
Capturing the Temporal Dependence of
Training Data Influence

Hyunwoo Jung

POSTECH

hyunwoojung@postech.ac.kr

Wang, Jiachen T., et al. "Capturing the Temporal Dependence of Training Data Influence." arXiv
preprint arXiv:2412.09538 (2024).

mailto:hyunwoojung@postech.ac.kr

1. Introduction

2. Data value embedding

3. Efficient computation and storage

4. Experiment

5. Conclusion and Limitations

2

Content

1. Introduction

2. Data value embedding

3. Efficient computation and storage

4. Experiment

5. Conclusion and Limitations

3

Content

4

1. IntroductiuonData influence estimation

• Data influence estimation?
◦ Aims to provide insights into the impact of specific data points

on the model’s predictive bahaviors.
◦ How would the model’s behavior change if we removed

a specific training data point?

• Why?
◦ Model transparency

⇒How it works?
◦ Model accountability

⇒Can we believe model?
◦ Significant role in addressing AI copyright debate

⇒Who made this model?

Influence function

• How small difference on training data influences test loss?

• Influence on test loss

◦ 𝐈𝐅 𝓏𝑖 ≔ −∇𝜃ℓ 𝜃, 𝓏 𝑣𝑎𝑙 ⊤
𝐇−1∇𝜃ℓ 𝜃, 𝓏𝑖

where 𝐇 =
1

𝑁
σ𝑖=1
𝑁 ∇𝜃

2ℓ(𝜃, 𝓏𝑖) is Hessian of total loss,
∇𝜃ℓ 𝜃, 𝓏𝑖 : gradient of loss regard to data point z

• Huge computation on Hessian inverse

• Neglects training procedure

5

1. Introductiuon

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning. PMLR, 2017.

Data shapley

• Check data point’s marginal contribution on final model.

• 𝜙𝑖 𝓋 = σ𝑆⊆𝑁\ 𝑖
𝑆 ! 𝑁 − 𝑆 −1 !

𝑁 !
𝓋 𝑆 ∪ 𝑖 − 𝓋 𝑆

◦ 𝑁: all dataset, 𝑆: subsets doesn’t have 𝑖, 𝓋 𝑆 : score only with S,
𝓋 𝑆 ∪ 𝑖 − 𝓋 𝑆 : how much score increase with 𝑖

• For all combinations, calculate average contribution when 𝑖 is included.
◦ E.g.)Want to check C’s contribution on data set 𝐴, 𝐵, 𝐶

• Make all combinations without C ⇒ ∅, 𝐴 , 𝐵 , {𝐴, 𝐵}

• Put C in that combination ⇒ 𝐶 , 𝐴, 𝐶 , 𝐵, 𝐶 , {𝐴, 𝐵, 𝐶}

• And compare the score to calculate marginal contribution.

• Considering and computing all combination is hard.

6

1. Introductiuon

Ghorbani, Amirata, and James Zou. "Data shapley: Equitable valuation of data for machine learning." International conference on machine learning. PMLR, 2019.

7

1. IntroductiuonLeave-one-out influence

• Leave-one-out influence (LOO)
◦ The model’s loss change on a validation data 𝓏(𝑣𝑎𝑙)

when the training data point 𝓏∗ is removed from the training set 𝒟
◦ As formula (𝒜 is learning algorithm),

LOO 𝓏∗; 𝓏 𝑣𝑎𝑙 ≔ ℓ 𝒜 𝒟 , 𝓏 𝑣𝑎𝑙 − ℓ 𝒜 𝒟\{𝓏∗} , 𝓏 𝑣𝑎𝑙

◦ E.g) 𝒜: Linear Regression

LOO 𝓏∗; 𝓏 𝑣𝑎𝑙

= 16 − 18.2 − 16 − 12.77
= −5.43

8

1. IntroductiuonData influence estimation

• Traditional literature usually assumes that learning altorithm 𝒜
is permutation invariant.
◦ The order of data point does not affect the outcome.
◦ This assumption holds for strongly convex loss functions.

• Does Mordern training algorithms are permutation invariant?
◦ No!!

⇒Non-convex nature of neural networks
⇒Multi-stage training curricula

9

1. IntroductiuonData influence estimation

• Additionally, LLM(Large Language Models) often undergo just one training
epoch, meaning each data point is encdountered only once during training.

• For that reason, data order make influence of data points!

• So, how can we calculate influence of data on non-convex, sequence
dependent scenario?
◦ Trajectory-specific LOO
⇒Characterizes the loss change resulting from removing a data point

from the specific iteration.

10

1. IntroductiuonData influence estimation

• But, Computationally challenging evaluating trajectory-specific LOO…

• To avoid this, author introduced data value embedding ⇒ approximation

model

data

data

data

} 3 mini batch

val loss model

data

data

data

val loss’ model

data

data

data

val loss’’

…
Without 𝓏∗

on iter 1

Without 𝓏∗
on iter 2

Retrain Retrain again And again..

val loss val loss’ val loss’’val loss

Calculate
TSLOO (1)

Calculate
TSLOO(2)

…

1. Introduction

2. Data value embedding

3. Efficient computation and storage

4. Experiment

5. Conclusion and Limitations

11

Content

12

2. Data value embeddingTrajecctory-specific LOO

• Originally introduced as ‘SGD-influence’ [1]

• In standard SGD, parameters are updated as
◦ 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 σ𝓏∈ℬ𝑡

∇ℓ 𝜃𝑡, 𝓏

◦ 𝜂𝑡: learning rate

• In this scenario, parameters are updated as
◦ 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 σ𝓏∈ℬ𝑡

∇ℓ 𝜃𝑡, 𝓏 for 𝑡 = 0,… , 𝑡𝑠 − 1

◦ 𝜃𝑡𝑠+1
′ = 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡, 𝓏 for iteration 𝑡𝑠 which 𝓏∗ is removed

◦ 𝜃𝑡+1
′ = 𝜃′𝑡 − 𝜂𝑡 σ𝓏∈ℬ𝑡

∇ℓ 𝜃′𝑡, 𝓏 for 𝑡 = 𝑡𝑠 + 1,… , 𝑇 − 1

⇒It just says that we use standard SGD for update,
simply removing specific datapoint on specific iteration.

[1] Hara, Satoshi, Atsushi Nitanda, and Takanori Maehara. "Data cleansing for models trained with SGD." Advances in Neural Information Processing Systems 32 (2019)

13

2. Data value embeddingTrajecctory-specific LOO

• 𝑇𝑆𝐿𝑂𝑂 𝑡𝑠 𝓏∗; 𝑧𝑣𝑎𝑙 ≔ ℓ 𝜃𝑇
′ , 𝓏𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙

◦ 𝓏∗: data point, 𝑡𝑠: iteration, 𝓏 𝑣𝑎𝑙 : validation point
◦ 𝜃𝑇: final model in original SGD, 𝜃𝑇

′ : final model in this scenario
⇒Means change in the validation loss ℓ(⋅, 𝓏(𝑣𝑎𝑙)), when the data point
𝓏∗ ∈ ℬ𝑡𝑠 is removed from iteration 𝑡𝑠.

• TSLOO depends on the “timing” that data is used.

14

2. Data value embeddingData value embedding
• Like said previous, TSLOO’s computation is significant challenge.

⇒Data value embedding!

• We will establish approximation for
𝑇𝑆𝐿𝑂𝑂 𝑡𝑠 𝓏∗; 𝑧𝑣𝑎𝑙 = ℓ 𝜃𝑇

′ , 𝓏𝑣𝑎𝑙 − ℓ 𝜃𝑇, 𝓏
𝑣𝑎𝑙

• First, define interpolation between 𝜃𝑇 , 𝜃𝑇
′

◦ 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘, 𝓏 : before 𝑡𝑠

◦ 𝜃𝑡𝑠+1 𝜀 ≔ 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡𝑠 , 𝓏 − 𝜂𝑡𝑠 1 − 𝜀 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ : 𝑡𝑠

◦ 𝜃𝑘+1 𝜀 ≔ 𝜃𝑘 𝜀 − 𝜂𝑘 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘 𝜀 , 𝓏 : after 𝑡𝑠

∴ 𝜃𝑇 0 = 𝜃𝑇, 𝜃𝑇 1 = 𝜃𝑇
′

15

2. Data value embeddingData value embedding
• Then apply first-order Taylor expansion around 𝜀 = 0,

◦ ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙 ≈ ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

• Proof.

◦ Let ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙 = 𝑓 𝜀

◦ 𝑓 𝜀 ≈ 𝑓 0 + ቚ
𝑑𝑓 𝜀

𝑑𝜀 𝜀=0
× 𝜀 − 0 ∵ 𝑛𝑒𝑎𝑟 𝜀 = 0

◦ 𝑓 1 ≈ 𝑓 0 + ቚ
𝑑𝑓 𝜀

𝑑𝜀 𝜀=0
× 1 − 0

∴ 𝑓 1 − 𝑓 0 ≈ ቚ
𝑑𝑓 𝜀

𝑑𝜀 𝜀=0

⇒ℓ 𝜃𝑇 1 , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 0 , 𝓏 𝑣𝑎𝑙 ≈ ቚ
𝜕

𝜕𝜀
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙

𝜀=0

16

2. Data value embeddingData value embedding
• Then apply first-order Taylor expansion around 𝜀 = 0,

◦ ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙 ≈ ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

• Proof. (cont.)

◦ ℓ 𝜃𝑇 1 , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 0 , 𝓏 𝑣𝑎𝑙 ≈ ቚ
𝜕

𝜕𝜀
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙

𝜀=0

◦ And since 𝜀 is not directly related to ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙 ,
we need to apply the chain rule.

◦ ቚ
𝜕

𝜕𝜀
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙

𝜀=0
= ቚ

𝜕

𝜕𝜃𝑇(𝜀)
ℓ 𝜃𝑇 𝜀 , 𝓏 𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

◦ Simply, ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
∵ 𝜃𝑇 = 𝜃𝑇 0

⇒ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇, 𝓏

𝑣𝑎𝑙 ≈ ቚ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0

17

2. Data value embeddingData value embedding

• ቚ
𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
satisfies a recursive relation!

◦ Parameter update using SGD interpolation
• 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 σ𝓏∈ℬ𝑘

∇ℓ 𝜃𝑘, 𝓏 : before 𝑡𝑠
• 𝜃𝑡𝑠+1 𝜀 = 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡𝑠 , 𝓏 − 𝜂𝑡𝑠 1 − 𝜀 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ : 𝑡𝑠

• 𝜃𝑘+1 𝜀 = 𝜃𝑘 𝜀 − 𝜂𝑘 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘 𝜀 , 𝓏 : after 𝑡𝑠

◦ Derivative is 0 before 𝑡𝑠 since 𝜀 not occurred yet.
◦ Calculate partial derivative regard to 𝜀 after 𝑡𝑠

•
𝜕𝜃𝑘+1 𝜀

𝜕𝜀
=

𝜕𝜃𝑘(𝜀)

𝜕𝜀
− 𝜂𝑘 σ𝓏∈ℬ𝑘

∇2 ℓ 𝜃𝑘 𝜀 , 𝓏
𝜕𝜃𝑘 𝜀

𝜕𝜀

=
𝜕𝜃𝑘 𝜀

𝜕𝜖
𝑰 − 𝜂𝑘𝐇𝑘 𝜀 𝑤ℎ𝑒𝑟𝑒 𝐇𝑘 𝜀 = σ𝓏∈ℬ𝑘

∇2 ℓ 𝜃𝑘 𝜀 , 𝓏

18

2. Data value embeddingData value embedding

• ቚ
𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
satisfies a recursive relation!

◦ Since SGD interpolation update on iter 𝑡𝑠 is different, get partial
derivative separately.
• 𝜃𝑡𝑠+1 𝜀 = 𝜃𝑡𝑠 − 𝜂𝑡𝑠 σ𝓏∈ℬ𝑡𝑠\ 𝓏∗ ∇ℓ 𝜃𝑡𝑠 , 𝓏 − 𝜂𝑡𝑠 1 − 𝜀 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

◦ Calculate partial derivative regard to 𝜀

•
𝜕𝜃𝑡𝑠+1 𝜀

𝜕𝜀
= 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

◦ So, ቚ
𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
= หς𝑘=𝑡𝑠+1

𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝜀 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏
∗

𝜀=0

= ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

(𝐇𝑘 0 = 𝐇𝑘 since 𝜀 = 0 means 𝓏∗ included)

19

2. Data value embeddingData value embedding

• Finally, the approximation of 𝑇𝑆𝐿𝑂𝑂 𝑡𝑠 𝓏∗; 𝑧𝑣𝑎𝑙 is

◦ ℓ 𝜃𝑇
′ , 𝓏 𝑣𝑎𝑙 − ℓ 𝜃𝑇 , 𝓏

𝑣𝑎𝑙

≈ ቚ∇ℓ 𝜃𝑇, 𝓏
𝑣𝑎𝑙 ⊤ 𝜕𝜃𝑇 𝜀

𝜕𝜀 𝜀=0
(∵ 𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑇𝑎𝑙𝑦𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛)

=𝜂𝑡𝑠∇ℓ 𝜃𝑇, 𝓏
𝑣𝑎𝑙 ⊤

ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

• Next, extract the test-data-independent components and define
“data value embedding” for a training point 𝓏∗ ∈ ℬ𝑡𝑠

◦ DVEmb 𝑡𝑠 𝓏∗ ≔ 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

◦ Of course, we can quickly determine training data 𝓏∗’s influence by

• ∇ℓ 𝜃𝑇 , 𝓏
𝑣𝑎𝑙 ⊤

DVEmb 𝑡𝑠 𝓏∗

1. Introduction

2. Data value embedding

3. Efficient computation and storage

4. Experiment

5. Conclusion and Limitations

20

Content

21

3. Efficient computation and storageEfficient computation and storage
• Still, there are some problem…

◦ Computing data value embedding
• Need gradient per sample
• Need Hessian per step

◦ Storing data value embedding
• dim DVEmb𝑡 𝓏

∗ = dim(𝑚𝑜𝑑𝑒𝑙)

• Hard to storing individual embeddings for each training data point.

• How to deal with it?

22

3. Efficient computation and storageRecursive approximation of DVEmb
• Use Generalized Gauss-Newton (GGN) for Hessian matrix 𝐇𝑘

◦ 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤ (in context of cross-entropy loss)

• Proof.
◦ Assume that using cross entropy loss function with one-hot encoded

label

𝐿 𝑦, 𝑓 = −෍

𝑖=1

𝐶

𝑦𝑖 log 𝑓𝑖

◦ 𝒚 = 𝑦1, 𝑦2, … , 𝑦𝐶
⊤ is true label vector

𝒇 = 𝑓1, 𝑓2, … , 𝑓𝐶
⊤ is predicted probability vector

◦ ∇𝜃𝐿 = σ𝑖=1
𝐶 𝜕𝐿

𝜕𝑓𝑖

𝜕𝑓𝑖

𝜕𝜃
= σ𝑖=1

𝐶 −
𝑦𝑖

𝑓𝑖

𝜕𝑓𝑖

𝜕𝜃
= −

1

𝑓𝑘

𝜕𝑓𝑘

𝜕𝜃
(∵ 𝑜𝑛𝑒ℎ𝑜𝑡 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑙𝑎𝑏𝑒𝑙)

• 𝑦𝑘 = 1 for correct class 𝑘, 𝑦𝑖 = 0 for 𝑖 ≠ 𝑘

23

3. Efficient computation and storageRecursive approximation of DVEmb
• Use Generalized Gauss-Newton (GGN) for Hessian matrix 𝐇𝑘

◦ 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤ (in context of cross-entropy loss)

• Proof. (cont.)

◦ 𝐇 = ∇𝜃
2𝐿 =

𝜕

𝜕𝜃
−

1

𝑓𝑘

𝜕𝑓𝑘

𝜕𝜃
=

1

𝑓𝑘
2

𝜕𝑓𝑘

𝜕𝜃

𝜕𝑓𝑘

𝜕𝜃

⊤
−

1

𝑓𝑘

𝜕2𝑓𝑘

𝜕𝜃2

◦ we update parameter near the current parameter.
◦ Plus, 𝑓𝑘 is approximately linear in 𝜃 near the current parameter values.

◦ Thus, − 1

𝑓𝑘

𝜕2𝑓𝑘

𝜕𝜃2
can be removed. ((linear function)’’ = 0)

24

3. Efficient computation and storageRecursive approximation of DVEmb
• Use Generalized Gauss-Newton (GGN) for Hessian matrix 𝐇𝑘

◦ 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤ (in context of cross-entropy loss)

• Proof. (cont.)

◦ So 𝐇 ≈
1

𝑓𝑘
2

𝜕𝑓𝑘

𝜕𝜃

𝜕𝑓𝑘

𝜕𝜃

⊤

◦ ∇𝜃𝐿 = −
1

𝑓𝑘

𝜕𝑓𝑘

𝜕𝜃
⇒ 𝐇 ≈ ∇𝜃𝐿∇𝜃𝐿

⊤

⇒Outer product of the gradient of loss, approximates Hessian.

25

3. Efficient computation and storageRecursive approximation of DVEmb

• Using approximation of Hessian 𝐇𝑡 ≈ σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡, 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤

• DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

= 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝑰 − 𝜂𝑡𝑠+1𝐇𝑡𝑠+1 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

≈ 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝑰 − 𝜂𝑡𝑠+1σ𝓏∈ℬ𝑡𝑠+1

∇ℓ 𝜃𝑡𝑠+1, 𝓏 ∇ℓ 𝜃𝑡𝑠+1, 𝓏
⊤

∇ℓ 𝜃𝑡𝑠 , 𝓏
∗

= 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ − 𝜂𝑡𝒔 σ𝓏∈ℬ𝑡𝑠+1
𝜂𝑡𝒔+1 ς𝑘=𝑡𝑠+2

𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠+1, 𝓏 ∇ℓ 𝜃𝑡𝑠+1, 𝓏
⊤
∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

= 𝜂𝑡𝑠 ς𝑘=𝑡𝑠+2
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ − 𝜂𝑡𝒔 σ𝓏∈ℬ𝑡𝑠+1
∇ℓ 𝜃𝑡𝑠+1, 𝓏

⊤
∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ DVEmb 𝑡𝑠+1 𝓏

= …

= 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔 σ𝑘=𝑡𝑠+1

𝑇−1 σ𝓏∈ℬ𝑘
∇ℓ 𝜃𝑘, 𝓏

⊤∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ DVEmb 𝑘 𝓏

26

3. Efficient computation and storageRecursive approximation of DVEmb

• DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔 σ𝑡=𝑡𝑠+1

𝑇−1 σ𝓏∈ℬ𝑡
∇ℓ 𝜃𝑡 , 𝓏

⊤∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ DVEmb 𝑡 𝓏

• This provides crucial insight
◦ Gradient similarity term ∇ℓ 𝜃𝑡, 𝓏

⊤∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ increases when 𝓏 and 𝓏∗

are similar.
⇒The more similar data point to 𝓏∗ appears, the more 𝓏∗’s influence

decreases.

• Plus, this equation suggests the possibility of a back-propagation
algorithm for computing data value embeddings.
(only using gradients)

27

3. Efficient computation and storageStep1: Storing gradient at each iteration
• During training, we need to store the per-sample gradient for each data

point in the training batch.

• There are two challenges
1. Storage

• 𝑝: # of model parameters, 𝑇: number of iteration, 𝐵: batch size
• Requireing 𝒪 𝑇𝐵𝑝 disk space

2. Efficiency
• Computing per-sample gradients need to separate

backpropagation for each 𝓏 ∈ ℬ𝑡
⇒Increasing computational cost by a factor of 𝐵

28

3. Efficient computation and storageStep1: Storing gradient at each iteration
• Gradient decomposition technique [1]

◦ Illustrate this technique with a simple linear layer
where the output is 𝐬 = 𝐚𝐖

◦ 𝐖 ∈ ℝ𝑑1×𝑑2 : weight matrix, 𝐚 = 𝐚 1 , … , 𝐚 𝐵 ⊤
∈ ℝ𝐵×𝑑1 : input,

𝒔 = 𝒔 1 , … , 𝒔 𝐵 ⊤
∈ ℝ𝐵×𝑑2 : pre-activation tensor.

◦ Since we can express the gradient of an individual loss ℓ 𝑖 ≔ ℓ 𝜃, 𝓏𝑖
with respect to 𝐖 as
𝜕ℓ 𝑖

𝜕𝐖
=

𝜕ℓ 𝑖

𝜕𝒔 𝑖 ⊗
𝜕𝒔 𝑖

𝜕𝐖
=

𝜕ℓ 𝑖

𝜕𝒔 𝑖 ⊗𝐚 𝑖 =
𝜕ℓ

𝜕𝒔 𝑖 ⊗𝐚 𝑖

ℓ ≔ σ𝑗=1
𝐵 ℓ 𝑗 ,⊗:𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 , ∵ 𝐬 = 𝐚𝐖 ∵ 𝑗 ≠ 𝑖 𝑡ℎ𝑒𝑛

𝜕ℓ 𝑗

𝜕𝒔 𝑖 = 0

[1] Wang, Jiachen T., et al. "Data shapley in one training run." arXiv preprint arXiv:2406.11011 (2024).

29

3. Efficient computation and storageStep1: Storing gradient at each iteration
• Gradient decomposition technique

◦ Now, for each data point 𝓏𝑖

• Rather than storing full gradient vectors 𝜕ℓ
𝑖

𝜕𝐖
∈ ℝ𝑑1×𝑑2 ,

• Instead store the smaller pair 𝐚 𝑖 ,
𝜕ℓ

𝜕𝒔 𝑖 ∈ ℝ𝑑1+𝑑2

⇒Reduces memory requirements from 𝒪 𝑝𝑇𝐵 to 𝒪 𝑝𝑇𝐵 .

⇒ 𝜕ℓ

𝜕𝒔 𝑖 is readily available during the backpropagation pass.

30

3. Efficient computation and storageStep1: Storing gradient at each iteration
• Random projection

◦ Further compress the stored gradient information.
◦ Two projection matrices 𝐏𝐚 ∈ ℝ𝑟×𝑑1 and 𝐏𝐬 ∈ ℝ𝑟×𝑑2

to project 𝐚 and 𝜕ℓ
𝜕𝒔

to lower dimensional space ℝ𝑟

◦ Because kronecker product have property like
𝐴⊗𝐵 𝑎⊗ 𝑏 = 𝐴𝑎 ⊗ (𝐵𝑏),

◦ Projected gradient can then be reconstructed directly from the
projected activations and output derivatives.

𝐏𝐚 ⊗𝐏𝐬 𝐚⊗
𝜕ℓ

𝜕𝐬
= 𝐏𝐚𝐚 ⊗ 𝐏𝐬

𝜕ℓ

𝜕𝐬

◦ This approach reduces storage needs to 𝒪 𝑇𝐵 ෤𝑝 where ෤𝑝: projected
dimension, while still capturing essential gradient geometric
information.

31

3. Efficient computation and storageStep2: Backpropagating DVEmb

• Let DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ 𝐌(𝑡𝑠),
Where 𝐌 ts ≔ σ𝑡=𝑡𝑠+1

𝑇−1 σ𝓏∈ℬ𝑡
DVEmb 𝑡 𝓏 ∇ℓ 𝜃𝑡, 𝓏

⊤

• Since data value embedding is same as training gradient for the last
iteration, initialize 𝐌 𝑇−1 = 𝟎.

• And for 𝑡𝑠 = 𝑇 − 1,… , 0, DVEmb 𝑡𝑠 𝓏∗ is recursively computed.
1. For each 𝓏∗ ∈ ℬ𝑡𝑠, DVEmb

𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏
∗ − 𝜂𝑡𝒔∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ 𝐌(𝑡𝑠)

2. Update 𝐌 after computing all embedding for the current iteration.
𝑀(𝑡𝑠−1) = 𝑀(𝑡𝑠) +σ𝓏∗∈ℬ𝑡𝑠

DVEmb 𝑡𝑠 𝓏∗ ∇ℓ 𝜃𝑘, 𝓏
∗ ⊤

• Now we can calculate DVEmb 𝑡 𝓏 for all data on specific iteration.

• Plus, author argues that if we assume layer wise independence, we can
compute DVEmb 𝑡 𝓏 on per layer basis.

32

3. Efficient computation and storageStep2: Backpropagating DVEmb

33

3. Efficient computation and storageStep2: Backpropagating DVEmb
• Complexity of computation & memory

◦ Matmuls and additions in updating DVEmb 𝑡 𝓏 and 𝐌(𝑡𝑠)

⇒𝒪 𝐵𝑇 ෤𝑝2 flops
◦ If we compute DVEmb 𝑡 𝓏 and 𝐌(𝑡𝑠) per layer under assumption,

⇒𝐿𝒪 𝐵𝑇 ෤𝑝/𝐿 2 = 𝒪(𝐵𝑇 ෤𝑝2/𝐿) flops
◦ For memory, 𝐌 𝑡𝑠 requires 𝒪 𝐵 ෤𝑝2/𝐿2

◦ Regular model training needs 𝒪(𝐵𝑇𝑝) flops and 𝒪(𝑝) memory.

34

3. Efficient computation and storageStep2: Backpropagating DVEmb
• Complexity of storage

◦ Each DVEmb 𝑡 𝓏 has dimension 𝒪(෤𝑝), resulting in a total storage
requirement of 𝒪 𝐵𝑇 ෤𝑝

◦ It can be large, but author argue that disk storage is relatively
inexpensive in modern computing environments.

35

3. Efficient computation and storageInfluence checkpointing
• Backpropagation algorithm (step2) has runtime complexity of 𝒪 𝑇 ,

as it sequentially computes DVEmb 𝑡 for 𝑡𝑠 = 𝑇 − 1,… , 0

◦ This can still be costly for long training periods.
⇒Can’t we Parallelize?

• We pick 𝐾 evenly spaced training steps 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾 = 𝑇

• Extended data value embedding notation DVEmb 𝑡𝑠→𝑡ℓ 𝓏∗ as the
data value embedding of 𝓏∗ ∈ ℬ𝑡𝑠 for the intermediate checkpoint 𝜃𝑡ℓ.

◦ Note. DVEmb 𝑡𝑠 = DVEmb 𝑡𝑠→𝑇

36

3. Efficient computation and storageInfluence checkpointing

• Letting 𝐊 𝑡𝑎→𝑡𝑏 ≔ ς𝑡=𝑡𝑎

𝑡𝑏−1 𝑰 − 𝜂𝑡𝐇𝑡 ,

DVEmb 𝑡𝑠→𝑇 can be computed from DVEmb 𝑡𝑠→𝑡𝑙 as follows
⇒DVEmb 𝑡𝑠→𝑇 𝓏∗ = DVEmb 𝑡𝑠→𝑡𝑙 𝓏∗ ⊤𝐊 𝑡𝑙→𝑇

∵ DVEmb 𝑡𝑠→𝑇 = ς𝑘=𝑡𝑠+1
𝑇−1 𝑰 − 𝜂𝑘𝐇𝑘 𝜂𝑡𝑠∇ℓ 𝜃𝑡𝑠 , 𝓏

∗

• And we have 𝐊(𝑡ℓ→𝑇) = ςℓ=ℓ0+1
𝐾 𝐊 𝑡ℓ−1→𝑡ℓ that allows to compute

DVEmb 𝑡𝑠→𝑇

• Plus, using this, if the intermediate checkpoints 𝜃𝑡1 , … , 𝜃𝑡𝐾−1 was saved,
we can analyze how the influence changes on different intermediate
checkpoints.

37

3. Efficient computation and storageInfluence checkpointing

1. Introduction

2. Data value embedding

3. Efficient computation and storage

4. Experiment

5. Conclusion and Limitations

38

Content

39

4. ExperimentFidelty evaluation
• Does it really accurate? How accurate is it?

• Computing ground truth of LOO requires retraining the model multiple
times.

⇒Use MNIST dataset using a small MLP trained with standard SGD

• Two settings
1. Single epoch removal

• Data point is excluded from training for single epoch.
• Here, data point removed from the last epoch.

2. All epoch removal
• Data point is excluded in all epochs.

40

4. ExperimentFidelty evaluation
• Spearman correlation between ground-truth LOO when the MLP is trained

for 3 epochs
◦ (a) the data value embedding, (b) the influence function for single

epoch removal.
◦ (c), (d) all epoch removal.

• Shows that data value embedding has a high Spearman correlation
with ground truth LOO.

41

4. ExperimentComputational efficiency
• Storage, memory, computational efficiency

◦ Data value embedding vs LoGRA
(author saids that the LoGRA is most efficient influence function)

◦ LoGRA also uses random projection and stores the projected Hessian
adjusted gradient 𝐻𝑇

−1∇ℓ 𝜃𝑇, 𝓏
∗ , influence function can be computed

via dot-product with test data gradient.
◦ Computing data influence for Pytha-410M trained on 1% of the Pile

dataset.

42

4. ExperimentComputational efficiency
• Storage, memory, computational efficiency

• LoGRA requires recomputing gradients for all training data on the final
model 𝜃𝑇, which is computationally same as one epoch of model training.

• Data value embedding operates only on projected vectors.
⇒63.6GB vs 0.84GB

43

4. ExperimentAnalyzing training dynamics
• Conducted with Pytha-410M trained on 1% of the Pile dataset.

• Can categorize in 3 distinct regimes
1. High impact warmup phase

• High data influence score
2. Low impact basin

• Low data influence score
3. Gradual ascending

• The later a data point participates
in the training, the higher its influence score becomes.

• Can find some intuition.

44

4. ExperimentAnalyzing training dynamics
1. Parameter initialization and warmup training are important for final

model performance.
◦ In very early stage of training, the gradient norms are large.

• Significant parameter updates
◦ Data points from the High-impact Warmup Phase are maintaining

substantial influence throughout the training process, even as their
immediate impact diminishes over time.

45

4. ExperimentAnalyzing training dynamics
2. Influence saturation from future data

◦ Training progress into a smoother loss regime, the gradient norms
become relatively stable and decrease slowly.

◦ Note that a data point’s influence score decreases the most when
future data points are similar to it
DVEmb 𝑡𝑠 𝓏∗ = 𝜂𝑡𝑠 ∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ − 𝜂𝑡𝒔 σ𝑡=𝑡𝑠+1
𝑇−1 σ𝓏∈ℬ𝑡

∇ℓ 𝜃𝑡, 𝓏
⊤∇ℓ 𝜃𝑡𝑠 , 𝓏

∗ DVEmb 𝑡 𝓏

46

4. ExperimentAnalyzing training dynamics
• How does it related to data selection strategies?

◦ Following observation, data selection is most critical during the very
early and later stages of training.

• Train Pythia-410M on Pile with different online data selection strategies.

• Figure shows that performing data selection only in first 2000 iteration
and after 20000 iterations closely matches the performance when data
selection is performed in all iterations.

47

4. ExperimentQualitative evaluation

• What is the most valuable data points with a test data point 𝓏 𝑣𝑎𝑙

identified by data value embedding?
◦ Setting 𝓏 𝑣𝑎𝑙 as identical to one of the training data points.

⇒Making most similar data point “self-influence”
(should be highest among all training points)

• Training GPT-2 on Wikitext-103 over three epochs,
where the test data is about “military video game”

48

4. ExperimentQualitative evaluation

1. Introduction

2. Data value embedding

3. Efficient computation and storage

4. Experiment

5. Conclusion and Limitations

49

Content

50

5. Conclusion and LimitationsConclusion and Limitations
• Introduced data value embedding

◦ No need to retrain the model.
◦ Efficient & Accurate than influence function using approximation.
◦ Capturing temporal dynamics of training.

• Limitations
◦ Tailored for SGD.
◦ Tailored for cross entropy loss.
◦ Doesn’t think about I/O complexity.

Thank you

hyunwoojung@postech.ac.kr

mailto:hyunwoojung@postech.ac.kr

Taylor expansion

• Approximate a function to polinomial near specific point with function
value and derivatives.

𝑓 𝑥 = ෍

𝑛=0

∞
𝑓 𝑛 𝑎

𝑛!
𝑥 − 𝑎 𝑛

• First order Taylor expansion

◦ 𝑓 𝑥 ≈ 𝑓 𝑎 +
𝑓′ 𝑎

1!
(𝑥 − 𝑎)

52

Appendix

Spearman correlation

• Evaluating monotonic relationship.
◦ If one variable increase then other variable increases.
◦ If one variable increase then other variable decreases.

• Use rank to calculate correlation.

◦ 𝜌 = 1 −
6σ𝑑𝑖

2

𝑛(𝑛2−1)

◦ Where 𝑑𝑖 = 𝑟𝑎𝑛𝑘 𝑥𝑖 − 𝑟𝑎𝑛𝑘(𝑦𝑖)

53

Appendix

	슬라이드 1: Capturing the Temporal Dependence of Training Data Influence
	슬라이드 2: Content
	슬라이드 3: Content
	슬라이드 4: Data influence estimation
	슬라이드 5: Influence function
	슬라이드 6: Data shapley
	슬라이드 7: Leave-one-out influence
	슬라이드 8: Data influence estimation
	슬라이드 9: Data influence estimation
	슬라이드 10: Data influence estimation
	슬라이드 11: Content
	슬라이드 12: Trajecctory-specific LOO
	슬라이드 13: Trajecctory-specific LOO
	슬라이드 14: Data value embedding
	슬라이드 15: Data value embedding
	슬라이드 16: Data value embedding
	슬라이드 17: Data value embedding
	슬라이드 18: Data value embedding
	슬라이드 19: Data value embedding
	슬라이드 20: Content
	슬라이드 21: Efficient computation and storage
	슬라이드 22: Recursive approximation of DVEmb
	슬라이드 23: Recursive approximation of DVEmb
	슬라이드 24: Recursive approximation of DVEmb
	슬라이드 25: Recursive approximation of DVEmb
	슬라이드 26: Recursive approximation of DVEmb
	슬라이드 27: Step1: Storing gradient at each iteration
	슬라이드 28: Step1: Storing gradient at each iteration
	슬라이드 29: Step1: Storing gradient at each iteration
	슬라이드 30: Step1: Storing gradient at each iteration
	슬라이드 31: Step2: Backpropagating DVEmb
	슬라이드 32: Step2: Backpropagating DVEmb
	슬라이드 33: Step2: Backpropagating DVEmb
	슬라이드 34: Step2: Backpropagating DVEmb
	슬라이드 35: Influence checkpointing
	슬라이드 36: Influence checkpointing
	슬라이드 37: Influence checkpointing
	슬라이드 38: Content
	슬라이드 39: Fidelty evaluation
	슬라이드 40: Fidelty evaluation
	슬라이드 41: Computational efficiency
	슬라이드 42: Computational efficiency
	슬라이드 43: Analyzing training dynamics
	슬라이드 44: Analyzing training dynamics
	슬라이드 45: Analyzing training dynamics
	슬라이드 46: Analyzing training dynamics
	슬라이드 47: Qualitative evaluation
	슬라이드 48: Qualitative evaluation
	슬라이드 49: Content
	슬라이드 50: Conclusion and Limitations
	슬라이드 51: Thank you
	슬라이드 52: Taylor expansion
	슬라이드 53: Spearman correlation

