Parallelism - 2

EECE695D: Efficient ML Systems

Recap

- Last class.
 - Data parallelism
 - Model parallelism
 - Pipeline, Tensor, Expert
- Today. Advanced topics
 - Sequence parallelism
 - ZeRO, Gradient compression
 - Automated parallelism

Sequence parallelism

Motivation

- Training a transformer-based generative model
 - Want to generate high-dimensional data with an extremely long context
 - Example. High-resolution video generation
 - Spatio-temporal tokens as an input
- Problem. Not holdable on one device, even for a small batch

Basic idea

- Solution. Each GPU processes a fraction of input tokens
 - FFN. Easy, because tokens are handled separately anyways
 - MHSA. Requires additional communication

The case of MHSA

• Goal. Compute the output of each token:

$$\mathbf{o}_i = \sum_{i=1}^L \mathbf{s}_i \mathbf{v}_i$$

• S_i are the attention scores:

$$\mathbf{s}_i = \text{SoftMax}\left(\frac{1}{\sqrt{d}}[\mathbf{q}_i^{\mathsf{T}}\mathbf{k}_1, \mathbf{q}_i^{\mathsf{T}}\mathbf{k}_2, ..., \mathbf{q}_i^{\mathsf{T}}\mathbf{k}_L]\right)$$

- \mathbf{q}_i , \mathbf{k}_i , \mathbf{v}_i are query/key/values.
- Problem. Tokens are distributed among devices (k&v, in particular)

Ring Self-Attention

- Idea. Transmit the key and value embeddings of the sequence
- Step 1. Compute and transmit keys
 - Each node can start computing the $\mathbf{q}_i^{\mathsf{T}}\mathbf{k}_{j'}$ as soon as they receive any fraction of the key embeddings
 - After the full ring, can compute the softmax to get attention scores

Ring Self-Attention

- Step 2. Compute and transmit values
- Step 3. Now everybody has the full KV, and can compute the full output

Further readings

- Combined framework with other notions of parallelism
 - Megatron-SP (NVIDIA)
 - Combines with tensor parallelism
 - https://arxiv.org/abs/2205.05198
 - DeepSpeed-Ulysses (Microsoft)
 - https://arxiv.org/abs/2309.14509

ZeRO

Motivation

- If we use optimizers like AdamW, we need to keep various optimizer states
- ullet Example. Optimizing a model with M parameter with Adam, in FP16

•	<u>Param</u> .	2M by	ytes
	<u>rafam.</u>		y LES

• Grad. 2M bytes

• <u>Variance</u>. 4M bytes

• Momentum. 4M bytes

• FP32 Params. 4M bytes

Parameters (FP16)				
Gradient (FP16)				
Variance (FP32)				
Momentum (FP32)				
Parameters (FP32)				

⇒ High redundancy in GPUs, when we do data-parallel

Idea

- Partition the states and gradients on many GPUs
- ZeRO-1. The optimizer states are distributed (~4x memory reduction)
 - Gradients for each GPU are partitioned and sent to corresponding GPUs
 - Updated parameters are sent to all GPUs

Idea

- ZeRO-2. Gradients are partitioned as well (~8x memory reduction)
 - On GPU i, the gradients for layer j is:
 - Kept, if the GPU i is responsible for layer j
 - Discarded, otherwise,
 after computing the gradient for layer j-1
 and transmitting to the responsible GPU

Idea

- ZeRO-3. Even parameters are partitioned
 - Significant communication load; use when extremely memory-poor

M is the number of parameters, N is the number of devices.

	Optimizer States (12M)	Gradients (2M)	Model Weights (2M)	Memory Cost	Communication Cost
Data Parallelism	Replicated	Replicated	Replicated	16 <i>M</i>	all-reduce(2M)
ZeRO Stage 1	Partitioned	Replicated	Replicated	$4M + \frac{12M}{N}$	all-reduce(2M)
ZeRO Stage 2	Partitioned	Partitioned	Replicated	$2M + \frac{14M}{N}$	all-reduce(2M)
ZeRO Stage 3	Partitioned	Partitioned	Partitioned	16M N	1.5 all-reduce(2M)

Further materials

- Cool explanatory video
 - https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
- Other advances
 - Memory checkpointing, offloading, and so on
 - https://arxiv.org/abs/1910.02054

Gradient compression

Motivation

- Recall that in DP, the key bottleneck is the communication bandwidth
 - Transmitting gradients & model updates

Basic idea

- Compress the gradients using model compression techniques
- Remark. No longer need to take "inference efficiency" into account (e.g., no stringent need for linear quantization)
 - Instead, encoding / decoding cost may be an issue

Sparsity

- Select only top-K gradients (i.e., magnitude pruning)
 - What is not transmitted ("residuals") are stored, for the next communication round

Sparsity: Nitty-gritty details

Momentum.

Update the momentums based on the pruned gradient, not the original ones

- Gradient Clipping. Clip the gradients before adding the residuals
- Warm-up. Warm up both step size and sparsity

Task		Baseline	Deep Gradient Compression
5	Top-1 Accuracy	75.96%	76.15% (+0.19%)
ResNet-50 On	Top-5 Accuracy	92.91%	92.97% (+0.06%)
ImageNet	Gradient Compression Ratio	1 ×	277 ×
5 1 ODII	Word Error Rate (WER)	9.45%	9.06% (-0.39%)
5-Layer GRU On LibriSpeech	Word Error Rate (WER)	27.07%	27.04% (-0.03%)
Libitopeecii	Gradient Compression Ratio	1 ×	608 ×
2-Layer LSTM Language Model	Perplexity	72.30	72.24 (-0.06)
On Penn Treebank	Gradient Compression Ratio	1 ×	462 ×

Quantization

- In 1-bit SGD, the gradients are quantized to binary values
 - Allocate column-wise scaling factors
 - Accumulate quantization errors

All-reducing compressed gradients

- Problem. Suppose that we use all-reduce to aggregate gradient signals
 - Sparsity. No longer sparse
 - Quantization. No longer low-bit
 - Repeated pruning/quantization leads to much noise / order-dependency

PowerSGD

- Apply low-rank approximation to gradients
 - Free of the order-dependency issue

Algorithm 1 Rank-r POWERSGD compression

- 1: The update vector Δ_w is treated as a list of tensors corresponding to individual model parameters. Vector-shaped parameters (biases) are aggregated uncompressed. Other parameters are reshaped into matrices. The functions below operate on such matrices independently. For each matrix $M \in \mathbb{R}^{n \times m}$, a corresponding $Q \in \mathbb{R}^{m \times r}$ is initialized from an i.i.d. standard normal distribution.
- 2: function COMPRESS+AGGREGATE(update matrix $M \in \mathbb{R}^{n \times m}$, previous $Q \in \mathbb{R}^{m \times r}$)
- $P \leftarrow MQ$
- 4: $P \leftarrow \text{ALL REDUCE MEAN}(P)$
- 5: $\hat{P} \leftarrow \text{ORTHOGONALIZE}(P)$
- 6: $Q \leftarrow M^{\top} \hat{P}$
- 7: $Q \leftarrow \text{ALL REDUCE MEAN}(Q)$
- 8: **return** the compressed representation (\hat{P}, Q) .
- 9: **end function**
- 10: function DECOMPRESS $(\hat{P} \in \mathbb{R}^{n \times r}, Q \in \mathbb{R}^{m \times r})$
- 11: return $\hat{P}Q^{\top}$
- 12: end function

$$\triangleright$$
 Now, $P = \frac{1}{W}(M_1 + \ldots + M_W)Q$
 \triangleright Orthonormal columns

$$\triangleright$$
 Now, $Q = \frac{1}{W}(M_1 + \ldots + M_W)^{\top} \hat{P}$

Automating model parallelism

Inter-op vs Intra-op

- Roughly, there are two ways to distribute operations:
- Inter-op. Assign different operators to different devices (e.g., Pipeline parallel)
 - Good. Less communication
 - Bad. Much idle time

Inter-op vs Intra-op

- Intra-op. Assign different regions of one operator to different devices (e.g., tensor parallel, data parallel)
 - Good. Devices stay busy all the time
 - Bad. Much communication
 - Replication & all-reduce

Motivation

• Question. Which parallelism should I adopt, for my own model & cluster?

Formulation

Abstractly put, we want to solve:

min Cost(model, cluster; strategy) strategy

strategy is any possible combination of inter-op & intra-op parallelism

Approaches

- There are quite many approaches:
 - MCMC. FlexFlow (2018)
 - RL. ColocRL (2017)
 - (...)
- A popular approach is called Alpa
 - Hierarchical optimization-based method

Alpa

- Prioritize performing:
 - Inter-op. Between nodes
 - Intra-op. Between devices, inside a node

(as it requires less comm)

(as it requires more comm)

Alpa

• The search space thus becomes smaller and structured

Alpa

- Roughly, the search is done by a two-stage iterative optimization
 - Inter-op. Determine the group of ops to be done in a node
 - Intra-op. How to conduct tensor/data parallel inside a node

Inter-op

Given a computational graph,

Determine the partition of the graph

or

• • •

Inter-op

- Then, assign the nodes for each partition, via dynamic programming
 - Required. For this to be accurate, need a good latency estimate of each partition on the nodes

Intra-op

- In each intra-op pass, we solve an optimization problem
 - Assignment problem (discrete decisions) with linear costs
 - a mixed integer-linear programming!

Stage with intra-operator parallelization

Remarks

Can we parallelize to infinity?

- Suppose that we can use infinite amount of GPUs
- Question. Can we make the batch size infinity, and finish training in seconds?
 - Answer. Unfortunately, no. We lose generalizability

Shallue et al., "Measuring the effects of data parallelism on neural network training" JMLR 2019.

Why?

- No complete answer, but some speculations...
 - Large batch —> Small SGD noise —> Trapped in local minima (narrow valley)

That's it for today