
Spring 2025

Parallelism - 2
EECE695D: Efficient ML Systems

Recap
• Last class.

• Data parallelism

• Model parallelism

• Pipeline, Tensor, Expert

• Today. Advanced topics

• Sequence parallelism

• ZeRO, Gradient compression

• Automated parallelism

Sequence parallelism

Motivation
• Training a transformer-based generative model

• Want to generate high-dimensional data with an extremely long context

• Example. High-resolution video generation

• Spatio-temporal tokens as an input

• Problem. Not holdable on one device, even for a small batch

Image Source: OpenAI Sora

Basic idea
• Solution. Each GPU processes a fraction of input tokens

• FFN. Easy, because tokens are handled separately anyways

• MHSA. Requires additional communication

Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023

The case of MHSA
• Goal. Compute the output of each token:

• are the attention scores:

• are query/key/values.

• Problem. Tokens are distributed among devices (k&v, in particular)

oi =
L

∑
i=1

sivi

si

si = SoftMax (1

d
[q⊤

i k1, q⊤
i k2, …, q⊤

i kL])
qi, ki, vi

Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023

Ring Self-Attention
• Idea. Transmit the key and value embeddings of the sequence

• Step 1. Compute and transmit keys

• Each node can start computing the , as soon as they receive any
fraction of the key embeddings

• After the full ring, can compute the softmax to get attention scores

q⊤
i kj

Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023

Ring Self-Attention
• Step 2. Compute and transmit values

• Step 3. Now everybody has the full KV, and can compute the full output

Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023

Further readings
• Combined framework with other notions of parallelism

• Megatron-SP (NVIDIA)

• Combines with tensor parallelism

• https://arxiv.org/abs/2205.05198

• DeepSpeed-Ulysses (Microsoft)

• https://arxiv.org/abs/2309.14509

https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2309.14509

ZeRO

Motivation
• If we use optimizers like AdamW, we need to keep various optimizer states

• Example. Optimizing a model with parameter with Adam, in FP16

• Param. bytes

• Grad. bytes

• Variance. bytes

• Momentum. bytes

• FP32 Params. bytes

 High redundancy in GPUs, when we do data-parallel

M

2M

2M

4M

4M

4M

⇒
Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020

Idea
• Partition the states and gradients on many GPUs

• ZeRO-1. The optimizer states are distributed (~4x memory reduction)

• Gradients for each GPU are partitioned and sent to corresponding GPUs

• Updated parameters are sent to all GPUs

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020

Idea
• ZeRO-2. Gradients are partitioned as well (~8x memory reduction)

• On GPU i, the gradients for layer j is:

• Kept, if the GPU i is responsible for layer j

• Discarded, otherwise,
 after computing the gradient for layer j-1
 and transmitting to the responsible GPU

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020

Idea
• ZeRO-3. Even parameters are partitioned

• Significant communication load; use when extremely memory-poor

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020

Further materials
• Cool explanatory video

• https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-
system-optimizations-enable-training-models-with-over-100-billion-
parameters/

• Other advances

• Memory checkpointing, offloading, and so on

• https://arxiv.org/abs/1910.02054

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://arxiv.org/abs/1910.02054

Gradient compression

Motivation
• Recall that in DP, the key bottleneck is the communication bandwidth

• Transmitting gradients & model updates

Basic idea
• Compress the gradients using model compression techniques

• Remark. No longer need to take “inference efficiency” into account
 (e.g., no stringent need for linear quantization)

• Instead, encoding / decoding cost may be an issue

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018

Sparsity
• Select only top-K gradients (i.e., magnitude pruning)

• What is not transmitted (“residuals”) are stored, for the next
communication round

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018

Sparsity: Nitty-gritty details
• Momentum. Update the momentums based on the pruned gradient,

 not the original ones

• Gradient Clipping. Clip the gradients before adding the residuals

• Warm-up. Warm up both step size and sparsity

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018

Quantization
• In 1-bit SGD, the gradients are quantized to binary values

• Allocate column-wise scaling factors

• Accumulate quantization errors

Seide et al., “1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs” Interspeech 2014

All-reducing compressed gradients
• Problem. Suppose that we use all-reduce to aggregate gradient signals

• Sparsity. No longer sparse

• Quantization. No longer low-bit

• Repeated pruning/quantization leads to much noise / order-dependency

PowerSGD
• Apply low-rank approximation to gradients

• Free of the order-dependency issue

Automating model parallelism

Inter-op vs Intra-op
• Roughly, there are two ways to distribute operations:

• Inter-op. Assign different operators to different devices
 (e.g., Pipeline parallel)

• Good. Less communication

• Bad. Much idle time

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model

Inter-op vs Intra-op
• Intra-op. Assign different regions of one operator to different devices

 (e.g., tensor parallel, data parallel)

• Good. Devices stay busy all the time

• Bad. Much communication

• Replication & all-reduce

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model

Motivation
• Question. Which parallelism should I adopt, for my own model & cluster?

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model

Formulation
• Abstractly put, we want to solve:

• is any possible combination of inter-op & intra-op parallelism

min
strategy

Cost(model, cluster; strategy)

strategy

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model

Approaches
• There are quite many approaches:

• MCMC. FlexFlow (2018)

• RL. ColocRL (2017)

• (…)

• A popular approach is called Alpa

• Hierarchical optimization-based method

Alpa
• Prioritize performing:

• Inter-op. Between nodes (as it requires less comm)

• Intra-op. Between devices, inside a node (as it requires more comm)

Alpa
• The search space thus becomes smaller and structured

Alpa
• Roughly, the search is done by a two-stage iterative optimization

• Inter-op. Determine the group of ops to be done in a node

• Intra-op. How to conduct tensor/data parallel inside a node

Inter-op
• Given a computational graph,

• Determine the partition of the graph

Inter-op
• Then, assign the nodes for each partition, via dynamic programming

• Required. For this to be accurate, need a good latency estimate of
 each partition on the nodes

Intra-op
• In each intra-op pass, we solve an optimization problem

• Assignment problem (discrete decisions) with linear costs

• a mixed integer-linear programming!

Remarks

Can we parallelize to infinity?
• Suppose that we can use infinite amount of GPUs

• Question. Can we make the batch size infinity, and finish training in seconds?

• Answer. Unfortunately, no. We lose generalizability

Goyal et al., “Accurate, large mini-batch SGD: Training ImageNet in 1 hour” arXiv 2017

Shallue et al., “Measuring the effects of data parallelism on neural network training” JMLR 2019.

Why?
• No complete answer, but some speculations…

• Large batch —> Small SGD noise —> Trapped in local minima (narrow valley)

That’s it for today 🙌

