Parallelism -1

Spring 2025

Recap

 Last two weeks. Efficient Training

e |dea. Re-use the experience of previous training runs

e Today. Parallelism
 Accelerate training by using multiple devices in parallel

e Key question. How do we coordinate the computations in many devices?

Motivation

e Modern models require too much computation to be trained

e Example.
Estimated training cost of GPT-4

~ 2.0 X 10% FLOPs

NVIDIA B200O GPU handles, in FP16,

2.25 x 10" FLOPS

That is, 282 years of training!

Motivation

e Modern models require too much parameters & RAM to be trained

e Example.
FiIne-tuning a LLaMA-65B requires

~ 457GBs of RAM

NVIDIA B10O GPU has 192GB

That Is, can only train 27B model!

Motivation

e Modern models require too much data to be trained

 Joo large to be store in single node

e Example.
DBRX was trained on 12T tokens

~ 60TB

8-GPU servers of my group has only
13TB of storage

e Some data are private or classified

e Medical or military

Thorax Routine (Adult)
Thoraxy =550 B0 E

LittleEndlamss
Images: 28/62
Series: 2

S IEMEN S Sensation 64
22-0ctober-2020 14:04:47

WL: -416 WW: 1368

Motivation

e Modern models require too much energy to be trained
* Not many are renewable or green

e Some renewable energy sources
require a careful scheduling

e |nefficient to store or send to
remote locations

Key challenge

e 100x resource # 100x faster
e Communication between resources
e e.g., gradients, parameter updates, optimizer states

e Synchronization between resources

e e.g,/ tast GPUs and 1 slow GPU

> - . S
\ .

Image Source: https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/

https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/

Scope

e Data Parallelism Data Parallel Model Parallel
e Model Parallelism [Device 1\ (Device 2\ (Device 1\ /Device 2\
| 4 I "
. . Model Model
e Pipeline parallel Sample 1 Sample N I ‘ Part 1 Part?
\- & / \ VA -
* Tensor parallel Running multiple Running multiple parts
samples at same time of network at same
e Expert parallel me

e Next class. Sequence parallelism, Automation, Gradient Compression, ZeRO

Image Source: https://www.cerebras.net/blog/data-model-pipeline-parallel-training-neural-networks/

https://www.cerebras.net/blog/data-model-pipeline-parallel-training-neural-networks/

Data parallelism

Basic iIdea

e All workers share the same model but have different data

Master (Parameter server)
Coordinates the training

p R
e Pull master weights w . - - -
. /

e Draw a data batch BY

e |n each step, iI-th worker conducts:

e Compute the local gradient Vw®

e Push gradients to master

e Master updates as:

W Ww—rn (Z Vw(i)/K))

Workers (Computing)
GPU & Data storage

Lin et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training” ICLR 2018

Basic iIdea

e Data. The whole dataset is usually evenly split among K workers
e Possibly overlaps
e Useful when some nodes are not reliable
e Master can decide “indices” that each client will use
e Can be dynamically fetched from a common data pool

e Common when each node is a CPU, not a server

Basic iIdea

e Communication. Usually the key bottleneck
 \Worker requires:

e Uplink: Gradient Size

e Downlink: Model Size

e Master requires:

e Uplink: K * Model Size

e Downlink: K * Gradient Size

Basic iIdea

Example. Training a ResNet-50 with V1OO0s

e Model parameters (or gradients) are ~ 0.1GB
e Suppose that we have 256 workers

e |f we use batch size 32;

e Gradient computation. Takes ~ 0.33 sec/step

e Communication. Adds =~ Q.16 sec/step

e Assuming using 300GB/s bandwidth NVLink

e => Communication adds 50% of the timel!

Mitigating the comm. bottleneck

e |dea. Don't do one-to-one communication
e Alternative communication strategies

e Standardized as, e.g., Sockets / MPI

DISTRIBUTED COMMUNICATION PACKAGE -
TORCH.DISTRIBUTED

Please refer to PyTorch Distributed Overview for a brief introduction to all features related to distributed training.

Backends

torch.distributed supports three built-in backends, each with different capabilities. The table below shows which functions are
available for use with CPU / CUDA tensors. MPI supports CUDA only if the implementation used to build PyTorch supports it.

One-to-One

e [ransfer data from one process to another
e Send. Send a tensor to another

e Receive. Receive a tensor from another

Send: n0 -> n3 Recv: n0 -> n3

Image Source: efficientml.ai

One-to-Many
 [ransfer data from one process to many other processes, or vice versa
e Scatter. Send a tensor to many workers

e Gather. Recelve a tensor from many workers

* Not many things we can do for these

Scatter Gather

Image Source: efficientml.ai

One-to-Many
e Sometimes, we only care about a single tensor

e Broadcast. Send the same tensor to many workers

e Reduce. Recelve tensors, while averaging into a single tensor

e Time = O(1), PeakBW = O(K), Total Comm = O(K)

Broadcast

Image Source: efficientml.ai

One-to-Many

e |dea. Use inter-worker communication to avoid bottleneck at the master

e |f we use a binary tree structure, 0

each worker requires only
e Up: Grad size + 2 * Model size

e Down: 2 * Grad size + Model size

¢ Time = O(log K)
Peak BW = 0(1) 2 6
Total Comm = O(K) '

-
"
7\
N\
' \
4 \
/ \

10

14

[16

18

24

20

22

/
J
/J
/J
X
n
1
fF o\
J \
| \

28

30

11

13

15

17

19

21

23

25

27

29

31

Image Source: efficientml.ai

Many-to-Many
e Transfer the data without master

o All-Gather. Conduct gather on all workers

e All-Reduce. Conduct reduce on all workers

All-Gather All-Reduce
0 = L 0 \‘0 ;s IR
S AT
PSS P S
a N nE nE 3 am " I' .' /.

Image Source: efficientml.ai

Many-to-Many
 Naive. Sequentially conduct reduce operations

e Time = O(K), Peak BW = O(K), Total Comm = O(Kz)

Step 1 Step 2
- @'\gﬁ@-
O e

Step 3 Step 4

e iy,

Image Source: efficientml.ai

Many-to-Many
 Ring-AllReduce. Utilize inter-worker communication

e Time = O(K), Peak BW = O(1l), Total Comm = O(Kz)
Step 1 Step 2

O FOWOO NGO YO TOO
OLIOLIOLIOL INOr YOI 10! 1o
Step 3

o Joyonor
O (DR R (=

Image Source: efficientml.ai

Many-to-Many
 Recursive Halving. If inter-worker communication is dense,

e Time = O(logK), Peak BW = 0O(1), Total Comm = O(K log K)

Step 1 - Each node exchanges with neighbors with offset 1

H H O R DR o
—" ~—" ~—" ~—"

Step 2 - Each node exchanges with neighbors with offset 2

LEERER D

S 7

Step 3 - Each node exchanges with neighbors with offset 4

"LLEEEEEE
Y~ == —

Image Source: efficientml.ai

Advanced Topics

 Synchronization. In practice, a full synchronization of GPUs Is unnecessary
e Can reduce the communication burden even further

e Hogwild! (2011). Theoretically, one can still converge with updates
based on gradients of slightly out-of-sync parameters

e Stochastic gradient push
(Assran et al., 2019)

e Grouped all-reduce with

Intermittent group swapping
(Li et al., 2021)

Niu et al., “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent,” NeurlPS 2011
Assran et al., “Stochastic Gradient Push for Distributed Deep Learning” ICML 2019
Li et al.,, “Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging,” IEEE TDPS 2021

Modael parallelism

Basic iIdea

o All workers share the same data, but have different model parts
 Pipeline. Sequential processing
 Tensor. Parallel processing

 Expert. Conditional processing

Pipeline
Data Parallelism Parallelism Tensor Parallelism Expert Parallelism

1 t S B

' | : | "
: & :

T

Pipeline parallelism

Each worker has different layers
 Thus, less burden for
e Memory. Keeping the parameters and activations on RAM

e Computation. Computing forward & backward

Image Source: efficientml.ai

Pipeline parallelism

 Naive. Simply activate all workers In series
 Low GPU utilization ratio

e No speedup (slower!)

O Forward @ Backward Gradient update () Idle

N v Loss ..
(6 ,x'" \‘\@
“Q’&/x

Worker 4 cyf\o‘

X 304,
\\"?/'O
¢e® h

L,

3
*~‘?Qf/b
~~~~ /7
~~~~~~

Worker 3

woner | [EIR
Worker 1 - “Bubble” of idle time

Training time

GPipe (2019)

o Split a single batch into multiple micro-batches

 Process micro-batches without gradient updates in between

¢ Forward @ Backward

GPipe

Worker 4
Worker 3
Worker 2

Worker 1

Fa(1) Fa(2) F4(3). B,(1) Ba(2)
Fa(1) F3(2) F3(3). Bs(1) Bs(2)

Update () Idle

Us

Us

“Bubble” of idle time B,(1) 81(2) U; Fi(5) F.(6)

Training time

Huang et al., “GPipe: Efficient training of giant neural networks using pipeline parallelism” NeurlPS 2019

PipeDream (2019)

 Interleave some out-of-sync (“stale”) operations from succeeding batch
e called inter-batch pipelining

 PipeDream automatized such interleaving

PipeDream
Worker 4 Fa(1) Ba(1) Fa(2) Ba(2) Fa(3) . SACORF4(5) Ba(S) Fa(6)] U, Fa(7)
Worker 3 F3(1) Fs(2) Fs(3) Bs(1) . Bs(2) =HE)] F3(5) 128ED, F3(6) Bs(5)) Us Fs(7) =515,
Worker 2 F2(1) F2(2) F2(3). B.(1) B2(2) F2(5) [=15)] F2(6) 128D,
Worker 1 | F1(1) F1(2) F1(3). Idle B:(1) F1(5) Bi(2) F1(6) '=51E)) F1(7) ISAE);

>

Training time

Narayanan et al., “PipeDream: Generalized pipeline parallelism for DNN training” SOSP 2019

Tensor parallelism

e Make the operations parallel by partitioning each tensor
 Less bubble

 Key challenge. The output becomes sharded as well

Dvl
o B § — o= BEE-E:

Tensor parallelism

e |dea. Splitting direction matters!

e Suppose we have a matmul ¥ = o(XA)

o Splitting by row. We conduct

X=X X|, A= [ﬁj

e Thus, we have

e The output requires all-reduce before activation

Tensor parallelism

o Splitting by column. We conduct
X=X, A=|A A)
* Then, we have
Y = [o(XA) o(XA))
e The output does not require all-reduce

e But Y are sharded, forcing row-splitting in the next layer

Megatron-LM (2019)

e Arecipe customized for transformer-based LLMs

 For FFNs, conduct column-split first and then row-split
e f:identity in forward-pass, all-reduce in backward pass

e ¢ :all-reduce In forward pass, identity in backward pass

— — — — —— — — ——— — — —— — — — —— — — — — — —— —— — — — — — —— — — — — ————— — — ———— — — — — — —

Y, Y = GeLU(XA) . Z = Dropout(YB) \
l — — \I [l e — \:
i ® | |
| — X = XA1 r::>“|£ ':>Y1 ’-Jr:::’ YlBj_ @21 = - |
i < y = i
X—N e 3 g —m8|=|Z !
i o i g ;
i =X |=| XA, :>‘,£:>Y2-!::> YoB, |=Zs = l
: = s i
| ~ e B B, E
\ A= [Al,Az] / \\\ — B] y
N\ 2 /

R s s e e S G . e — e S R e s e e . e - — — — — — — — e —

Megatron-LM (2019)

e For attentions, similarly split Q/K/V heads by columns

 Qutput linear layer Is split by rows

——— —————————————————————————————————— ——

s AR A e e e T T T S S, S S S S S S . — — — — CE— — —— AR A A A
/’ \\

Y = Self-Attention(X) N
= W3 ‘;,// Z = Dropout(YB)
x|~ 8] g l i —
= g‘ :>-§ @@@l#ﬁ
= K |- |£]| |& i .
- . ii gl
SR &= i O
= K 1™y || |F | =
S-ErErs-l
=X |=| Q2 2| |S | -
- —J {
Q = [Q1, Q2] N
Split attention heads - { K = [Ky, K] I

V = [V,

\‘———————_———————————————————————————————"/

(b) Self-Attention.

o

e e e e e e e e e . . . G T — — — — —

e In very large LMs, the FFNs tend to take most parameters and computations

10
11
12
13
14
195
16

Expert parallelism

%

FLOPs/ FLOPS

description update
OPT setups

7/60M 4.3E+15
1.3B 1.3E+16
2.7B 2.5E+16
6.7B 1.1E+17
13B 4.1E+17
30B 9.0E+17
668 9.5E+17
1758 2.4E+18

MHA

35%
32%
29%
24%
22%
20%
18%
17%

%

FLOPS

FFN

44%
51%
56%
65%
69%
4%
77%
80%

%

FLOPS

attn

14.8%
12.7%
11.2%

8.1%
6.9%
5.3%
4.3%
3.3%

%

FLOPS

logit

5.8%
5.0%
3.3%
2.4%
1.6%
1.0%
0.6%
0.3%

Expert parallelism

e |dea. Distribute FFNs only over the GPUs

e Send a fraction of data in a batch to each GPU

 Even better. Specialize FFNs for different tokens (experts)

e Do “routing” of tokens to each FFN

Mixture-of-Experts

e Existed from LSTM era, back in 2017/

e Transformers. GShards (2021), Switch Transformers (2022)

L’ - Add + Normalize
2 d
”

S e
Add + Normalize] :‘ [FFN1J FFN 2 [FFNS][FFN4J w][FFNsJ[FFMJ ':
itchi . “ p=065 \ p=0.

Switching FFN Layer I I
. | Router Router
Add + Normalize
J A

1 - N\

Selinziaed ’ >[Add + Normalize]<

! f f

. D Self-Attention

Y : A
“ o Y
“ Positional Positional
hR " embedding 2 embedding EAB
Y
x1 1T xo (T T 1111

More Parameters

Mixture-of-Experts

e An output of an MoE modulets L oe-==-

. ‘ FFN3 | | FFN4 |
y= Y G)E(x) 3 —

i=1
o E(-): Output of expert i
e G/ -): Gating function R‘:"e'

G(x) = SoftMax(KeepTopK(H(x)))

e H can be alinear model H(x) = Wx + (noise)

* Noise for load balancing

(shard 1)

Transfomer —> MoE Transfomer —= MoE Transfomer Encoder
Encoder ‘ Encoder § with device placement
Encoder § Encoder Encoder
output : output (shard 1) output (shard E)
¢ i ¢
/4::>- Add & Norm \\\\ ; /f::). Add & Norm \\\\ /4::>- Add & Norm \\\\
4 :) s l ~ 4 l)
Feed Forward E Feed Forward Feed Forward
FFN 5 FEN FFN
. J _) (. J
: - T é T T \ T
Encoder : | : ‘ l
output : :
A —> Add & Norm —> Add & Norm —> Add & Norm
I : I : I I
/C::b- Add & Norm ‘\\\\ § g § e
- : N : Multi-Head g Multi-Head Multi-Head
; Attention ; Attention Attention
Feed Forward : :
FFN g N A . - A
9 y - . L -
- 1 (N/2)x| (N/2)x (N/2)x
| Nx | é
! Add & Norm —> Add &A‘I&)rm —> Adcl_& Norm
| N - > Add &I Norm - Zjﬁ——\-to-All Co@e{ ~N
Multi-Head : s ~ 5 ——
Attention @ MoE [E] [FFN1 Model-Mpanrallel FFNE J
/ § P i B — 1
\\\\h A d//// 5 . Gating) ; CAll-to-All Dispatch e
N : 5 Gatin T “’“ ating
[Input embeddings + J ; I ; g .
Positional embeddings : ; Add & Norm ; Add & Norm . o o l Add & Norm
s ' s ' s
Multi-Head : Multi-Head Devices Multil-Head
Attention : Attention 1...E Atteption
. : . .
\\t_ A//// ; \\i_ Device 1//// \\i_ DeviceE///
Input embeddings + ; Input embeddings + Input embeddings +
Positional embeddings : Positional embeddings Positional embeddings

(shard E)

|

—_—

N
|

R
0
1

N
~
1

/X Speedup

|

—_—

O
1

Neg Log Perplexity
|
o)

—1.7 1
—1.8-
- Switch-Base: 128e
- Switch-Base: 64e
—1.9- Switch-Base: 32¢
- [5-Base
-2.0

50 100 150 200 250 300 350
Training Time

Figure 5: Speed advantage of Switch Transformer. All models trained on 32 TPUv3 cores
with equal FLOPs per example. For a fixed amount of computation and training
time, Switch Transformers significantly outperform the dense Transformer base-
line. Our 64 expert Switch-Base model achieves the same quality in one-seventh
the time of the TH-Base and continues to improve.

Advantages

 Training. Can train overparameterized models with low cost

e Inference. Small number of active parameters

1
e Example: LLaMA-4. 'r © Mixture of Experts + < \
e Uses 14B active parameters [Routed Experts

e 128 routed experts T [E"T"J [E"z“];[EXP;”S]
Router
* 1shared expert | ?

. J

Attention Attention

Further Readings
e Mixture-of-Depths

e https://arxiv.org/abs/2404.02258
T;

layers Mixture-of-Depths

» é | Routing Decisions
—>
4—

Layer

A

—p (&
Self-attention Sequence

[Normaize] Vanilla

A Transformer Early-Exit

S 0,
Tw=0.41 T =065

el

() Use block
() Route around block

Layer
Layer

Route Route

t

Sequence Sequence

£

https://arxiv.org/abs/2404.02258

That's it for today (-

