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Recap
• Last two weeks. Efficient Training 

• Idea. Re-use the experience of previous training runs 

• Today. Parallelism 

• Accelerate training by using multiple devices in parallel 

• Key question. How do we coordinate the computations in many devices?



Motivation
• Modern models require too much computation to be trained 

• Example. 
Estimated training cost of GPT-4 

 FLOPs 

 NVIDIA B200 GPU handles, in FP16, 

 FLOPS 

 That is, 282 years of training!

∼ 2.0 × 1025

2.25 × 1015



Motivation
• Modern models require too much parameters & RAM to be trained 

• Example. 
Fine-tuning a LLaMA-65B requires 

GBs of RAM 

 NVIDIA B100 GPU has GB 

 That is, can only train 27B model!

∼ 457

192



Motivation
• Modern models require too much data to be trained 

• Too large to be store in single node 

• Example. 
DBRX was trained on 12T tokens 

TB 

8-GPU servers of my group has only 
13TB of storage 

• Some data are private or classified 

• Medical or military

∼ 60



Motivation
• Modern models require too much energy to be trained 

• Not many are renewable or green 

• Some renewable energy sources 
require a careful scheduling 

• Inefficient to store or send to 
remote locations



Key challenge
• 100x resource  100x faster 

• Communication between resources (NVLink, InifiniBand, …) 

• e.g., gradients, parameter updates, optimizer states 

• Synchronization between resources 

• e.g., 7 fast GPUs and 1 slow GPU

≠

Image Source: https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/

https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/


Scope
• Data Parallelism 

• Model Parallelism 

• Pipeline parallel 

• Tensor parallel 

• Expert parallel 

• Next class. Sequence parallelism, Automation, Gradient Compression, ZeRO

Image Source: https://www.cerebras.net/blog/data-model-pipeline-parallel-training-neural-networks/

https://www.cerebras.net/blog/data-model-pipeline-parallel-training-neural-networks/


Data parallelism



Basic idea
• All workers share the same model, but have different data 

• In each step, i-th worker conducts: 

• Pull master weights  

• Draw a data batch  

• Compute the local gradient  

• Push gradients to master 

• Master updates as: 

)

w

B(i)

∇w(i)

w ← w − η (∑ ∇w(i)/K)
Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018

Master (Parameter server) 
Coordinates the training

Workers (Computing) 
GPU & Data storage



Basic idea
• Data. The whole dataset is usually evenly split among K workers 

• Possibly overlaps 

• Useful when some nodes are not reliable 

• Master can decide “indices” that each client will use 

• Can be dynamically fetched from a common data pool 

• Common when each node is a CPU, not a server



Basic idea
• Communication. Usually the key bottleneck 

• Worker requires: 

• Uplink:        Gradient Size 

• Downlink:   Model Size 

• Master requires: 

• Uplink:        K * Model Size 

• Downlink:   K * Gradient Size



Basic idea
• Example. Training a ResNet-50 with V100s 

• Model parameters (or gradients) are  0.1GB 

• Suppose that we have 256 workers 

• If we use batch size 32: 

• Gradient computation. Takes  0.33 sec/step 

• Communication.            Adds  0.16 sec/step 

• Assuming using 300GB/s bandwidth NVLink 

• => Communication adds 50% of the time!

≈

≈

≈



Mitigating the comm. bottleneck
• Idea. Don’t do one-to-one communication 

• Alternative communication strategies 

• Standardized as, e.g., Sockets / MPI



One-to-One
• Transfer data from one process to another 

• Send. Send a tensor to another 

• Receive. Receive a tensor from another

Image Source: efficientml.ai



One-to-Many
• Transfer data from one process to many other processes, or vice versa 

• Scatter. Send a tensor to many workers 

• Gather. Receive a tensor from many workers 

• Not many things we can do for these

Image Source: efficientml.ai



One-to-Many
• Sometimes, we only care about a single tensor  (our interest) 

• Broadcast. Send the same tensor to many workers 

• Reduce. Receive tensors, while averaging into a single tensor 

• Time ,    Peak BW ,    Total Comm = O(1) = O(K) = O(K)

Image Source: efficientml.ai



One-to-Many
• Idea. Use inter-worker communication to avoid bottleneck at the master 

• If we use a binary tree structure, 
each worker requires only 

• Up:        Grad size + 2 * Model size 

• Down:   2 * Grad size + Model size 

• Time               
Peak BW         
Total Comm  

= O(log K)
= O(1)
= O(K)

Image Source: efficientml.ai



Many-to-Many
• Transfer the data without master 

• All-Gather. Conduct gather on all workers 

• All-Reduce. Conduct reduce on all workers

Image Source: efficientml.ai



Many-to-Many
• Naïve. Sequentially conduct reduce operations 

• Time ,    Peak BW ,    Total Comm= O(K) = O(K) = O(K2)

Image Source: efficientml.ai



Many-to-Many
• Ring-AllReduce. Utilize inter-worker communication 

• Time ,    Peak BW ,    Total Comm= O(K) = O(1) = O(K2)

Image Source: efficientml.ai



Many-to-Many
• Recursive Halving. If inter-worker communication is dense, 

• Time ,    Peak BW ,    Total Comm= O(log K) = O(1) = O(K log K)

Image Source: efficientml.ai



Advanced Topics
• Synchronization. In practice, a full synchronization of GPUs is unnecessary 

• Can reduce the communication burden even further 

• Hogwild! (2011). Theoretically, one can still converge with updates 
                           based on gradients of slightly out-of-sync parameters 

• Stochastic gradient push 
(Assran et al., 2019) 

• Grouped all-reduce with 
intermittent group swapping 
(Li et al., 2021)

Niu et al., “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent,” NeurIPS 2011 
Assran et al., “Stochastic Gradient Push for Distributed Deep Learning” ICML 2019 

Li et al., “Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging,” IEEE TDPS 2021



Model parallelism



Basic idea
• All workers share the same data, but have different model parts 

• Pipeline. Sequential processing 

• Tensor. Parallel processing 

• Expert. Conditional processing



Pipeline parallelism
• Each worker has different layers 

• Thus, less burden for 

• Memory. Keeping the parameters and activations on RAM 

• Computation. Computing forward & backward

Image Source: efficientml.ai



Pipeline parallelism
• Naïve. Simply activate all workers in series 

• Low GPU utilization ratio 

• No speedup (slower!)



GPipe (2019)
• Split a single batch into multiple micro-batches 

• Process micro-batches without gradient updates in between

Huang et al., “GPipe: Efficient training of giant neural networks using pipeline parallelism” NeurIPS 2019



PipeDream (2019)
• Interleave some out-of-sync (“stale”) operations from succeeding batch 

• called inter-batch pipelining 

• PipeDream automatized such interleaving

Narayanan et al., “PipeDream: Generalized pipeline parallelism for DNN training” SOSP 2019



Tensor parallelism
• Make the operations parallel by partitioning each tensor 

• Less bubble 

• Key challenge. The output becomes sharded as well



Tensor parallelism
• Idea. Splitting direction matters! 

• Suppose we have a matmul  

• Splitting by row. We conduct 

 

• Thus, we have 

 

• The output requires all-reduce before activation

Y = σ(XA)

X = [X1 X2], A = [A1
A2]

Y = σ(X1A1 + X1A2)



Tensor parallelism
• Splitting by column. We conduct 

 

• Then, we have 

 

• The output does not require all-reduce 

• But  are sharded, forcing row-splitting in the next layer

X = X, A = [A1 A2]

Y = [σ(XA1) σ(XA2)]

Y



Megatron-LM (2019)
• A recipe customized for transformer-based LLMs 

• For FFNs, conduct column-split first and then row-split 

•  identity in forward-pass, all-reduce in backward pass 

•  all-reduce in forward pass, identity in backward pass

f :

g :



Megatron-LM (2019)
• For attentions, similarly split Q/K/V heads by columns 

• Output linear layer is split by rows



Expert parallelism
• In very large LMs, the FFNs tend to take most parameters and computations



Expert parallelism
• Idea. Distribute FFNs only over the GPUs 

• Send a fraction of data in a batch to each GPU 

• Even better. Specialize FFNs for different tokens (experts) 

• Do “routing” of tokens to each FFN



Mixture-of-Experts
• Existed from LSTM era, back in 2017 

• Transformers. GShards (2021), Switch Transformers (2022)



Mixture-of-Experts
• An output of an MoE module is  

 

• : Output of expert  

• : Gating function 

    (or change the order of SM & TK) 

•   can be a linear model         

• Noise for load balancing

y =
n

∑
i=1

Gi(x)Ei(x)

Ei( ⋅ ) i

Gi( ⋅ )

G(x) = SoftMax(KeepTopK(H(x)))

H H(x) = Wx + (noise)







Advantages
• Training. Can train overparameterized models with low cost 

• Inference. Small number of active parameters 

• Example: LLaMA-4. 

• Uses 14B active parameters 

• 128 routed experts 

• 1 shared expert



Further Readings
• Mixture-of-Depths 

• https://arxiv.org/abs/2404.02258

https://arxiv.org/abs/2404.02258


That’s it for today 🙌


