⊗𝐚 𝑖

ℓ ≔ σ𝑗=1
𝐵 ℓ 𝑗 ,⊗:𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 , ∵ 𝐬 = 𝐚𝐖 ∵ 𝑗 ≠ 𝑖 𝑡ℎ𝑒𝑛

𝜕ℓ 𝑗

𝜕𝒔 𝑖 = 0

[1] Wang, Jiachen T., et al. "Data shapley in one training run." arXiv preprint arXiv:2406.11011 (2024).
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3. Efficient computation and storageStep1: Storing gradient at each iteration
• Gradient decomposition technique

◦ Now, for each data point 𝓏𝑖

• Rather than storing full gradient vectors 𝜕ℓ
𝑖

𝜕𝐖
∈ ℝ𝑑1×𝑑2 ,

• Instead store the smaller pair 𝐚 𝑖 ,
𝜕ℓ

𝜕𝒔 𝑖 ∈ ℝ𝑑1+𝑑2

⇒Reduces memory requirements from 𝒪 𝑝𝑇𝐵 to 𝒪 𝑝𝑇𝐵 .

⇒ 𝜕ℓ

𝜕𝒔 𝑖 is readily available during the backpropagation pass.
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3. Efficient computation and storageStep1: Storing gradient at each iteration
• Random projection

◦ Further compress the stored gradient information.
◦ Two projection matrices 𝐏𝐚 ∈ ℝ𝑟×𝑑1 and 𝐏𝐬 ∈ ℝ𝑟×𝑑2

to project 𝐚 and 𝜕ℓ
𝜕𝒔

to lower dimensional space ℝ𝑟

◦ Because kronecker product have property like 
𝐴⊗𝐵 𝑎⊗ 𝑏 = 𝐴𝑎 ⊗ (𝐵𝑏),

◦ Projected gradient can then be reconstructed directly from the 
projected activations and output derivatives.

𝐏𝐚 ⊗𝐏𝐬 𝐚⊗
𝜕ℓ

𝜕𝐬
= 𝐏𝐚𝐚 ⊗ 𝐏𝐬

𝜕ℓ

𝜕𝐬

◦ This approach reduces storage needs to 𝒪 𝑇𝐵 ෤𝑝 where ෤𝑝: projected 
dimension, while still capturing essential gradient geometric 
information.
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3. Efficient computation and storageStep2: Backpropagating DVEmb

• Let DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ 𝐌(𝑡𝑠),
Where 𝐌 ts ≔ σ𝑡=𝑡𝑠+1

𝑇−1 σ𝓏∈ℬ𝑡
DVEmb 𝑡 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤

• Since data value embedding is same as training gradient for the last 
iteration, initialize 𝐌 𝑇−1 = 𝟎.

• And for 𝑡𝑠 = 𝑇 − 1,… , 0, DVEmb 𝑡𝑠 𝓏∗ is recursively computed.
1. For each 𝓏∗ ∈ ℬ𝑡𝑠, DVEmb

𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ 𝐌(𝑡𝑠)

2. Update 𝐌 after computing all embedding for the current iteration.
𝑀(𝑡𝑠−1) = 𝑀(𝑡𝑠) +σ𝓏∗∈ℬ𝑡𝑠

DVEmb 𝑡𝑠 𝓏∗ ∇ℓ 𝜃𝑘, 𝓏
∗ ⊤

• Now we can calculate DVEmb 𝑡 𝓏 for all data on specific iteration.

• Plus, author argues that if we assume layer wise independence, we can 
compute DVEmb 𝑡 𝓏 on per layer basis.
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3. Efficient computation and storageStep2: Backpropagating DVEmb
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3. Efficient computation and storageStep2: Backpropagating DVEmb
• Complexity of computation & memory

◦ Matmuls and additions in updating DVEmb 𝑡 𝓏 and 𝐌(𝑡𝑠)

⇒𝒪 𝐵𝑇 ෤𝑝2 flops
◦ If we compute DVEmb 𝑡 𝓏 and 𝐌(𝑡𝑠) per layer under assumption,

⇒𝐿𝒪 𝐵𝑇 ෤𝑝/𝐿 2 = 𝒪(𝐵𝑇 ෤𝑝2/𝐿) flops
◦ For memory, 𝐌 𝑡𝑠 requires 𝒪 𝐵 ෤𝑝2/𝐿2

◦ Regular model training needs 𝒪(𝐵𝑇𝑝) flops and 𝒪(𝑝) memory.
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3. Efficient computation and storageStep2: Backpropagating DVEmb
• Complexity of storage

◦ Each DVEmb 𝑡 𝓏 has dimension 𝒪( ෤𝑝), resulting in a total storage 
requirement of 𝒪 𝐵𝑇 ෤𝑝

◦ It can be large, but author argue that disk storage is relatively 
inexpensive in modern computing environments.
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3. Efficient computation and storageInfluence checkpointing
• Backpropagation algorithm (step2) has runtime complexity of 𝒪 𝑇 ,

as it sequentially computes DVEmb 𝑡 for 𝑡𝑠 = 𝑇 − 1,… , 0

◦ This can still be costly for long training periods.
⇒Can’t we Parallelize?

• We pick 𝐾 evenly spaced training steps 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾 = 𝑇

• Extended data value embedding notation DVEmb 𝑡𝑠→𝑡ℓ 𝓏∗ as the 
data value embedding of 𝓏∗ ∈ ℬ𝑡𝑠 for the intermediate checkpoint 𝜃𝑡ℓ.

◦ Note. DVEmb 𝑡𝑠 = DVEmb 𝑡𝑠→𝑇
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3. Efficient computation and storageInfluence checkpointing

• Letting 𝐊 𝑡𝑎→𝑡𝑏 ≔ ς𝑡=𝑡𝑎

𝑡𝑏−1 𝑰 − 𝜂𝑡𝐇𝑡 , 

DVEmb 𝑡𝑠→𝑇 can be computed from DVEmb 𝑡𝑠→𝑡𝑙 as follows
⇒DVEmb 𝑡𝑠→𝑇 𝓏∗ = DVEmb 𝑡𝑠→𝑡𝑙 𝓏∗ ⊤𝐊 𝑡𝑙→𝑇

∵ DVEmb 𝑡𝑠→𝑇 = ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

• And we have 𝐊(𝑡ℓ→𝑇) = ςℓ=ℓ0+1
𝐾 𝐊 𝑡ℓ−1→𝑡ℓ that allows to compute 

DVEmb 𝑡𝑠→𝑇

• Plus, using this, if the intermediate checkpoints 𝜃𝑡1 , … , 𝜃𝑡𝐾−1 was saved, 
we can analyze how the influence changes on different intermediate 
checkpoints.
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3. Efficient computation and storageInfluence checkpointing
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4. ExperimentFidelty evaluation
• Does it really accurate? How accurate is it?

• Computing ground truth of LOO requires retraining the model multiple 
times.

⇒Use MNIST dataset using a small MLP trained with standard SGD

• Two settings
1. Single epoch removal

• Data point is excluded from training for single epoch.
• Here, data point removed from the last epoch.

2. All epoch removal
• Data point is excluded in all epochs.
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4. ExperimentFidelty evaluation
• Spearman correlation between ground-truth LOO when the MLP is trained 

for 3 epochs
◦ (a) the data value embedding, (b) the influence function for single 

epoch removal.
◦ (c), (d) all epoch removal.

• Shows that data value embedding has a high Spearman correlation 
with ground truth LOO.
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4. ExperimentComputational efficiency
• Storage, memory, computational efficiency

◦ Data value embedding vs LoGRA
(author saids that the LoGRA is most efficient influence function)

◦ LoGRA also uses random projection and stores the projected Hessian 
adjusted gradient 𝐻𝑇

−1∇ℓ 𝜃𝑇, 𝓏
∗ , influence function can be computed 

via dot-product with test data gradient.
◦ Computing data influence for Pytha-410M trained on 1% of the Pile 

dataset.
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4. ExperimentComputational efficiency
• Storage, memory, computational efficiency

• LoGRA requires recomputing gradients for all training data on the final 
model 𝜃𝑇, which is computationally same as one epoch of model training.

• Data value embedding operates only on projected vectors.
⇒63.6GB vs 0.84GB
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4. ExperimentAnalyzing training dynamics
• Conducted with Pytha-410M trained on 1% of the Pile dataset.

• Can categorize in 3 distinct regimes
1. High impact warmup phase

• High data influence score
2. Low impact basin

• Low data influence score
3. Gradual ascending

• The later a data point participates 
in the training, the higher its influence score becomes.

• Can find some intuition.
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4. ExperimentAnalyzing training dynamics
1. Parameter initialization and warmup training are important for final 

model performance.
◦ In very early stage of training, the gradient norms are large.

• Significant parameter updates
◦ Data points from the High-impact Warmup Phase are maintaining 

substantial influence throughout the training process, even as their 
immediate impact diminishes over time.
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4. ExperimentAnalyzing training dynamics
2. Influence saturation from future data

◦ Training progress into a smoother loss regime, the gradient norms 
become relatively stable and decrease slowly.

◦ Note that a data point’s influence score decreases the most when 
future data points are similar to it
DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ − 𝜂𝑡𝒔 σ𝑡=𝑡𝑠+1
𝑇−1 σ𝓏∈ℬ𝑡

∇ℓ 𝜃𝑡, 𝓏
⊤∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ DVEmb 𝑡 𝓏
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4. ExperimentAnalyzing training dynamics
• How does it related to data selection strategies?

◦ Following observation, data selection is most critical during the very 
early and later stages of training.

• Train Pythia-410M on Pile with different online data selection strategies.

• Figure shows that performing data selection only in first 2000 iteration 
and after 20000 iterations closely matches the performance when data 
selection is performed in all iterations.
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4. ExperimentQualitative evaluation

• What is the most valuable data points with a test data point 𝓏 𝑣𝑎𝑙

identified by data value embedding?
◦ Setting 𝓏 𝑣𝑎𝑙 as identical to one of the training data points.

⇒Making most similar data point “self-influence” 
(should be highest among all training points)

• Training GPT-2 on Wikitext-103 over three epochs, 
where the test data is about “military video game”
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4. ExperimentQualitative evaluation
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5. Conclusion and LimitationsConclusion and Limitations
• Introduced data value embedding

◦ No need to retrain the model.
◦ Efficient & Accurate than influence function using approximation.
◦ Capturing temporal dynamics of training.

• Limitations
◦ Tailored for SGD.
◦ Tailored for cross entropy loss.
◦ Doesn’t think about I/O complexity.
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Taylor expansion

• Approximate a function to polinomial near specific point with function 
value and derivatives.

𝑓 𝑥 = ෍

𝑛=0

∞
𝑓 𝑛 𝑎

𝑛!
𝑥 − 𝑎 𝑛

• First order Taylor expansion

◦ 𝑓 𝑥 ≈ 𝑓 𝑎 +
𝑓′ 𝑎

1!
(𝑥 − 𝑎)
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Appendix



Spearman correlation

• Evaluating monotonic relationship.
◦ If one variable increase then other variable increases.
◦ If one variable increase then other variable decreases.

• Use rank to calculate correlation.

◦ 𝜌 = 1 −
6σ𝑑𝑖

2

𝑛(𝑛2−1)

◦ Where 𝑑𝑖 = 𝑟𝑎𝑛𝑘 𝑥𝑖 − 𝑟𝑎𝑛𝑘(𝑦𝑖)
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