Parallelism – 1

EECE695D: Efficient ML Systems

Recap

- Last two weeks. Efficient Training
 - Idea. Re-use the experience of previous training runs

- Today. Parallelism
 - Accelerate training by using multiple devices in parallel
 - Key question. How do we coordinate the computations in many devices?

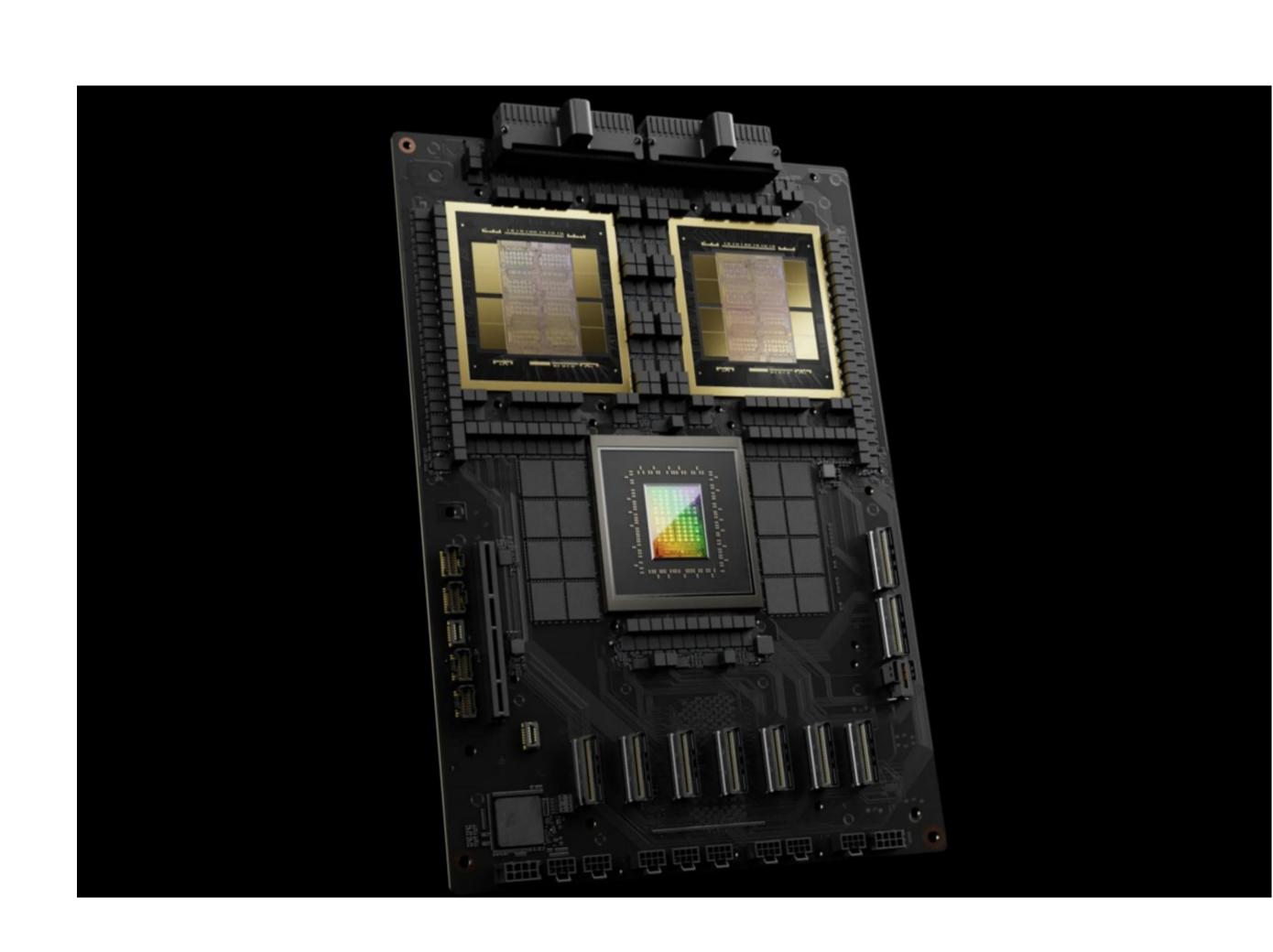
- Modern models require too much computation to be trained
- Example.
 Estimated training cost of GPT-4

$$\sim 2.0 \times 10^{25} \text{ FLOPs}$$

NVIDIA B200 GPU handles, in FP16,

$$2.25 \times 10^{15}$$
 FLOPS

That is, 282 years of training!



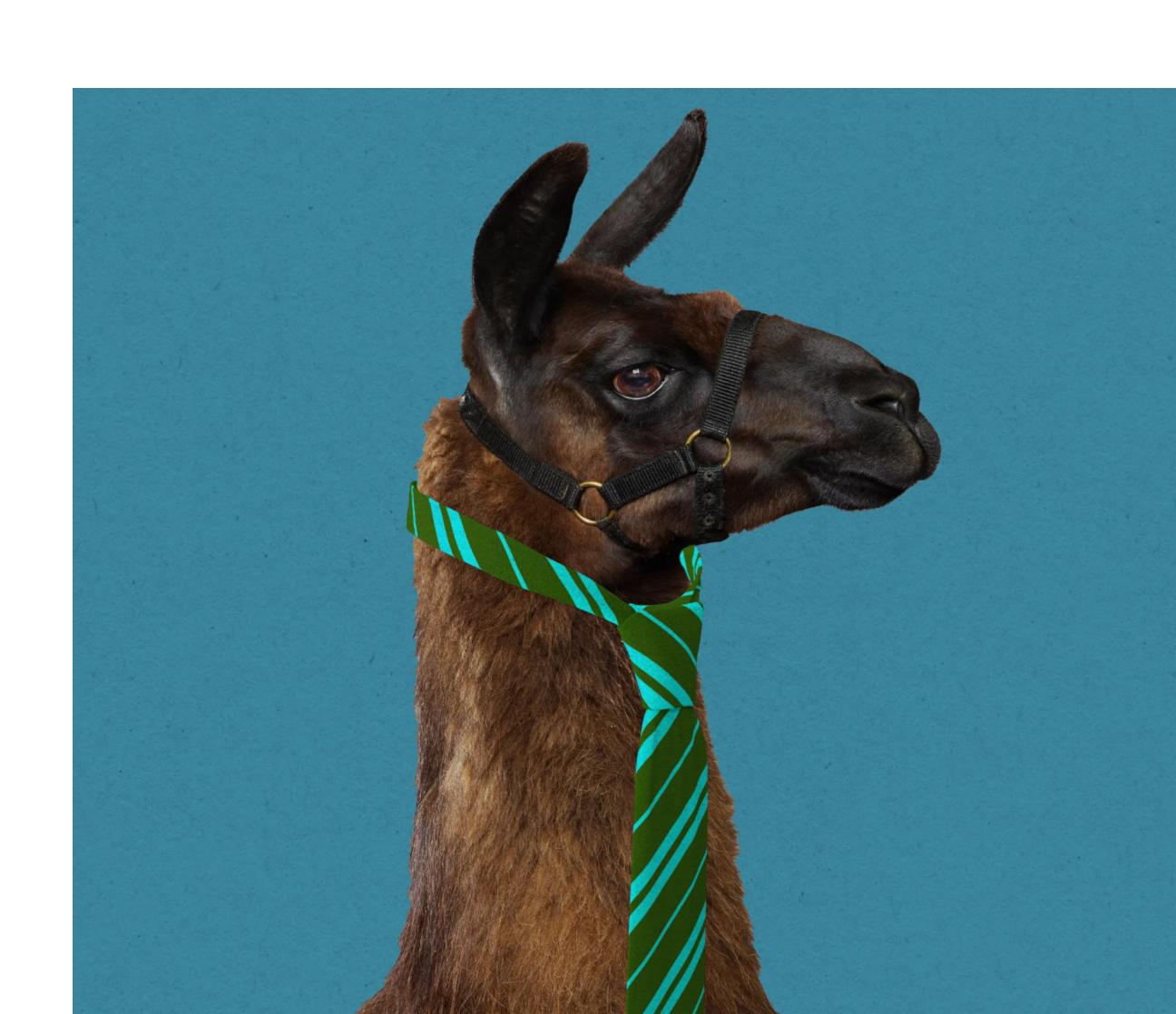
Modern models require too much parameters & RAM to be trained

• Example. Fine-tuning a LLaMA-65B requires

 ~ 457 GBs of RAM

NVIDIA B100 GPU has 192GB

That is, can only train 27B model!

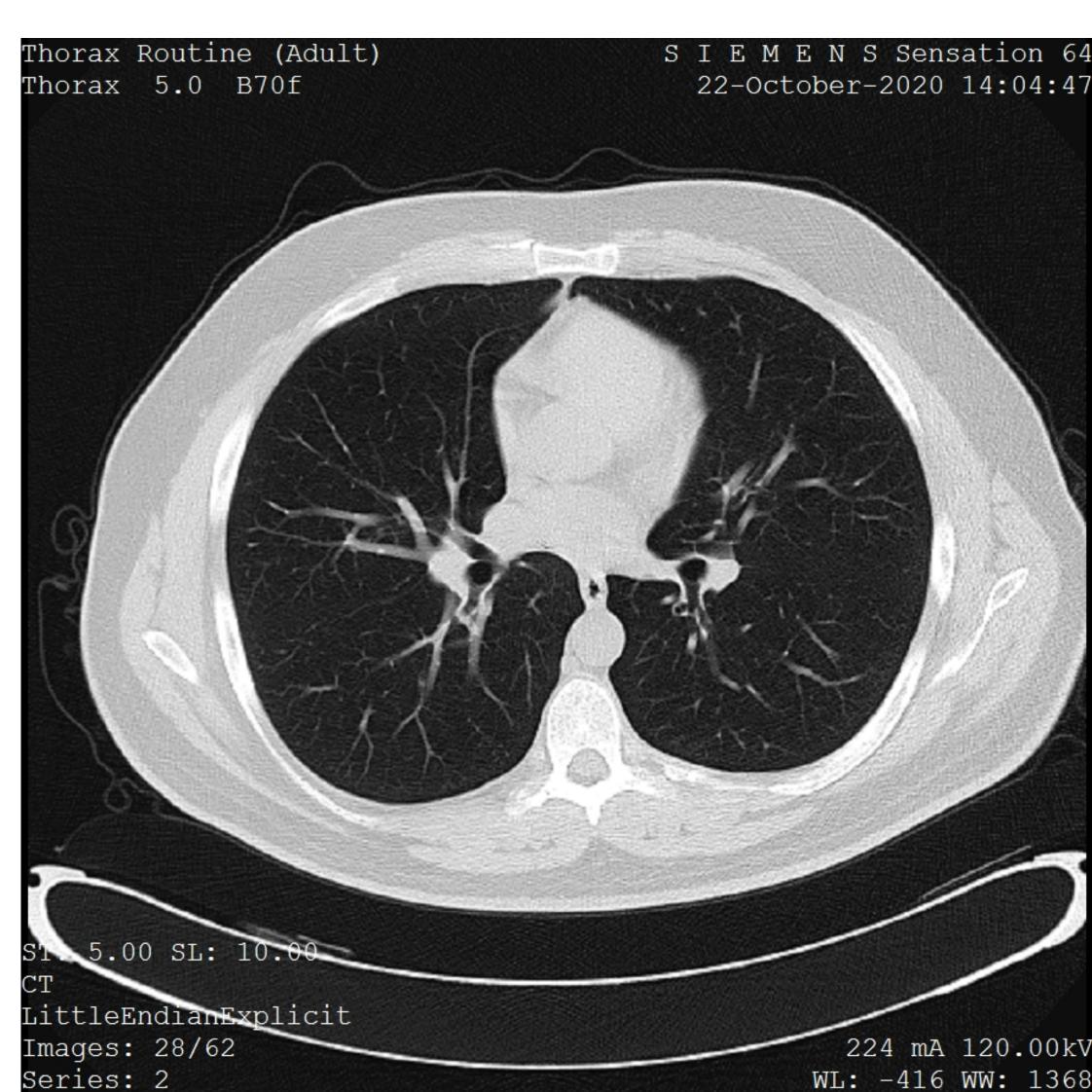


- Modern models require too much data to be trained
 - Too large to be store in single node
- <u>Example</u>.
 DBRX was trained on 12T tokens

 ~ 60 TB

8-GPU servers of my group has only 13TB of storage

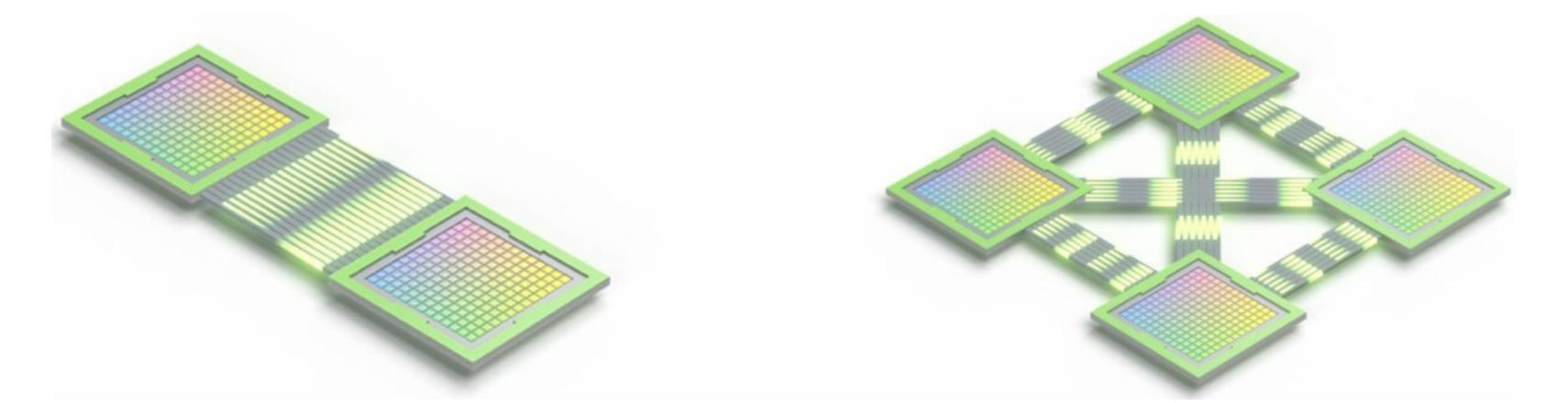
- Some data are private or classified
 - Medical or military



- Modern models require too much energy to be trained
 - Not many are renewable or green
- Some renewable energy sources require a careful scheduling
- Inefficient to store or send to remote locations

Key challenge

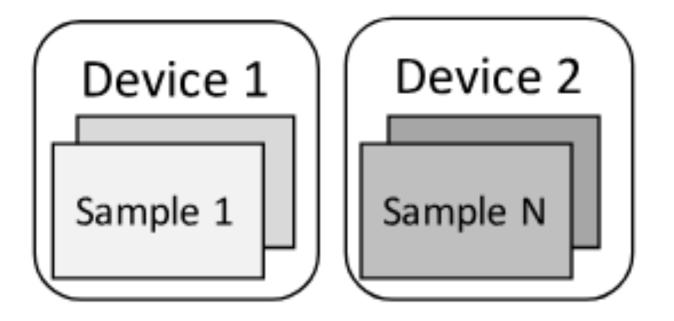
- 100x resource $\neq 100x$ faster
- Communication between resources (NVLink, InifiniBand, ...)
 - e.g., gradients, parameter updates, optimizer states
- Synchronization between resources
 - e.g., 7 fast GPUs and 1 slow GPU



Scope

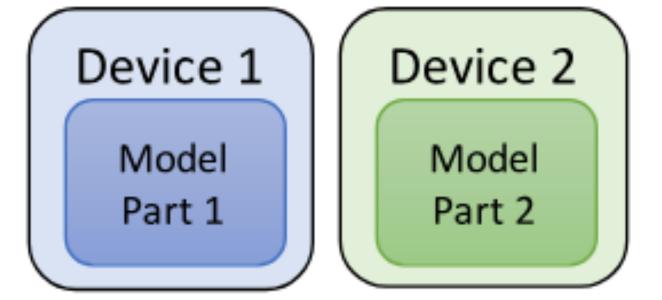
- Data Parallelism
- Model Parallelism
 - Pipeline parallel
 - Tensor parallel
 - Expert parallel

Data Parallel



Running multiple samples at same time

Model Parallel



Running multiple parts of network at same time

• Next class. Sequence parallelism, Automation, Gradient Compression, ZeRO

Data parallelism

- All workers share the same model, but have different data
 - In each step, i-th worker conducts:
 - Pull master weights w
 - Draw a data batch $B^{(i)}$
 - Compute the local gradient $\nabla w^{(i)}$
 - Push gradients to master
 - Master updates as:

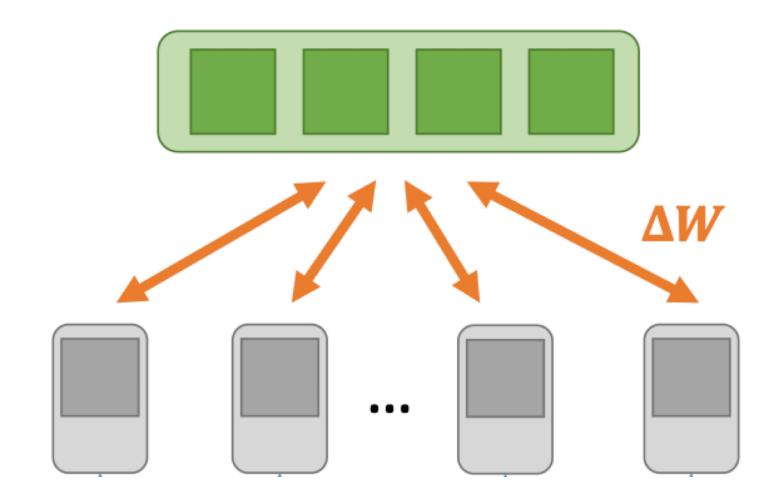
$$w \leftarrow w - \eta \left(\sum \nabla w^{(i)} / K \right)$$

Master (Parameter server) Coordinates the training ΔW Data Data Data Data

Workers (Computing)
GPU & Data storage

- Data. The whole dataset is usually evenly split among K workers
 - Possibly overlaps
 - Useful when some nodes are not reliable
 - Master can decide "indices" that each client will use
 - Can be dynamically fetched from a common data pool
 - Common when each node is a CPU, not a server

- Communication. Usually the key bottleneck
 - Worker requires:
 - Uplink: Gradient Size
 - Downlink: Model Size
 - Master requires:
 - Uplink: K * Model Size
 - Downlink: K * Gradient Size



- Example. Training a ResNet-50 with V100s
 - Model parameters (or gradients) are \approx 0.1GB
 - Suppose that we have 256 workers
 - If we use batch size 32:
 - Gradient computation. Takes \approx 0.33 sec/step
 - Communication. Adds \approx 0.16 sec/step
 - Assuming using 300GB/s bandwidth NVLink
 - => Communication adds 50% of the time!

Mitigating the comm. bottleneck

- Idea. Don't do one-to-one communication
 - Alternative communication strategies
 - Standardized as, e.g., Sockets / MPI

DISTRIBUTED COMMUNICATION PACKAGE - TORCH.DISTRIBUTED

NOTE

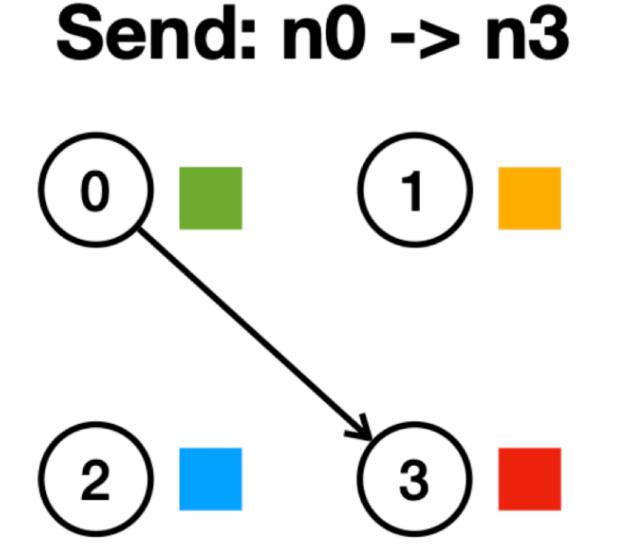
Please refer to PyTorch Distributed Overview for a brief introduction to all features related to distributed training.

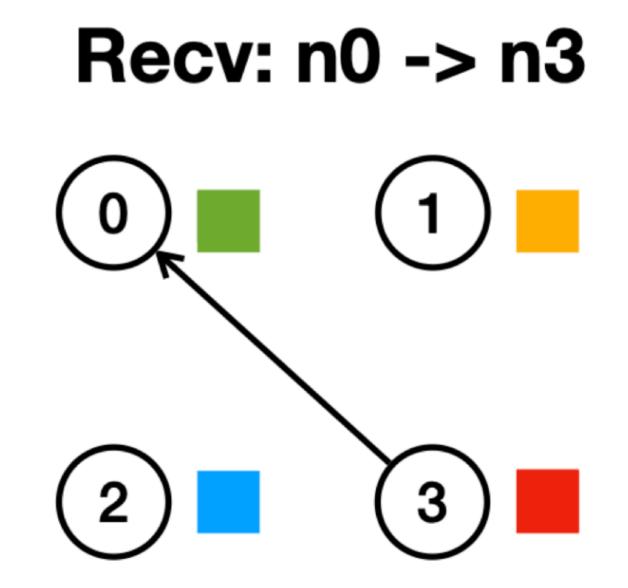
Backends

torch.distributed supports three built-in backends, each with different capabilities. The table below shows which functions are available for use with CPU / CUDA tensors. MPI supports CUDA only if the implementation used to build PyTorch supports it.

One-to-One

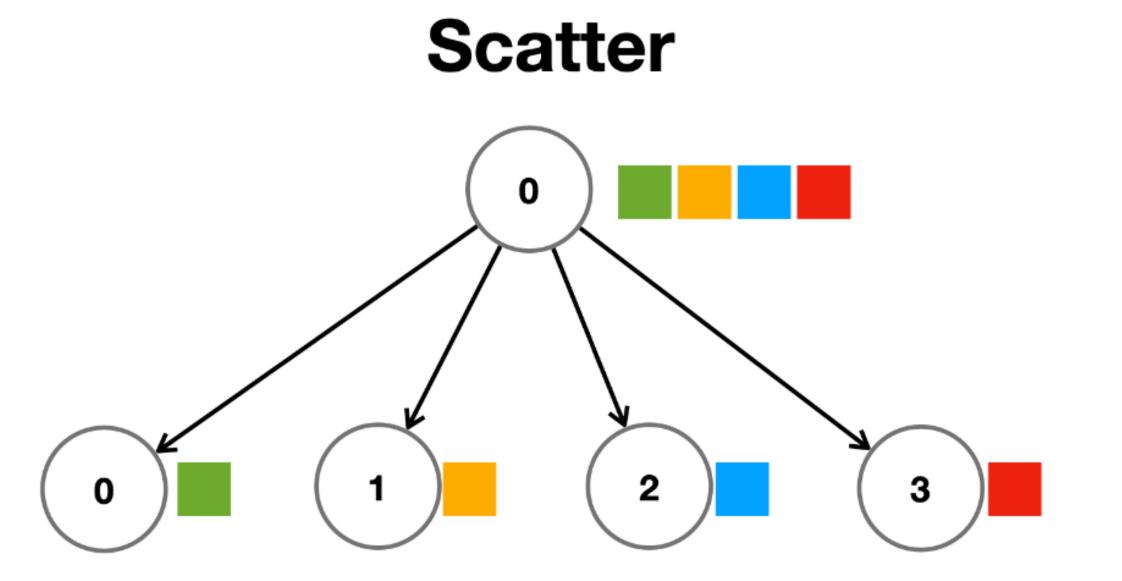
- Transfer data from one process to another
 - Send. Send a tensor to another
 - Receive. Receive a tensor from another

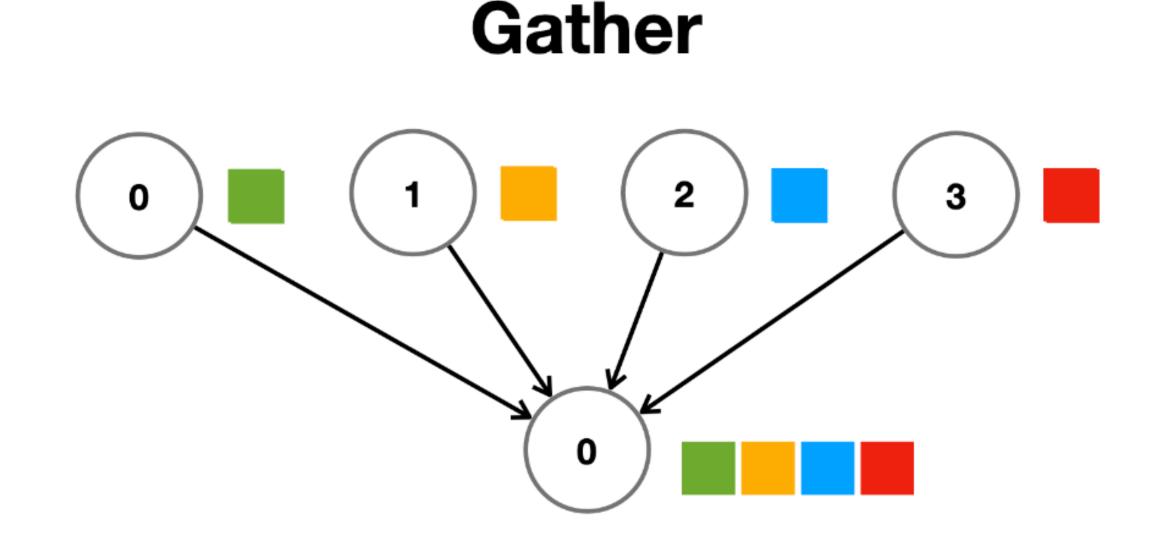




One-to-Many

- Transfer data from one process to many other processes, or vice versa
 - Scatter. Send a tensor to many workers
 - Gather. Receive a tensor from many workers
 - Not many things we can do for these

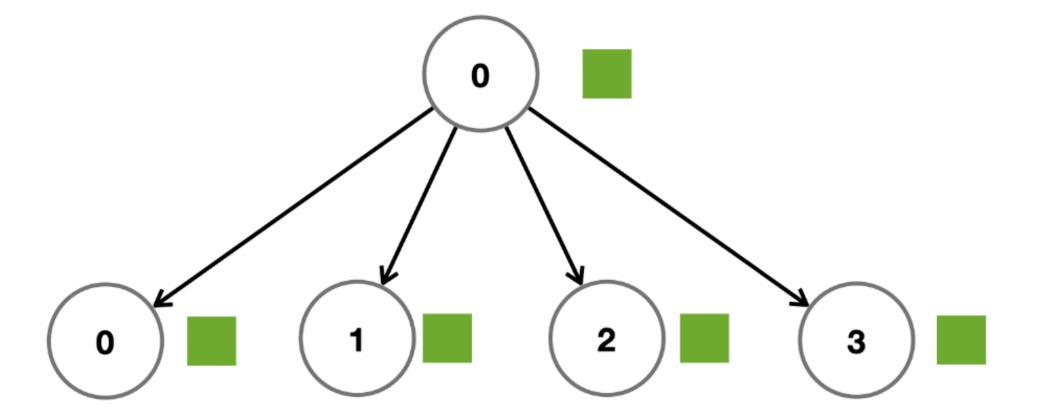




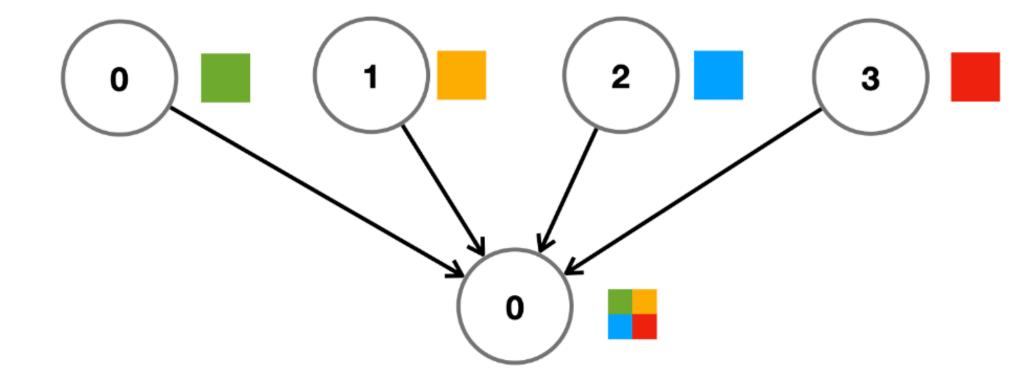
One-to-Many

- Sometimes, we only care about a single tensor (our interest)
 - Broadcast. Send the same tensor to many workers
 - Reduce. Receive tensors, while averaging into a single tensor
 - Time = O(1), Peak BW = O(K), Total Comm = O(K)

Broadcast



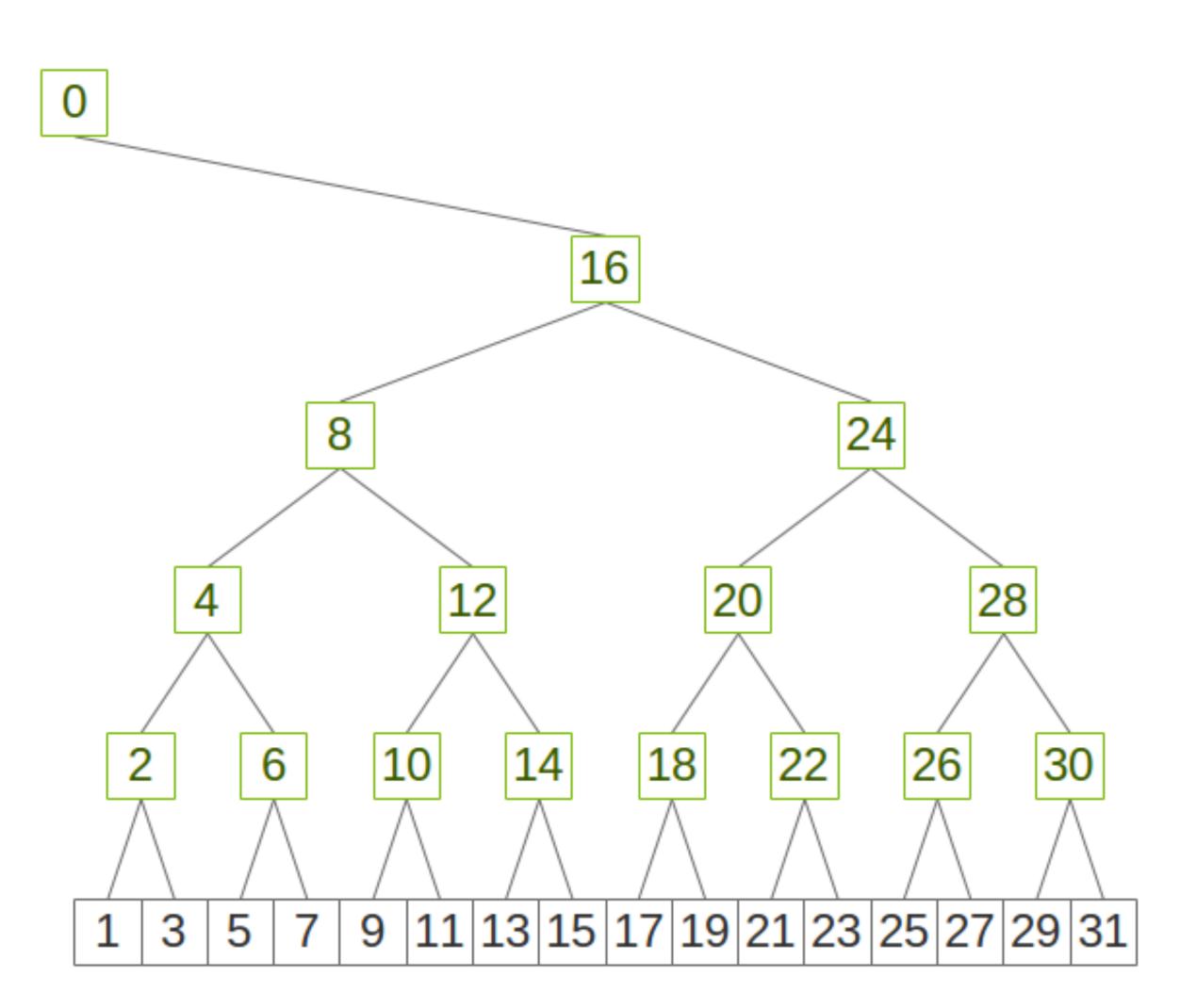
Reduce



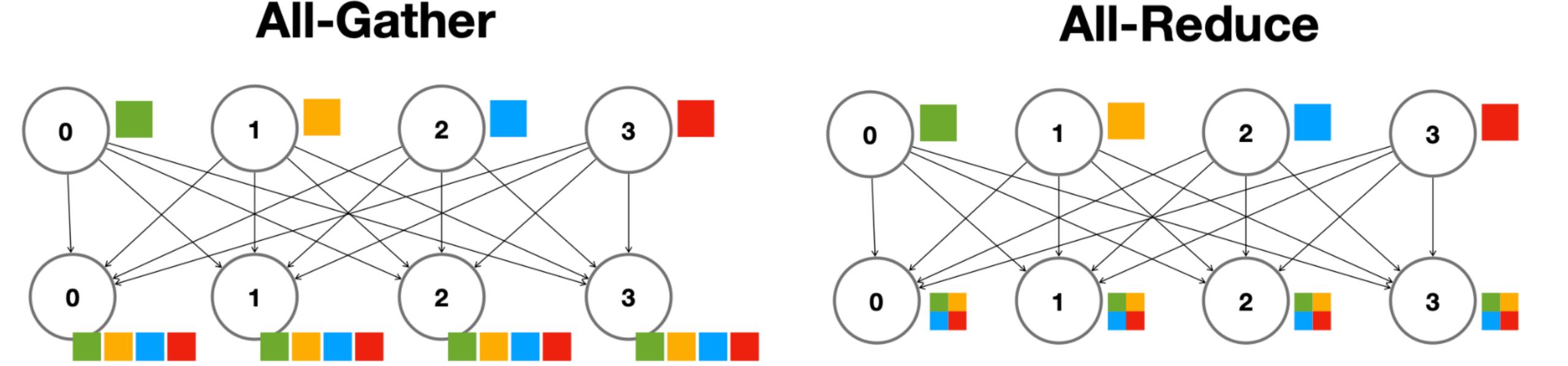
One-to-Many

- Idea. Use inter-worker communication to avoid bottleneck at the master
- If we use a binary tree structure, each worker requires only
 - Up: Grad size + 2 * Model size
 - Down: 2 * Grad size + Model size

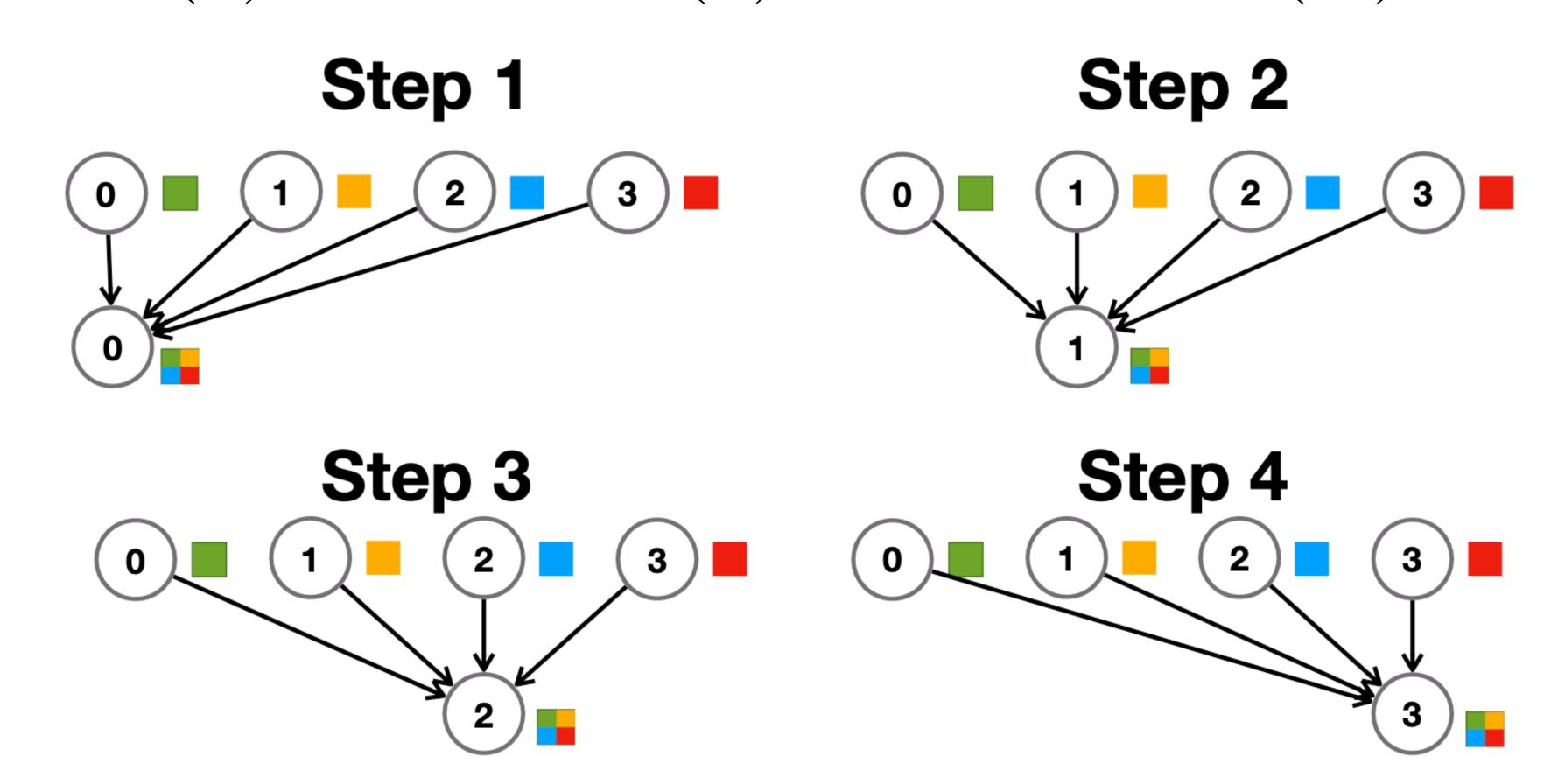
• Time $= O(\log K)$ Peak BW = O(1)Total Comm = O(K)



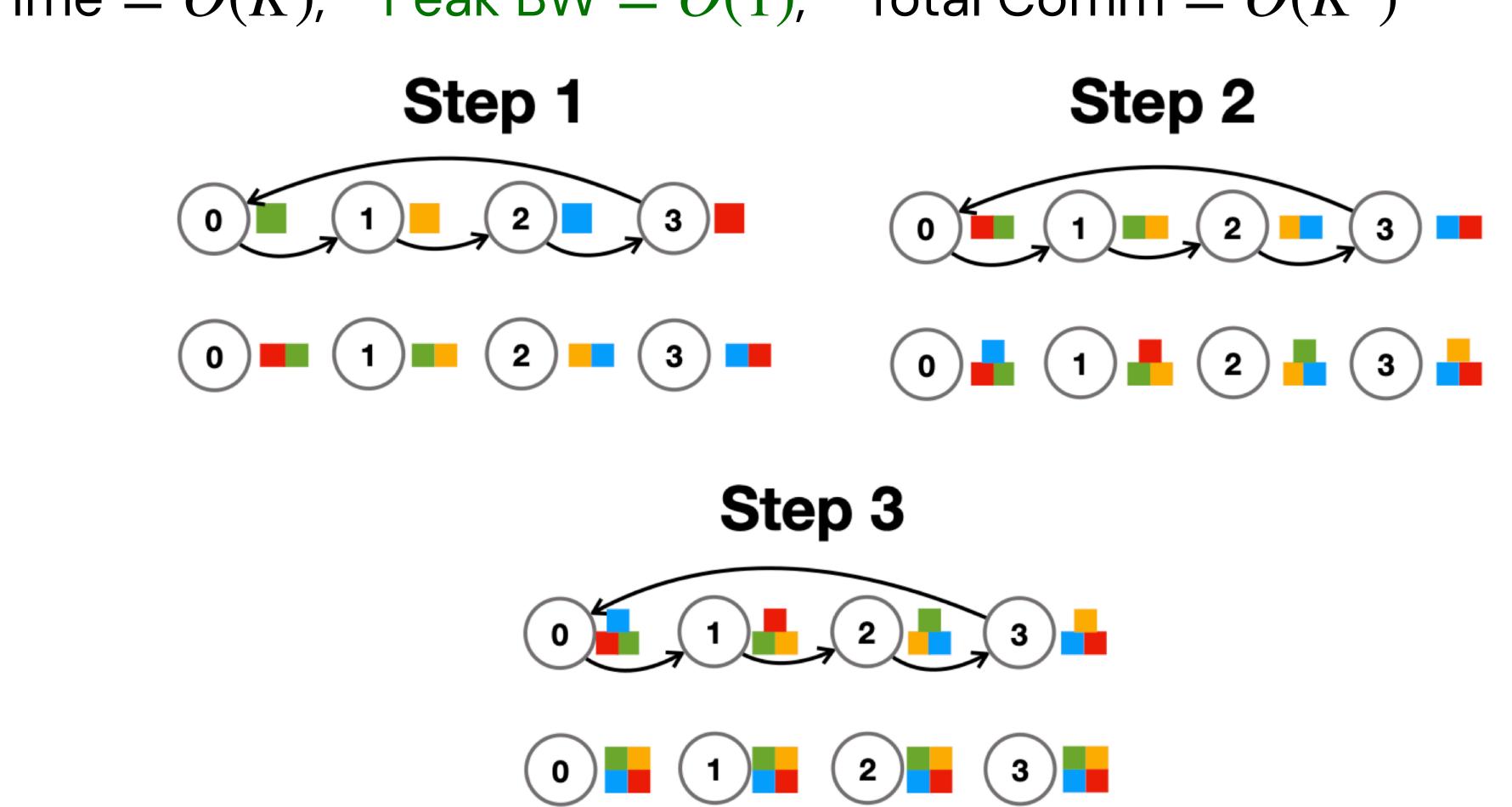
- Transfer the data without master
 - All-Gather. Conduct gather on all workers
 - All-Reduce. Conduct reduce on all workers



- Naïve. Sequentially conduct reduce operations
 - Time = O(K), Peak BW = O(K), Total Comm = $O(K^2)$



- Ring-AllReduce. Utilize inter-worker communication
 - Time = O(K), Peak BW = O(1), Total Comm = $O(K^2)$

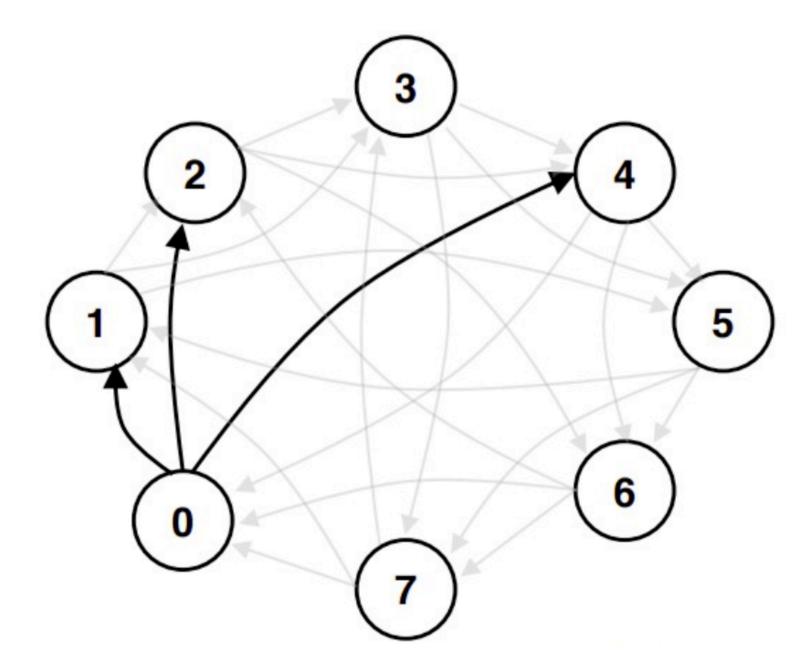


- Recursive Halving. If inter-worker communication is dense,
 - Time = $O(\log K)$, Peak BW = O(1), Total Comm = $O(K \log K)$



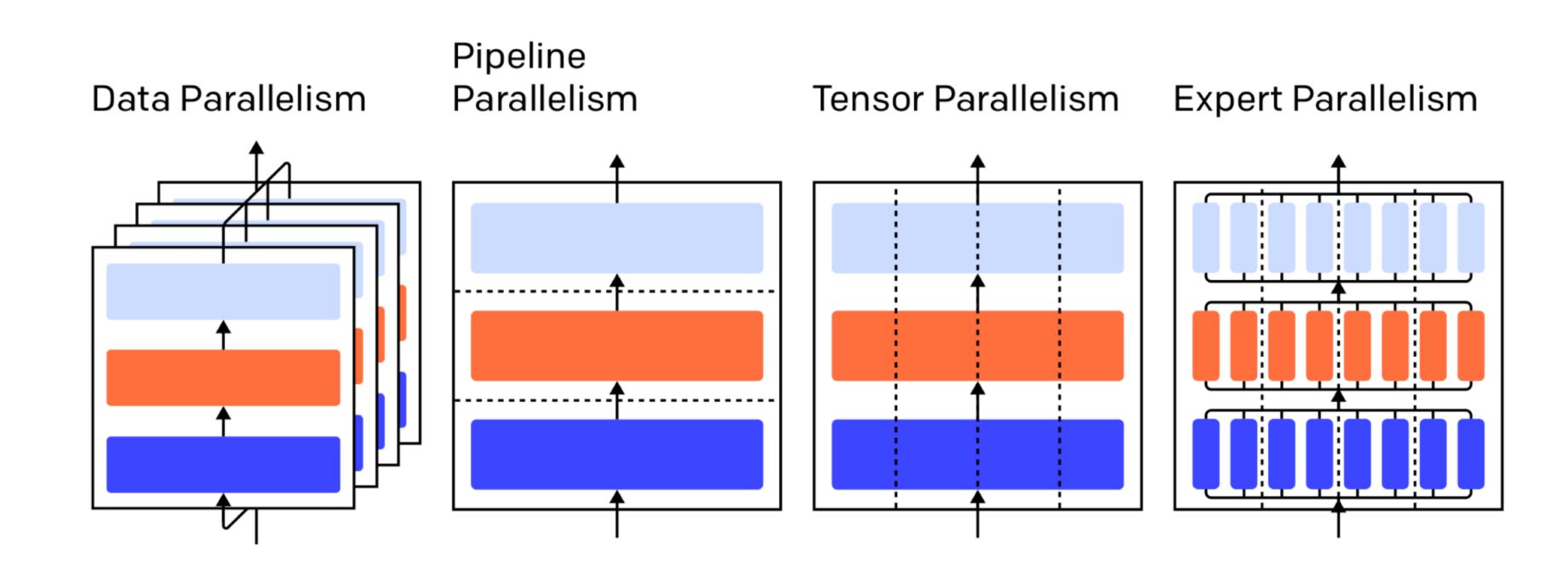
Advanced Topics

- Synchronization. In practice, a full synchronization of GPUs is unnecessary
 - Can reduce the communication burden even further
 - <u>Hogwild! (2011)</u>. Theoretically, one can still converge with updates based on gradients of slightly out-of-sync parameters
 - Stochastic gradient push (Assran et al., 2019)
 - Grouped all-reduce with intermittent group swapping (Li et al., 2021)



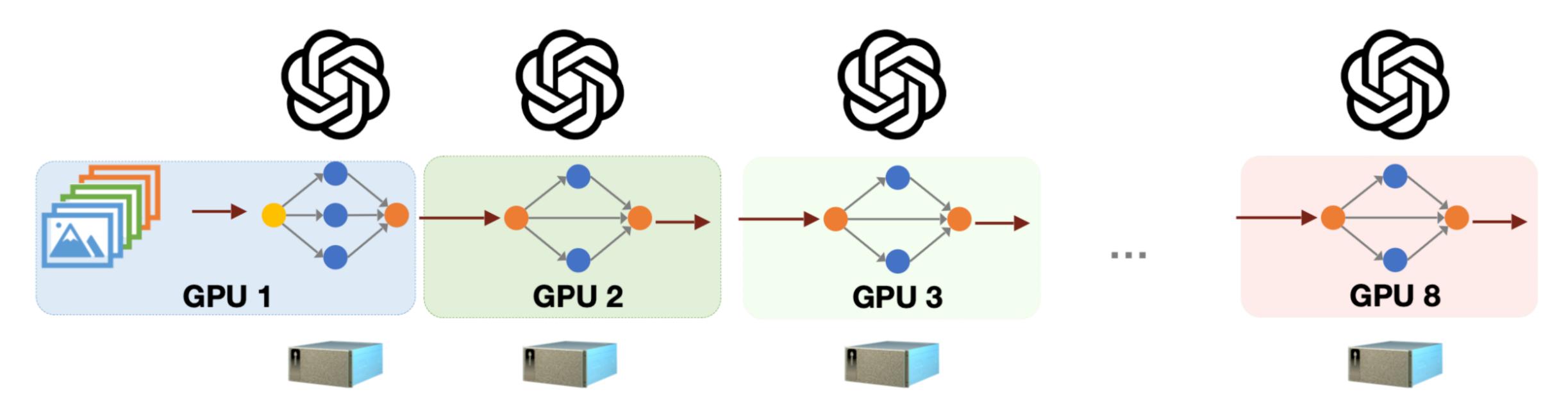
Model parallelism

- All workers share the same data, but have different model parts
 - Pipeline. Sequential processing
 - Tensor. Parallel processing
 - Expert. Conditional processing



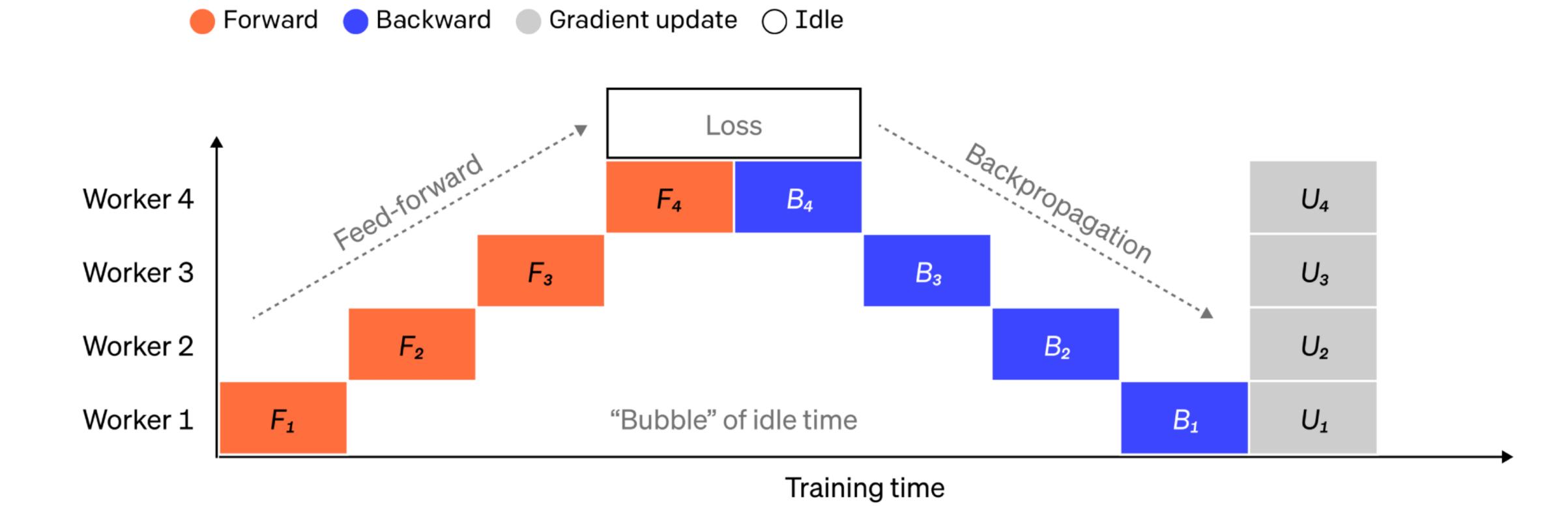
Pipeline parallelism

- Each worker has different layers
 - Thus, less burden for
 - Memory. Keeping the parameters and activations on RAM
 - Computation. Computing forward & backward



Pipeline parallelism

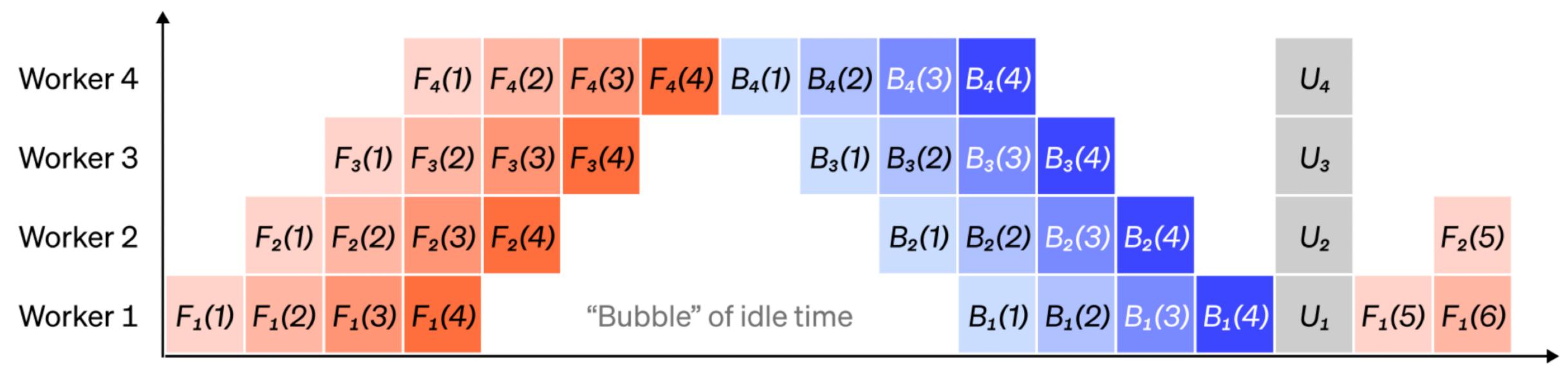
- Naïve. Simply activate all workers in series
 - Low GPU utilization ratio
 - No speedup (slower!)



GPipe (2019)

- Split a single batch into multiple micro-batches
 - Process micro-batches without gradient updates in between
 - Forward Backward Update Idle

GPipe

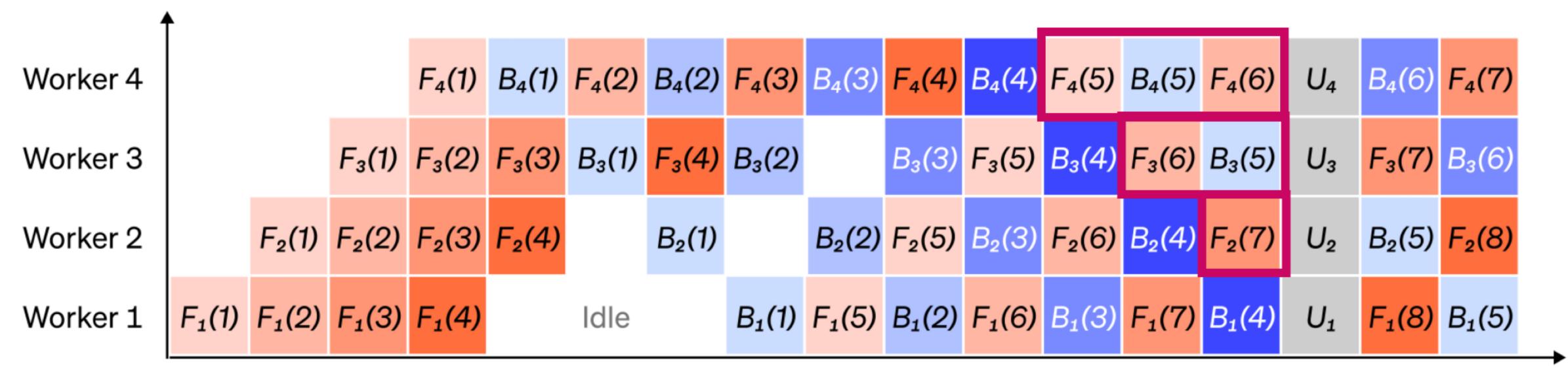


Training time

PipeDream (2019)

- Interleave some out-of-sync ("stale") operations from succeeding batch
 - called inter-batch pipelining
 - PipeDream automatized such interleaving

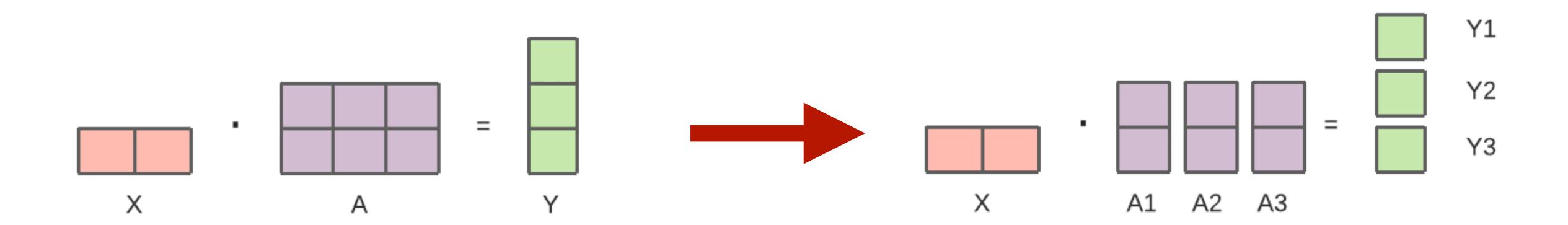
PipeDream



Training time

Tensor parallelism

- Make the operations parallel by partitioning each tensor
 - Less bubble
- Key challenge. The output becomes sharded as well



Tensor parallelism

- Idea. Splitting direction matters!
- Suppose we have a matmul $Y = \sigma(XA)$
- Splitting by row. We conduct

$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}, \quad A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

Thus, we have

$$Y = \sigma(X_1A_1 + X_1A_2)$$

• The output requires all-reduce before activation

Tensor parallelism

• Splitting by column. We conduct

$$X=X$$
, $A=\begin{bmatrix}A_1 & A_2\end{bmatrix}$

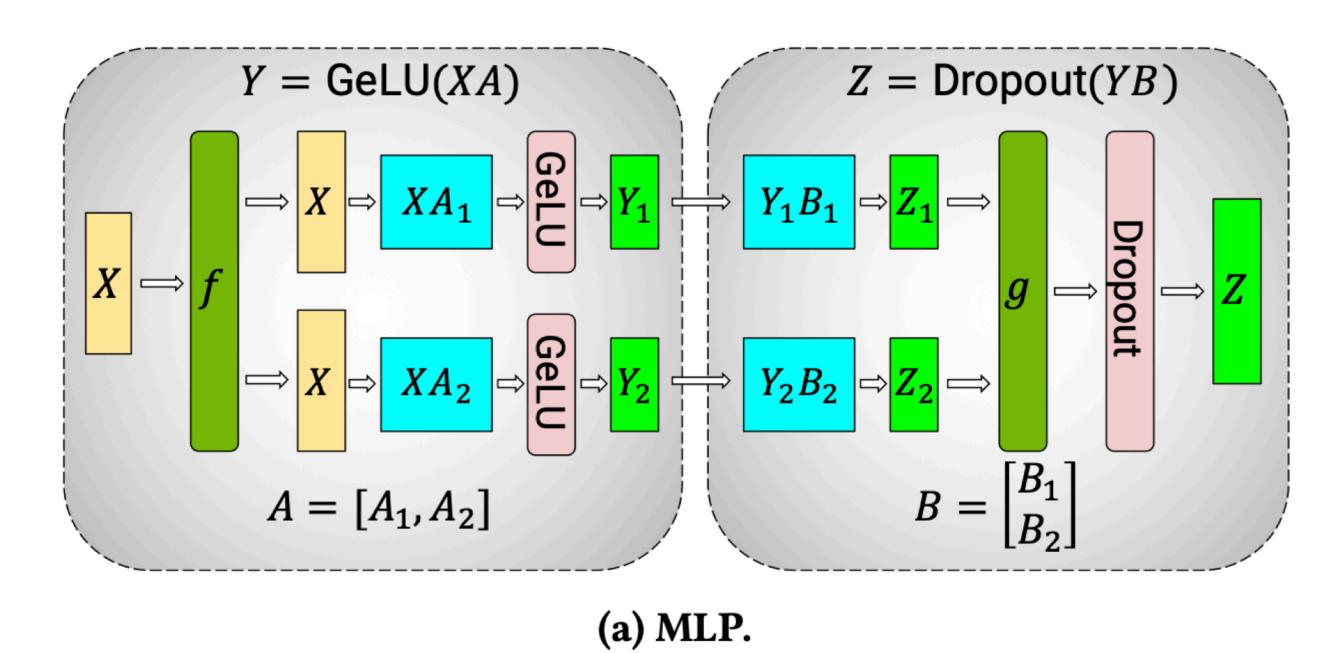
Then, we have

$$Y = \begin{bmatrix} \sigma(XA_1) & \sigma(XA_2) \end{bmatrix}$$

- The output does not require all-reduce
 - ullet But Y are sharded, forcing row-splitting in the next layer

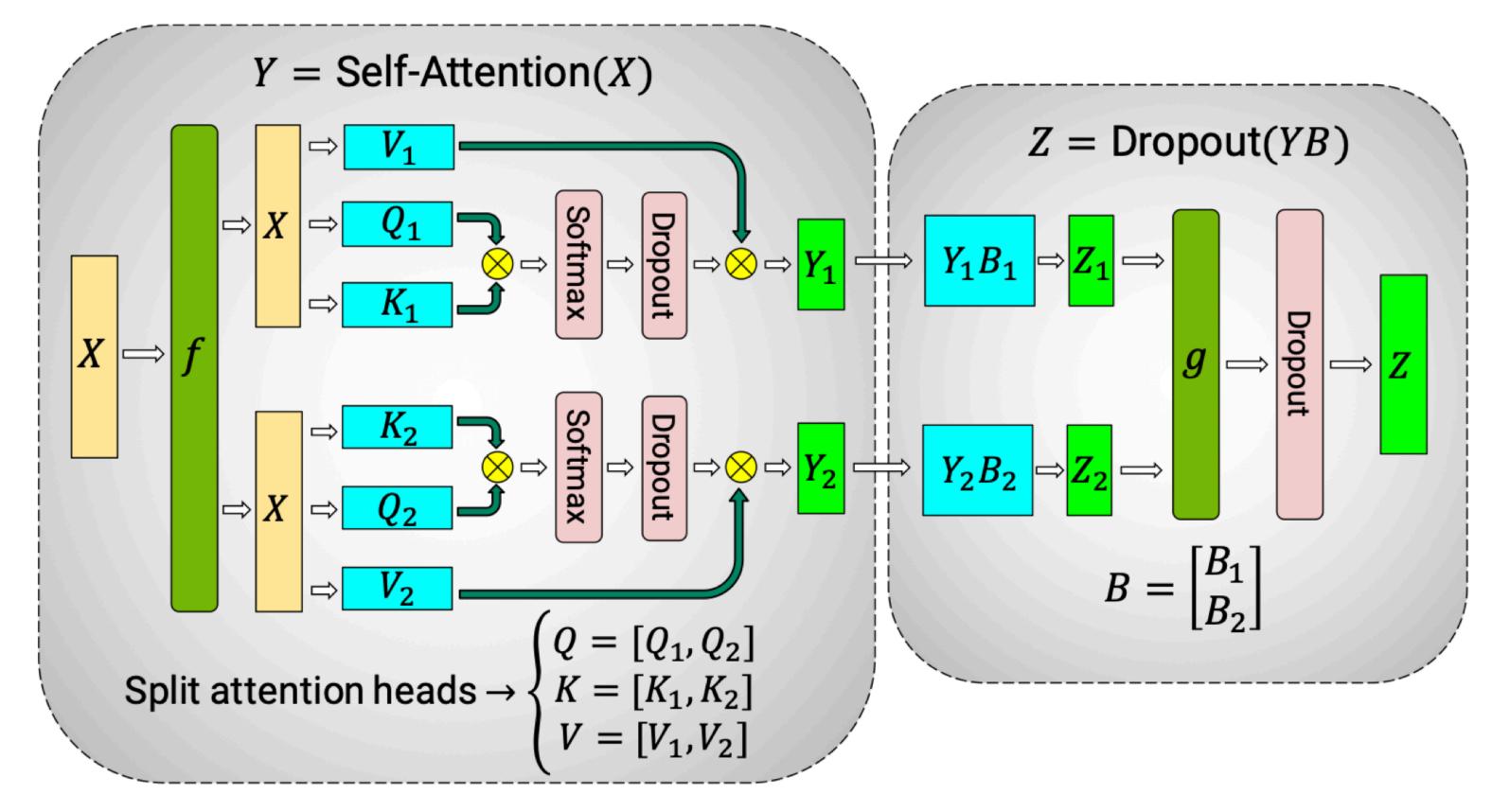
Megatron-LM (2019)

- A recipe customized for transformer-based LLMs
- For FFNs, conduct column-split first and then row-split
 - f: identity in forward-pass, all-reduce in backward pass
 - g:all-reduce in forward pass, identity in backward pass



Megatron-LM (2019)

- For attentions, similarly split Q/K/V heads by columns
 - Output linear layer is split by rows



(b) Self-Attention.

Expert parallelism

• In very large LMs, the FFNs tend to take most parameters and computations

1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

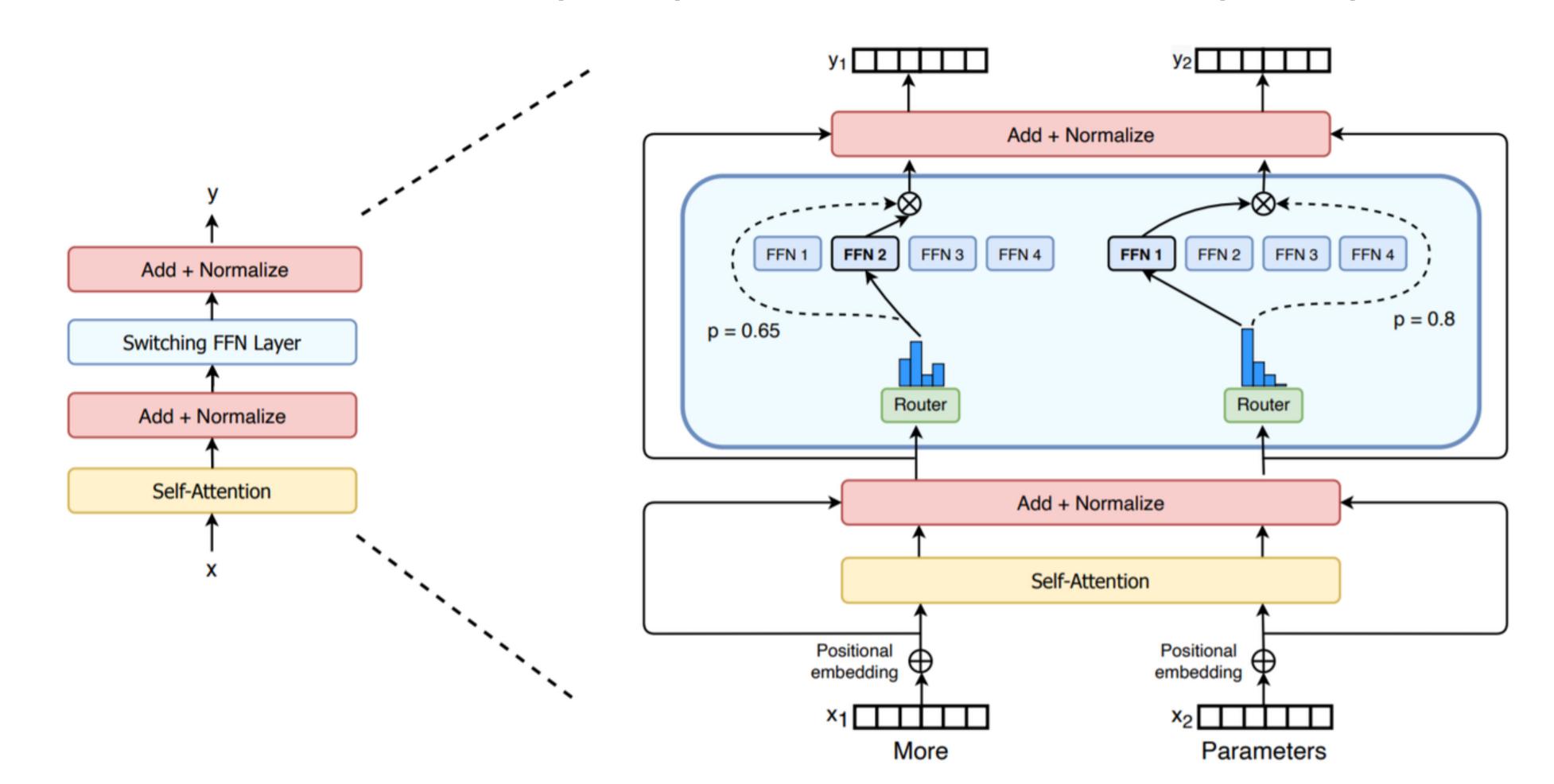
Expert parallelism

- Idea. Distribute FFNs only over the GPUs
 - Send a fraction of data in a batch to each GPU

- Even better. Specialize FFNs for different tokens (experts)
 - Do "routing" of tokens to each FFN

Mixture-of-Experts

- Existed from LSTM era, back in 2017
 - Transformers. GShards (2021), Switch Transformers (2022)



Mixture-of-Experts

An output of an MoE module is

$$y = \sum_{i=1}^{n} G_i(x) E_i(x)$$

- $E_i(\cdot)$: Output of expert i
- $G_i(\cdot)$: Gating function

p = 0.65

Router

FFN 2

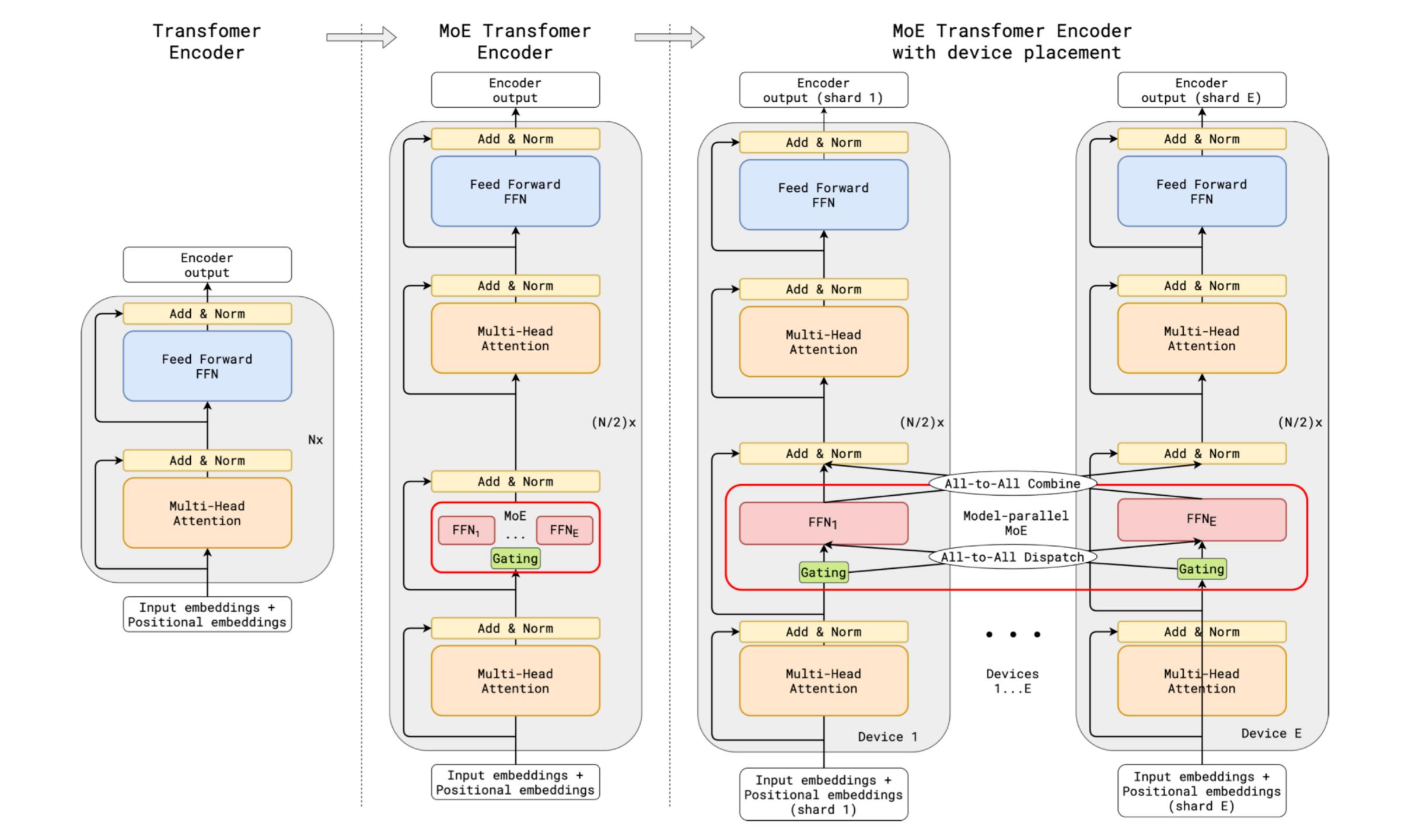
FFN 1

FFN 3

FFN 4

$$G(x) = \text{SoftMax}(\text{KeepTopK}(H(x)))$$
 (or change the order of SM & TK)

- H can be a linear model H(x) = Wx + (noise)
 - Noise for load balancing



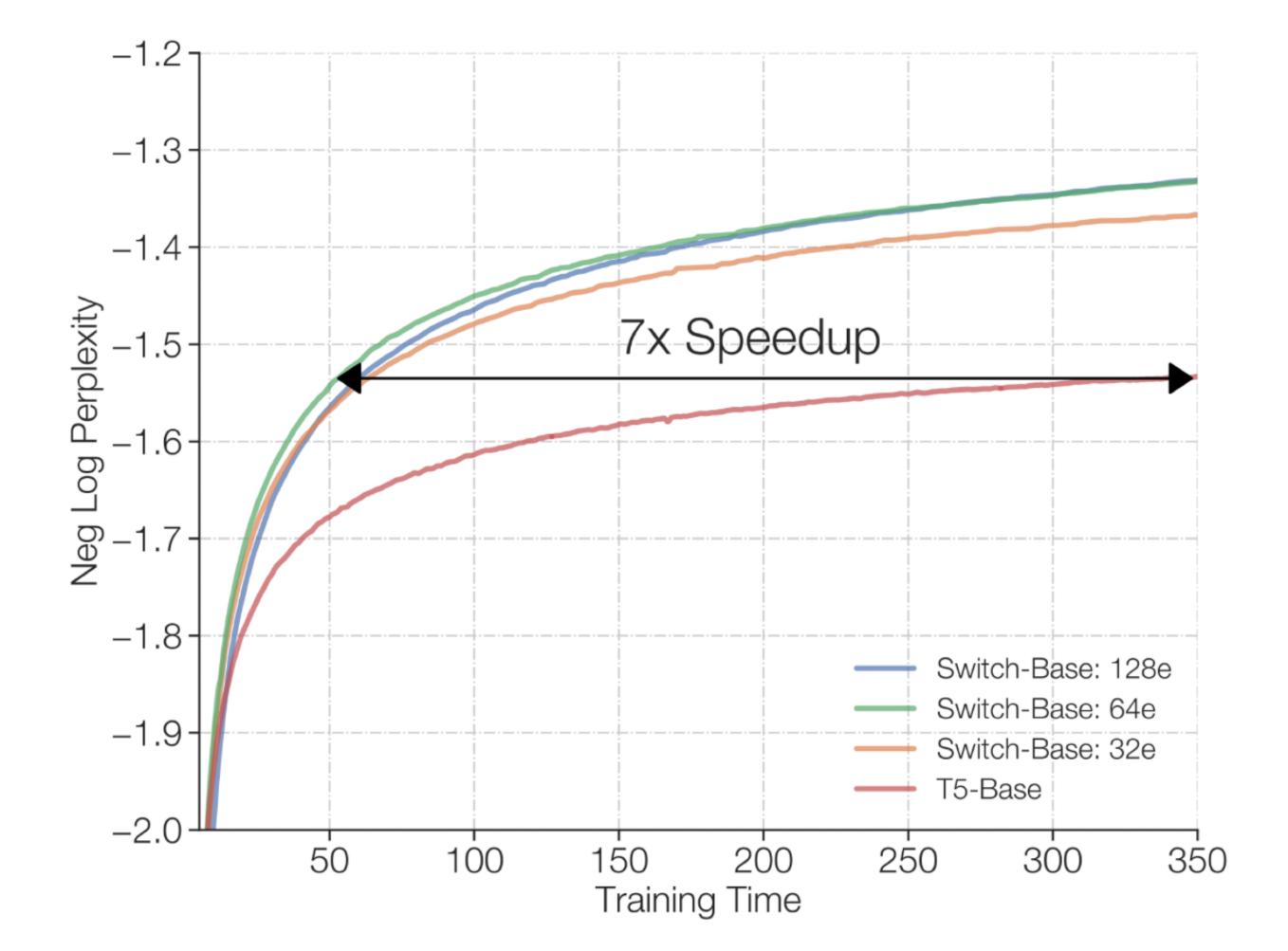
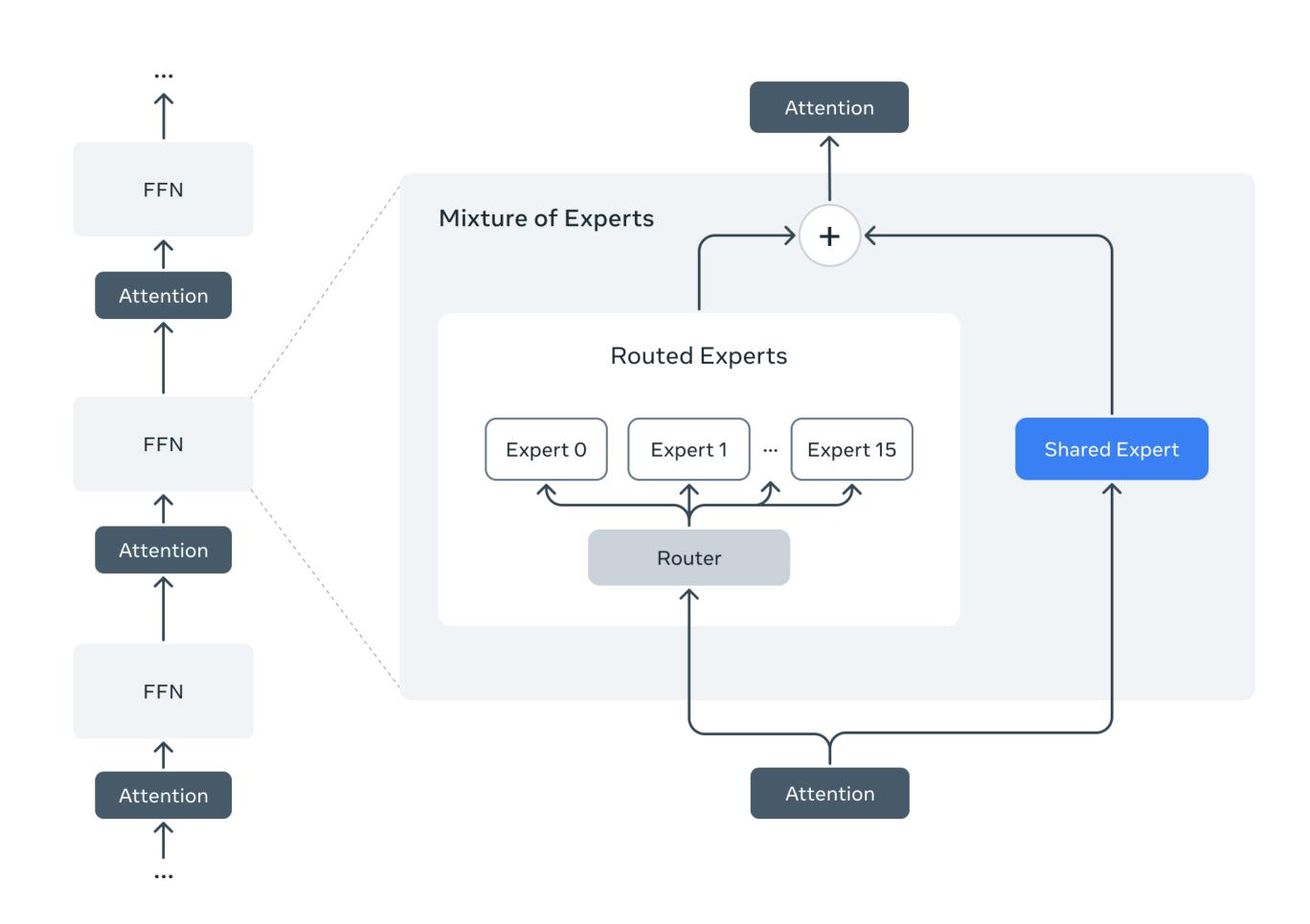


Figure 5: Speed advantage of Switch Transformer. All models trained on 32 TPUv3 cores with equal FLOPs per example. For a fixed amount of computation and training time, Switch Transformers significantly outperform the dense Transformer baseline. Our 64 expert Switch-Base model achieves the same quality in *one-seventh* the time of the T5-Base and continues to improve.

Advantages

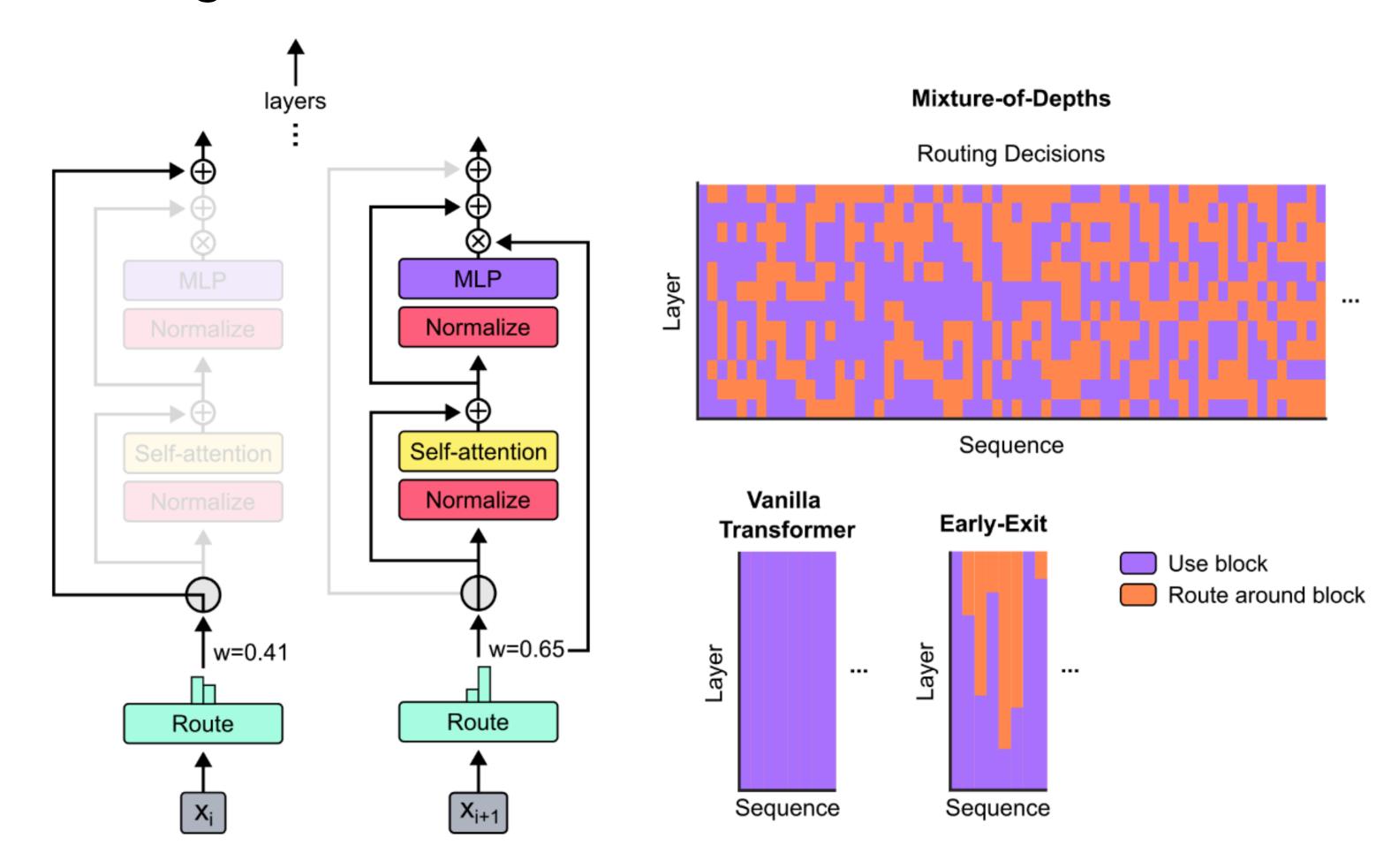
- Training. Can train overparameterized models with low cost
- Inference. Small number of active parameters

- Example: LLaMA-4.
 - Uses 14B active parameters
 - 128 routed experts
 - 1 shared expert



Further Readings

- Mixture-of-Depths
 - https://arxiv.org/abs/2404.02258



That's it for today