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Recap
• Last class. 

• Data parallelism 

• Model parallelism 

• Pipeline, Tensor, Expert 

• Today. Advanced topics 

• Sequence parallelism 

• ZeRO, Gradient compression 

• Automated parallelism



Sequence parallelism



Motivation
• Training a transformer-based generative model 

• Want to generate high-dimensional data with an extremely long context 

• Example. High-resolution video generation 

• Spatio-temporal tokens as an input 

• Problem. Not holdable on one device, even for a small batch

Image Source: OpenAI Sora



Basic idea
• Solution. Each GPU processes a fraction of input tokens 

• FFN.     Easy, because tokens are handled separately anyways 

• MHSA. Requires additional communication

Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023



The case of MHSA
• Goal. Compute the output of each token: 

 

•  are the attention scores: 

 

•  are query/key/values. 

• Problem. Tokens are distributed among devices      (k&v, in particular)
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Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023



Ring Self-Attention
• Idea. Transmit the key and value embeddings of the sequence 

• Step 1. Compute and transmit keys 

• Each node can start computing the , as soon as they receive any 
fraction of the key embeddings 

• After the full ring, can compute the softmax to get attention scores
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Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023



Ring Self-Attention
• Step 2. Compute and transmit values 

• Step 3. Now everybody has the full KV, and can compute the full output

Li et al., “Sequence Parallelism: Long Sequence Training from System Perspective,” ACL 2023



Further readings
• Combined framework with other notions of parallelism 

• Megatron-SP (NVIDIA) 

• Combines with tensor parallelism 

• https://arxiv.org/abs/2205.05198 

• DeepSpeed-Ulysses (Microsoft) 

• https://arxiv.org/abs/2309.14509

https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2309.14509


ZeRO



Motivation
• If we use optimizers like AdamW, we need to keep various optimizer states 

• Example. Optimizing a model with  parameter with Adam, in FP16 

• Param.               bytes 

• Grad.                 bytes 

• Variance.          bytes 

• Momentum.     bytes 

• FP32 Params.   bytes 

 High redundancy in GPUs, when we do data-parallel
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Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020



Idea
• Partition the states and gradients on many GPUs 

• ZeRO-1. The optimizer states are distributed   (~4x memory reduction) 

• Gradients for each GPU are partitioned and sent to corresponding GPUs 

• Updated parameters are sent to all GPUs

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020



Idea
• ZeRO-2. Gradients are partitioned as well          (~8x memory reduction) 

• On GPU i, the gradients for layer j is: 

• Kept,                             if the GPU i is responsible for layer j 

• Discarded,                   otherwise, 
                                      after computing the gradient for layer j-1 
                                      and transmitting to the responsible GPU

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020



Idea
• ZeRO-3. Even parameters are partitioned 

• Significant communication load; use when extremely memory-poor

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020



Further materials
• Cool explanatory video 

• https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-
system-optimizations-enable-training-models-with-over-100-billion-
parameters/ 

• Other advances 

• Memory checkpointing, offloading, and so on 

• https://arxiv.org/abs/1910.02054

Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC 2020

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://arxiv.org/abs/1910.02054


Gradient compression



Motivation
• Recall that in DP, the key bottleneck is the communication bandwidth 

• Transmitting gradients & model updates



Basic idea
• Compress the gradients using model compression techniques 

• Remark. No longer need to take “inference efficiency” into account 
               (e.g., no stringent need for linear quantization) 

• Instead, encoding / decoding cost may be an issue

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018



Sparsity
• Select only top-K gradients    (i.e., magnitude pruning) 

• What is not transmitted (“residuals”) are stored, for the next 
communication round

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018



Sparsity: Nitty-gritty details
• Momentum.              Update the momentums based on the pruned gradient, 

                                   not the original ones 

• Gradient Clipping. Clip the gradients before adding the residuals 

• Warm-up.                   Warm up both step size and sparsity

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018



Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018



Quantization
• In 1-bit SGD, the gradients are quantized to binary values 

• Allocate column-wise scaling factors 

• Accumulate quantization errors

Seide et al., “1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs” Interspeech 2014



All-reducing compressed gradients
• Problem. Suppose that we use all-reduce to aggregate gradient signals 

• Sparsity. No longer sparse 

• Quantization. No longer low-bit 

• Repeated pruning/quantization leads to much noise / order-dependency



PowerSGD
• Apply low-rank approximation to gradients 

• Free of the order-dependency issue



Automating model parallelism



Inter-op vs Intra-op
• Roughly, there are two ways to distribute operations: 

• Inter-op. Assign different operators to different devices 
                 (e.g., Pipeline parallel) 

• Good.  Less communication 

• Bad.     Much idle time

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model


Inter-op vs Intra-op
• Intra-op. Assign different regions of one operator to different devices 

                 (e.g., tensor parallel, data parallel) 

• Good.  Devices stay busy all the time 

• Bad.     Much communication 

• Replication & all-reduce

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model


Motivation
• Question. Which parallelism should I adopt, for my own model & cluster?

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model


Formulation
• Abstractly put, we want to solve: 

 

•  is any possible combination of inter-op & intra-op parallelism

min
strategy

Cost(model, cluster; strategy)

strategy

Image Source: https://sites.google.com/view/icml-2022-big-model

https://sites.google.com/view/icml-2022-big-model


Approaches
• There are quite many approaches: 

• MCMC.  FlexFlow (2018) 

• RL.          ColocRL (2017) 

• (…) 

• A popular approach is called Alpa 

• Hierarchical optimization-based method



Alpa
• Prioritize performing: 

• Inter-op. Between nodes                                        (as it requires less comm) 

• Intra-op. Between devices, inside a node          (as it requires more comm)



Alpa
• The search space thus becomes smaller and structured



Alpa
• Roughly, the search is done by a two-stage iterative optimization 

• Inter-op.  Determine the group of ops to be done in a node 

• Intra-op.  How to conduct tensor/data parallel inside a node



Inter-op
• Given a computational graph, 

• Determine the partition of the graph



Inter-op
• Then, assign the nodes for each partition, via dynamic programming 

• Required. For this to be accurate, need a good latency estimate of 
                  each partition on the nodes



Intra-op
• In each intra-op pass, we solve an optimization problem 

• Assignment problem (discrete decisions) with linear costs 

• a mixed integer-linear programming!



Remarks



Can we parallelize to infinity?
• Suppose that we can use infinite amount of GPUs 

• Question. Can we make the batch size infinity, and finish training in seconds? 

• Answer. Unfortunately, no. We lose generalizability

Goyal et al., “Accurate, large mini-batch SGD: Training ImageNet in 1 hour” arXiv 2017



Shallue et al., “Measuring the effects of data parallelism on neural network training” JMLR 2019.



Why?
• No complete answer, but some speculations… 

• Large batch —> Small SGD noise —> Trapped in local minima (narrow valley)



That’s it for today 🙌


