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1. Introduction



Data influence estimation | Introductivon

e Data influence estimation?

o Aims to provide insights into the impact of specific data points
on the model’s predictive bahaviors.

- How would the model’'s behavior change if we removed
a specific training data point?
 Why?

o Model transparency
=>How it works?

- Model accountability
= Can we believe model?

o Significant role in addressing Al copyright debate
=>Who made this model?



Influence funCtion 1. Introductiuon

How small difference on training data influences test loss?

Influence on test loss
o IF(z;) = —VQ'B(H,Z(val))TH_1Vg£(9,Zi)
where H = % N [ V52(0, z;) is Hessian of total loss,
Vof(0,z;): gradient of loss regard to data point z

Huge computation on Hessian inverse

Neglects training procedure

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning. PMLR, 2017.



Data Shapley 1. Introductiuon

« Check data point’s marginal contribution on final model.
SI'(IN|—[S[—1)! .
© $i(0) = Tsem o (0 (S U (i) - ()
o N: all dataset, S: subsets doesn't have i, v(S): score only with S,
(S U{i}) —v(S): how much score increase with i

 For all combinations, calculate average contribution when i is included.
> E.g.)Want to check C's contribution on data set {4, B, C}
« Make all combinations without C = @, {A},{B}, {A, B}
 Put Cin that combination = {C},{A4,C},{B,C},{A, B, C}
« And compare the score to calculate marginal contribution.

« Considering and computing all combination is hard.

Ghorbani, Amirata, and James Zou. "Data shapley: Equitable valuation of data for machine learning." International conference on machine learning. PMLR, 2019.
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Leave-one-out influence

* Leave-one-out influence (LOO)

> The model's loss change on a validation data z b

1. Introductiuon

when the training data point z* is removed from the training set D
o As formula (A is learning algorithm),

o E.g) A: Linear Regression

With Original data

@ Data Points

® Prediction Point

® True validation Value
— Regression Line

20 1
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Leave-One-Out

@ Data Points
® Prediction Point
® True validation Value
removed Point
— Regression Line 0

"

LOO(z%; 27D = £(A(D), 2"WV) — £(A(D\{z*}), zV)

LOO(z*; (VD)
— (16 — 18.2) — (16 — 12.77)
= —5.43



Data influence estimation | Introductivon

 Traditional literature usually assumes that learning altorithm A
Is permutation invariant.

o The order of data point does not affect the outcome.
o This assumption holds for strongly convex loss functions.

» Does Mordern training algorithms are permutation invariant?
o Nol!
=Non-convex nature of neural networks
= Multi-stage training curricula



Data influence estimation | Introductivon

 Additionally, LLM(Large Language Models) often undergo just one training
epoch, meaning each data point is encdountered only once during training.

» For that reason, data order make influence of data points!

« S0, how can we calculate influence of data on non-convex, sequence
dependent scenario?

o Trajectory-specific LOO
= Characterizes the loss change resulting from removing a data point
from the specific iteration.



Data influence estimation | Introductivon

« But, Computationally challenging evaluating trajectory-specific LOO...

model

val loss"

‘.

[ 2N N J
} 3 mini batch — Without z*
on iter 2
— Without z*
on iter1
Retrain Retrain again And again..
Calculate Calculate
TSLOO () TSLOO®@

« To avoid this, author introduced data value embedding = approximation "
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2. Data value embedding
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TrajeCCtO ry- speCific LOO 2. Data value embedding

* Originally introduced as ‘SGD-influence’ [1]

 In standard SGD, parameters are updated as
° Ot+1 = 0 — ¢ ZZEBt Ve(6;, z)
o 1;: learning rate

* |In this scenario, parameters are updated as
© 0t+1 — Ht — Nt ZZEBt Vf(@t, Z) fOI’ t = O, cee tS —1
° Of 11 = Or, — Ny Digen, \(z+} VE (0, 7) for iteration ¢5 which z™ is removed
© 0{-_'_1 — Hlt — Nt ZZEBt V’E(Qlt, Z) fOI’ t = tS + 1, ,T —1

=t just says that we use standard SGD for update,
simply removing specific datapoint on specific iteration.

12

[1] Hara, Satoshi, Atsushi Nitanda, and Takanori Maehara. "Data cleansing for models trained with SGD." Advances in Neural Information Processing Systems 32 (2019)



TrajeCCtO ry- speCific LOO 2. Data value embedding

« TSLOO®S) (3%; 24 = £(0},3"4) — £(67, YY)
o z*: data point, t,: iteration, z(V2Y: validation point
o Br: final model in original SGD, 87: final model in this scenario

=Means change in the validation loss £(-, z(?4)) when the data point
3" € B;_is removed from iteration ;.

« TSLOO depends on the “timing” that data is used.

13



Data value em bedding 2. Data value embedding

* Like said previous, TSLOQO's computation is significant challenge.
= Data value embedding!

» We will establish approximation for
TSLOOW) (3% z"%) = £(07,3"%) — £(07, z¥%)

* First, define interpolation between 6, 6
° Ox+1 = Ok — Nk Lzem, V¥ (6, 2): before ¢
° Ot +1(8) = 0, — 1y, ZzeBtS\{z*} Vf(@ts,z) — ¢, (1 — e)Vf(@ts,Z*): te
° Or41(€) = O (&) — My 2ges, VE(Oi(€), 2): after ¢
~07(0) =07, 6;:(1) =067

14



Data value embedding

2. Data value embedding

* Then apply first-order Taylor expansion around & = 0,
5 f(QrT,Z(vaZ)) _ f(QT’Z(val)) ~ W(QT (val))T aeT(e) .
 Proof.
> Let £(07(e), z2VW) = f(¢)
(&) ~ f(0) + L2

0 X (e—0) (near e =0)

fW = FO+ZL2 x -0

£=0
, _ ar(e)
SIORSIOES= 1

=>'3(071(1)"8(12611)) _ f(@T(O),Z(vaD) ~ aag

15



Data value embedding

* Then apply first-order Taylor expansion around € = 0,
o £(67, 50 — £(87, 50 ~ Vo(By, 5va0) " 201

* Proof. (cont.)

=0

o £(0r(1),50%) = £(6:(0), 20 = L £(6:(e), 5*0)| _
c=

> And since ¢ is not directly related to £(61(e), ),
we need to apply the chain rule.

° —3(9 (e), z(”al))| f(HT(s) Z(val))T a6’T(8)

~ 26 (s)
T 69T(8) (... 6'1" — QT(O))
e=0

T 007(e)
oe

e=0

> Simply, V£(67, z@)

éf(@}, Z(val)) _ f(HT» Z(val)) ~ V{(QT’ Z(val))

=0

2. Data value embedding

16



Data value em bedding 2. Data value embedding

06 . e . .
. aTg(g) satisfies a recursive relation!
=0

o Parameter update using SGD interpolation
* Ok+1 = Ok — Nk 2zen, V¥ (O, 2): before &g
* Or41(8) = O, — Nty e, \(2) Ve(6,.,2) — 0, (1 —&)Ve(6,,3"): ts
* Or1(e) = O (e) — i ZzeBk VE(0y(e), z): after ¢,

o Derivative is O before t, since € not occurred yet.

o Calculate partial derivative regard to ¢ after ¢,

0054+1(e) 060k (€) 00y (e)
. kggl = ;8 —UkzzeBkvzf(ek(E),Z) ;’8

:696"6(8) (I — nka(s)) (Where H, (¢) = ZzeBk & 3(91((8);2))

17



Data value em bedding 2. Data value embedding

06 . e . .
. aTg(g) satisfies a recursive relation!
=0

o Since SGD interpolation update on iter ¢, is different, get partial
derivative separately.

° 9t5+1(€) = Hts — Nt ZzeBtS\{z*} Vf(ets;z) — 771:5(1 — €)v£(et5;z*)
o Calculate partial derivative regard to ¢

L 0es1(e) _
o = =1, V¢(6;.,5")
80, 72| = [Tzt s (1 = meHic ()], V(01,5

~[[TE= (1 nkH,a]nt ve(6,,5")
(H,(0) = Hj, since € = 0 means z* included)

18



Data value em bedding 2. Data value embedding

- Finally, the approximation of TSLOO®s)(z*; z%) is
o f(@},z(val)) . f(@ 'Z(val))
~ V(07,3 (val))T 59T(€>

( first order Talyor approximation)
=0

=1, Ve(07,570)" [Hk;%sﬂa — meH)VE(6,, 37)

* Next, extract the test-data-independent components and define
"data value embedding” for a training point z* € B,

° DVEmb(tS)(Z ) = Nt [H =t +1(1 Uka)]Vf(Ht ) 2 )
o Of course, we can quickly determine training data z*'s influence by

+ V4(0,27)" DVEmb(9) (5*)

19
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EffiCient comPUtation and Storage 3. Efficient computation and storage

« Still, there are some problem...
o Computing data value embedding
* Need gradient per sample
* Need Hessian per step

o Storing data value embedding
» dim(DVEmb,(z*)) = dim(model)
« Hard to storing individual embeddings for each training data point.

« How to deal with it?

21



RecurSive apprOXimation Of DVEmb 3. Efficient computation and storage

« Use Generalized Gauss-Newton (GGN) for Hessian matrix H,,
° Hy = Xzep, VE(0:, 2) V(0 z)' (in context of cross-entropy loss)

* Proof.

o Assume that using cross entropy loss function with one-hot encoded
label

C
Ly, f)=— 2 y; log(f;)
=1

oy = [y1, V2, -, Vc] " is true label vector
f =1fu f2 -, fc]" is predicted probability vector

o —yC 9LIi_ s (_&%)__im .
VoL = )74 or a0 — 2i=1\"7.30) = 7. 20 (- onehot encoded label)

« yi, = 1forcorrectclass k, y; =0fori +k
22



RecurSive apprOXimation Of DVEmb 3. Efficient computation and storage

« Use Generalized Gauss-Newton (GGN) for Hessian matrix H,,
° Hy = Xzep, VE(0:, 2) V(0 z)' (in context of cross-entropy loss)

 Proof. (cont.)

. 0 (1 0fk\ _ 10fk(0fk 1 9°fy
H= V9L_ae( fkae)_szae(ae) fr 062

o we update parameter near the current parameter.
o Plus, f; is approximately linear in 8 near the current parameter values.

2
o Thus, —f— Py f" can be removed. ((linear function)" = 0)
k

23



RecurSive apprOXimation Of DVEmb 3. Efficient computation and storage

« Use Generalized Gauss-Newton (GGN) for Hessian matrix H,,
° Hy = Xzep, VE(0:, 2) V(0 z)' (in context of cross-entropy loss)

 Proof. (cont.)

. _ 1 0fg Ofr\ '
SOH"’ka a6 (ae)

o _ _ 10k ~ T
VQL = 20 = H = VQLVQL

= Quter product of the gradient of loss, approximates Hessian.

24



RecurSive apprOXimation Of DVEmb 3. Efficient computation and storage

* Using approximation of Hessian H; = . .5, V€(6;, 2)V£(0;, z)"

» DVEmb(“9(5") = ¢, [[Ti=t,+1( — mH)]V€(6y,, 57)

= Nt [H?Q;%SH(I — Uka)](I — nt5+1HtS+1)v£(9tS' Z*)

< e, [TEhwol = 0] (I = Nesi1 Daem, ,, V(Oty11,5)V8(0c10,5) ) V2(6r,, 57)

= Mt [Hk ts 2 — Uka)]Vf(Ht ,Z*) — Nty ZzEBt " (nt +1[ k=t +2(I Uka)]V{)(Qt +1» Z)) V{(Qt +1» Z) V{)(et Z )

= ¢, [Tk=te2 = mcH)|VE(6r,, 2%) — 116, X 2€Be 41 (w(et vy z) ve(6,,z )) DVEmb st ()

=1, V(01,,37) = e, Tkl 11 (Zoen, (V401 2 TVE(0,,,27) ) DVEMD®)(2) )

25



RecurSive apprOXimation Of DVEmb 3. Efficient computation and storage

* DVEmb"*)(5) = 1, V¢(0,,, 5*) — e, Xi=ts41 (ZZeBt (Vf(et;Z)TVf(QtS'Z*)) DVEmb(®)(z) )

* This provides crucial insight
> Gradient similarity term V¢(6,,z)"V#(6, ,z*) increases when z and z*
are similar.

= The more similar data point to z* appears, the more z*'s influence
decreases.

* Plus, this equation suggests the possibility of a back-propagation
algorithm for computing data value embeddings.
(only using gradients)

26



Step1: Storing gradient at each iteration. ...

 During training, we need to store the per-sample gradient for each data
point in the training batch.

* There are two challenges
1. Storage
« p: # of model parameters, T: number of iteration, B: batch size
« Requireing O(TBp) disk space
2. Efficiency

« Computing per-sample gradients need to separate
backpropagation for each z € B,

=Increasing computational cost by a factor of B

27



Step1: Storing gradient at each iteration. ...

» Gradient decomposition technique [1]

o |llustrate this technique with a simple linear layer
where the outputis s = aW

> W € R%1*42: weight matrix, a = (a', ...,a(B))T € RBEX41: jnput,
s=(s®,..,s®)" € RE*d: pre-activation tensor.

o Since we can express the gradient of an individual loss #& = £(9, z;)
with respect to W as

) ) ) ) . .
d¢ _ d¢ . ds _ d¢ . a(l) _ a{ ® a(l)
oW 9s® = aw  a9s(® 9s(® |
: . . a¢U)
(f = Z?zl ?U) ®: Kronecker product), ( s=aW ~ j #ithen 0 = 0)
a1b’] (e B apB -+ a,B|  a- H b— m ?—“1” [;P—“[*r %“u’r.l
asb anB  anB .-+ a2B ¥oay) ¥gay) - Mgay)
a®@b=| | AB=| . . . - o
. . . . . 1x3 3 : X , | “r.- 0
_ﬁ-mb_ _U-;I'HI.B a‘mEB e U*rrmB_ a@b= |E E E] = [E] :F;i_l_a‘llJ :;Taﬂ ;Tﬂ:-!-ar}‘.' 28

[1] Wang, Jiachen T., et al. "Data shapley in one training run." arXiv preprint arXiv:2406.11011 (2024).



Step1: Storing gradient at each iteration. ...

» Gradient decomposition technique

- Now, for each data point z;
YO,
oW

« Instead store the smaller pair (a(i)'aifi)) € R41+dz

=Reduces memory requirements from 0(pTB) to O(\/pTB).

d,xd
€ R%17%2

« Rather than storing full gradient vectors

ot
=350

Is readily available during the backpropagation pass.

29



Step1: Storing gradient at each iteration. ...

« Random projection
o Further compress the stored gradient information.
> Two projection matrices P, € R"*41 and P, € R"*¢2

: l4 : :
to project a and P to lower dimensional space R"

o Because kronecker product have property like
(A® B)(a® b) = (Aa) ® (Bb),
o Projected gradient can then be reconstructed directly from the

projected activations and output derivatives.
(P, ® Py) (a® %) = (P,a) ® (P, 5)
ds ds
o This approach reduces storage needs to O(TBp) where p: projected
dimension, while still capturing essential gradient geometric

information.
30



Step2: Backpropagating DVEmb

» Let DVEmb()(3*) = n, V£(0,,3") — 1, V€(6,,, 2" )ME),
Where M() := 312! (3,5, (DVEmb® ()V£(6,, 2)T))
 Since data value embedding is same as training gradient for the last
iteration, initialize M(T~1 = 0.
« Andfort, =T —1,...,0, DVEmb{s)(z*) is recursively computed.
1. Foreach z* € B, , DVEmb\®)(z*) = n, V£(6,,,%*) — 1, V(0 5" )MES)
2. Update M after computing all embedding for the current iteration.
M@= = pmts) 4 Y zven,, DVEmb{s) (z*)V£(6y, )T
« Now we can calculate DVEmb® (z) for all data on specific iteration.

 Plus, author argues that if we assume layer wise independence, we can
compute DVEmb ™ (z) on per layer basis.

31



Step2: Backpropagating DVEmb

Algorithm 1 Backpropagation for computing data value embedding from the final checkpoint

Require: Training steps 7', learning rates {n;}, ', training data gradients {V£(0;, ,2:’}]-3'_”136,3E

1: // Initialization
2: MUIT—D 0.

3:

4: // Recursion steps
5: fort =T — 1 down to 0 do
6: for z € B; do
7
8

DVEmb'*) (2) « n,VE(0,, z) — n,MIVE(D,, 2)
: if £ > () then
9: MU - M®) + 3 DVEmb(®) (2)VE(0,,2) T

10: return {DvEI'ﬁbH}(E)]'?—u{-EEHL

32



Step2: Backpropagating DVEmb

« Complexity of computation & memory
> Matmuls and additions in updating DVEmb® (z) and M(s)
=0 (BTp?) flops
o If we compute DVEmb® (z) and M) per layer under assumption,
=LO(BT(5/L)?) = O(BTH2/L) flops
o For memory, M{s) requires O(Bp?/L?)

o Regular model training needs O(BTp) flops and O(p) memory.

33



Step2: Backpropagating DVEmb

« Complexity of storage

> Each DVEmb®(z) has dimension O (p), resulting in a total storage
requirement of O(BTp)

o |t can be large, but author argue that disk storage is relatively
inexpensive in modern computing environments.

34



I nfl u e n ce c h ec kpo i n ti n g 3. Efficient computation and storage

« Backpropagation algorithm (step2) has runtime complexity of O(T),
as it sequentially computes DVEmb(® fort, =T — 1, ...,0

o This can still be costly for long training periods.
= Can't we Parallelize?

 We pick K evenly spaced training steps 0 < t; <t, < <tpg =T

« Extended data value embedding notation DVEmb (s>t (z*) as the
data value embedding of z* € B,_for the intermediate checkpoint 6,,.

> Note. DVEmb(ts) = DVEmb(¢s>T)

35



I nfl u e n ce c h ec kpo i n ti n g 3. Efficient computation and storage

- Letting K=t = []2°(1 —ncHy),

DVEmb¢s~T) can be computed from DVEmb (s~ as follows
=DVEmb&=T)(z*) = DVEmb &=t () TK G~
( DVEmb =T = [[TRZE 4 1 (T — mHy) |ne V(6. z*))

» And we have K(¢>T) =TT§_, ., K(®-17%) that allows to compute
DVEmb (¢s>7)

* Plus, using this, if the intermediate checkpoints 6, , ..., 0., . was saved,

we can analyze how the influence changes on different intermediate
checkpoints.

36



I nfl u e n ce c h ec kpo i nti n g 3. Efficient computation and storage

Algorithm 2 Parallel Influence Checkpointing for Data Value Embedding

Require: Training steps 7", number of checkpoints K, learning rates {m};‘l”l, loss gradients
{VE(B1,2)} e, Hessians {H, )L
Ensure: Data value embeddings {D“i.fE]:nb(t:'(zf:)};':I;UZEMBt
1: Select K evenly spaced checkpoints 0 =1y <1, <to < ... <tg =T
for / = 1to K do
Run BACKPROPAGATESEGMENT(%,_ 1, t4)

// Compute final embeddings
for / = 1to K do
forts =ty 1toty —1do
for z € B;, do
9: DVEmb(*) (2) +— DVEmb® ) (2)T [T, , KO 7%)

t T-1
:t;): return {DVEmb(*)(z) 10,268,
12: meCdUI'C BACKPROPAGATESEGMENT(%,, t3)
13: Initialize and M®*~1) as in the original algorithm
14: KO0
15: fort =1, — 1downtot, do

16: for z € B; do

17: DVEmb(* ’tb)(z) — 5. VE(0y, 2) — i, MBOVL(G,, 2)
18: if t > t, then

19: MED - MO 43 DVEmb %) (2)Ve(0;,2) T
20: K7t  KEHI20) (1 g H,)

21:  return {DVEmb( ") ()}t o K(tat)
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Fidelty evaluation 4 Experiment

* Does it really accurate? How accurate is it?
« Computing ground truth of LOO requires retraining the model multiple
times.
=>Use MNIST dataset using a small MLP trained with standard SGD

« Two settings
1. Single epoch removal
« Data point is excluded from training for single epoch.
» Here, data point removed from the last epoch.
2. All epoch removal
« Data point is excluded in all epochs.

39



Fidelty evaluation

4. Experiment

« Spearman correlation between ground-truth LOO when the MLP is trained

for 3 epochs

o (a) the data value embedding, (b) the influence function for single

epoch removal.

o (c), (d) all epoch removal.

Groundtruth vs Data Value Embedding
(Spearman Correlation: 0.747
p-value: 5.443e-20)
[

o ‘ y=x _ 0.00101
= \ . o
T 0.0005 g
2 . S 0.00051
: &
= 0.0000 B & "
: e :
s g
~ —0.00051 = i
= £ —0.0005
a ,

—-0.0010{ o , , ,

~0.00150.00100.0009.00000.0005

(a) Groundtruth LOO Score (b)

Groundtruth vs Influence Function
(Spearman Correlation: -0.061
p-value: 5.394e-01)

0.0000{ *

-0.001 0.000 0.001
Groundtruth LOO Score

Data Value Embedding

0.003

Groundtruth vs Data Value Embedding

(Spearman Correlation: 0.736
p-value: 3.529e-19)

- y=x

0.002 1

0.001

0.000

—0.0011

©)

~0.002 0.000  0.002
Groundtruth LOO Score

Shows that data value embedding has a high Spearman correlation
with ground truth LOO.

Groundtruth vs Influence Function
(Spearman Correlation: -0.036
p-value: 7.120e¢-01)

0.010—" y=x

8

S 0.0051

z

& 0.000- R 4

o) 7

=

o

5 —0.0051

; (d) —0.005 0.000 0.005 0.010
Groundtruth LOO Score
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Computational efficiency 4. Experiment

« Storage, memory, computational efficiency

o Data value embedding vs LOGRA
(author saids that the LoGRA is most efficient influence function)

o LOGRA also uses random projection and stores the projected Hessian
adjusted gradient H71v#(67,z*), influence function can be computed
via dot-product with test data gradient.

o Computing data influence for Pytha-410M trained on 1% of the Pile
dataset.

41



Computational efficiency 4. Experiment

« Storage, memory, computational efficiency

Storing H.;IVE (01, z*) / data value embedding Compute Influence (dot-product)

Storage Peak GPU Mem. Throughput Peak GPU Mem. Throughput
LoGRA 170GB 63.6GB 41.6 16.31GB 640
Data Value Embedding 171GB  64.6GB / 0.84GB* 667.52 16.31GB 640

Table 1: Memory and compute efficiency analysis for LOGRA (Choe et al., 2024) and data value
embedding. Throughput is measured as the number of data points per second for storing and influence
computation. The experiment is conducted on one A100 GPU with 80GB VRAM. The projection
dimension is set to 1024. *Since data value embedding technique contains two different steps in
storing relevant information for data attribution (storing gradient during training & compute and store
data value embedding after training), we include the peak GPU memory usage for both steps.

* LOGRA requires recomputing gradients for all training data on the final
model 8, which is computationally same as one epoch of model training.

« Data value embedding operates only on projected vectors.
=>63.6GB vs 0.84GB
42



Analyzing training dynamics 2. Experiment

« Conducted with Pytha-410M trained on 1% of the Pile dataset.

« Can categorize in 3 distinct regimes Data Influesice Scove o Dt Polats from Dfferent Troing Tevotions
1. High impact warmup phase o i i
 High data influence score
2. Low impact basin e e i
« Low data influence score . ;igh_rmpw
3. Gradual ascending e o0 0% DO%0
(a) Training Batch Idx

* The later a data point participates
in the training, the higher its influence score becomes.

e Can find some intuition.

43



Analyzing training dynamics 2. Experiment

1. Parameter initialization and warmup training are important for final
model performance.

o |In very early stage of training, the gradient norms are large.
« Significant parameter updates

o Data points from the High-impact Warmup Phase are maintaining
substantial influence throughout the training process, even as their
immediate impact diminishes over time.

Data Influence on Intermediate Checkpoints

Train Batch Idx
2x10° —— 1000-2000 15000-16000
—e— 5000-6000 20000-21000
10000-11000 25000-26000

100 =

High-Impact

Warmup
6 x 10'1- &radual
Ascending
Low-Impact
4 x 10‘1 - Basin

5000 10000 15000 20000 25000 30000 44
Training Steps

Influence Score



Analyzing training dynamics 2. Experiment

2. Influence saturation from future data

o Training progress into a smoother loss regime, the gradient norms
become relatively stable and decrease slowly.

o Note that a data point’s influence score decreases the most when
future data points are similar to it
(DVEmb®(2*) = n,, Ve(8e,,5") = e, Z122 11 (Zes, (V26 2)TVE(6,,2*) ) DVEMb©O(z) )

Data Influence on Intermediate Checkpoints
Train Batch Idx

2x10° —e— 1000-2000 15000-16000
—e— 5000-6000 20000-21000
g 10000-11000 25000-26000
A
Q)
§ 100-
- High-Impact
= Woringr
— 6 x 10'1, v\\\\‘\ Gradual
. Ascending
' Low-Impact
4x10°! | | | |  Basin
5000 10000 15000 20000 25000 30000 45

Training Steps



Analyzing training dynamics 2. Experiment

« How does it related to data selection strategies?

o Following observation, data selection is most critical during the very
early and later stages of training.

 Train Pythia-410M on Pile with different online data selection strategies.

 Figure shows that performing data selection only in first 2000 iteration
and after 20000 iterations closely matches the performance when data
selection is performed in all iterations.

Perplexity Reduction Compared to No Selection
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Qualitative evaluation 4. Experiment

« What is the most valuable data points with a test data point z(V!
identified by data value embedding?

o Setting z("® as identical to one of the training data points.

=Making most similar data point “self-influence”
(should be highest among all training points)

* Training GPT-2 on Wikitext-103 over three epochs,
where the test data is about "military video game”
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Qualitative evaluation

4. Experiment

Test Data (military video game), a repetition in training set

Released in january 2011 In Japan, it Is the third game In the Vakyria series, Employing the same fusion of tactical and real @-@ time camep!ay as iis predecessors, the story runs parallel to the first came and follows the * Nameless *, a
panal miltary unit serving the nation of Galla during the Second Europan wir who perform secret black operations and are pitted against the nperinl un't * Calamaty Raven *, The game began development in 2010, carrying over &
large portion of the work done on Valkyria Chronicles ||, Whie it retained the standard features of the «rics, it also underwent multiple adjustments, such as making the =1« more forgiving for series newcomers. ... A large team of
writers handled the script The oomo's opening theme was sung by May 'n. It met with positive sales in Japan, and was praised by both Japanese and w.ter crilics. Ater release, i received downloadable conlent, alang with an
expanded edition in November of that year. It was also adapled into manga and an original iceo animation ser o,

Data Value Embedding Influence Function

Epoch 1 Epoch 2 Epoch 3 : Epoch 3

war history

The rumor was interpreted by some Arkansans
as a call from the govemor to assemble 1o help

expel the federal roops from the arsenal. By
February 5, six miitia units, ... Governor
Rector vehemently denied ordering te troops 5 A 5
Most 1 assemble or ghing any order at all In test datd's repetition from 2+ test datd’s repetition from 3¢ fest data’s repetition
Valuabl connection with the troaps. Faced with the fact w M
e that the milltary had
armed between the civiian a1y and
federal (roops, Governor Rector was forced to
take control of the situation. On February 6, he
sent 8 formal demand for surender of the
arsenal o Captain Totlen.
Chess Game Chess Game Popular Music (irrelevant to test data)
Fischer piayed the Exchange Variation of the Fischer played the Exchange Variation of the
Ruy Lopez, a favorite line of his. Afer 17, Ruy Lopez, a favorie line of his. After 17, Carey's vocal style and singing abilty have
RéoB the name was equal ( Gipss ). Spassky Rfo the gamo was equal ( Gipsis ). Spassky sgnificanty  impacted  popular  and
defended weil, and afier a tactical furry in the defended well, and afler a tactical flurry in the contemporary music. As music critic G. Brown
endgame, ended up with the nominal endgame, ended up with the nominal from The Denver Post wrote, * For better or
nd advantage of an exira pawn in & rook ending advantage of an exira pawn in a rook ending 5 v worse, Marlah Carey's fve octave range and
2 known 1o be an easy book deaw. Although a Known 10 be an easy book draw. Although & test data’s repetition from 2 style have a
Valuable draw coukd have bean agreed after move 34, draw could have been agreed after move 34, epoch of pop singers. * According to Roling Stone, *
Spassky used his symbolic  material Spassky " wused his symbolic material Her mastery of mefisma, the flutlering srings
advantage for a Mo psychological torture advantage for a ite psychological torture *, of notes that decorate songs ke * Vision of
prolonging the game untl move 80 before prolonging the game unsl move 60 before love *, Inspired the entire American Idol vocal
agreeing 1o a draw. ... Another Richter - agreeing 1o a draw. ... Another Richter - school, for better or worse, and vinually every
Rauzer, after 13... Nxd2 the game was equal Rauzer, after 13.. Nxd2 the gamn was equal other female R & B singer since the Nineties. *
( Matanovit, Ugrinovi¢ ). { Matanovit, Ugrinovié ).
Strategy Video Game war history war history war history
Age of Empires Il is a real @@ lime strategy The rumor was interpreted by some Arkansans The rumor was inferpreted by some Arkansans In cpposition, the Soviet Union financialy
Videe o gaine deweloped by Microsoft as a call from the governor to assamble to as a cal from the govemor to assemble 1o help backed an estimated two motorised
0 Ensemble Studios and published expel the federal (roops from the arsenal. By expel the federal Iroops from the arsenal By of Cuban troops in a .. of the SADF
by Microsoft .« Sldios. ... version February 5, six militis units, ., February 5, six militin units, ., at the battle of Cuto Cuanavale ( the largest
gmm Mobie Rector vehemantly denled ordering the trocps Rector vehemantly denled ordening the trocps battie In Africa since Word war Il ). General
3rd on Aprl 28, 20( % assemble or giving any order at al n % assemble or ghing any order at al In Magnus Malan wrote In his memairs that this
Valuab) Age of Empires - and the sequel to Age connection with the oo+, Faced with the fact connection with the troo0s, Faced with the fact ‘campaign marked a great viciory for the SADF.
. 11 The Age o that the litary had assembled befieving ... that the militery had assembled befeving ... Neison Mandela ... This battie ded 1o ... SADF
\ of the Americas by armed conflict between the civilian 1y and armod conflict between the civilan oy and s frequently remained in southeen Angola
Sl o explore and develop federal iroops, Governor Rector was forced 1o federal (1o Governor Rector was forced to 10 intercept combatants on their way
the Colonial Age, which ke control of the situation. On February 6, he take control of the situation. On Febeuary 6, he south, forcing PLAN to move to bases far from
European Expansion (nfo the * New Worid * sant a formal demand for surendar of the sent & formal demand for sumender of the the Namibien . Most nsurgency
and unlodks early arsanal %o Captain Totten, arsenal to Captain Totien, operatians 100k ...

v

Figure 5: Visualization of (left) the evolution of the top-3 most valuable training data points identified
by data value embedding throughout 3 training epochs and (right) the top-3 most valuable training
data points identified by influence function. We use GPT-2 trained on Wikitext-103, with the test
point being a repetition of a training data point related to a military video game. The common words
between the test and training data are highlighted in -
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Content

5. Conclusion and Limitations
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COnCIUSiOn and Limitations 5. Conclusion and Limitations

* Introduced data value embedding
> No need to retrain the model.
o Efficient & Accurate than influence function using approximation.
o Capturing temporal dynamics of training.

 Limitations
o Tailored for SGD.
o Tailored for cross entropy loss.
o Doesn't think about I/O complexity.
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Thank you
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Taylor expansion Appendix

« Approximate a function to polinomial near specific point with function

value and derivatives.
(n)
FG) = z 0D (e~ ayn

 First order Taylor expansion

o fO0) ~ f(a) + 12
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Spearman correlation popendis

 Evaluating monotonic relationship.
o |f one variable increase then other variable increases.
o |f one variable increase then other variable decreases.

 Use rank to calculate correlation.
6yd?
n(n?-1)

- Where d; = rank(x;) — rank(y;)

op:l_
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