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Recap
• Last three classes.  

• Efficient Training 

• Transferring knowledge from another model 

• Editing 

• Pinpoint knowledge injection to a model with minimal ops 

• Today. Efficient Fine-Tuning 

• Update less parameters than full model



Basic idea



Motivation
• Often, we are not happy with large pre-trained models (e.g., LLMs) 

• Specialize for certain downstream tasks 

• Correct errors / outdated info / harmful behavior 

• Personalize for individuals
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Motivation
• Thus, we often want to train further using additional data—i.e., fine-tune 

• Problem. 

• Memory. Too many trainable parameters 

• Quality. Forgets what model knows 

• Storage. Need to store the delta 

+ Need to do it many times (personalization, recent info, … )



Idea
• Reduce the number of trainable parameters 

• Less memory 

• Less forgetting 

• Less storage 

• Classic example. 

• Fine-tune later layers 

• Early layers frozen 

• Intuition. Early layers extract elementary features



Approaches
• Roughly three categories:

Han et al., “Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey” TMLR 2024



Additive PEFT



Additive PEFT
• Idea. Add some extra parameters, and use them during inference 

• Model dim. Adding model parameters 

 

• Data dim. Adding prompt 

f(x; θ) ⇒ f(x; (θ, ϕ))

f(x; θ) ⇒ f(p ⊕ x; θ)



Adding parameters
• Example. Adapter (Houlsby et al., 2019) 

• Adds small hourglass-like MLP after each layer 

• Very small init. w/ skip connection 

• Begin from “no adapter”

Houlsby et al., “Parameter-Efficient Transfer Learning for NLP” ICML 2019



Adding parameters
• Drawback. Slower inference 

• Added computation 

• Serial structure



Adding parameters
• Remedy. 

• Parallelization 

• LoRA (later today)

He et al., “Towards a unified view of parameter-efficient transfer learning” ICLR 2022

Serial Parallel



Adding prompts
• Motivation. Prepending additional 

examples make LLMs work better 

• Do we really need them to be 
“examples”? 

• Can we optimize them explicitly?

Brown et al., “Language Models are Few-Shot Learners,” arXiv 2020



Adding prompts
• Option 1. Human thinks hard, and write them manually 

• Option 2. Automated search, in the discrete word space 

• Reinforcement learning 

• Gradient-based search (e.g., Autoprompt)

Shin et al., “AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts,” EMNLP 2020



Adding prompts
• Option 3. Continuous optimization (Prompt tuning) 

• Train embedding vectors with SGD 

• Lose interpretability, but good performance

Lester et al., “The Power of Scale for Parameter-Efficient Prompt Tuning,” EMNLP 2021



Adding prompts
• Prefix Tuning. Continuous optimization for the intermediate features 

• i.e., modifies key-value cache, not the input 

• more storage, less computation, same memory

Li and Liang, “Prefix-Tuning: Optimizing Continuous Prompts for Generation,” ACL 2021 
https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part28.html

https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part28.html


Adding prompts
• Prefix tuning matches / outperforms full fine-tuning 

• Especially good in the low-data scenarios

https://magazine.sebastianraschka.com/

https://magazine.sebastianraschka.com/


Selective PEFT



Selective PEFT
• Idea. Fine-tune only a fraction of the parameters 

• Naturally, involves the notion of sparsity: 

• Unstructured 

• Structured



Unstructured sparse PEFT
• Example. Diff pruning (2020) 

• Train a sparse update vector with -norm penalty 

 

• Uses a stochastic gating function, similar to usual sparse training

ℓ0

min
δ (𝔼[ℓ( f(x; θ + δ), y)] + λ ⋅ ∥δ∥0)

Guo et al., “Parameter-efficient transfer learning with diff pruning” ACL 2021



Structured sparse PEFT
• Example. BitFit (2022) 

• Trains only the bias terms, not weights

Ben-Zaken et al., “BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models” ACL 2022



Reparameterization PEFT



Reparameterization PEFT
• Idea. Similar to additive, but the additional parameters can be merged 

• Zero increase in the inference cost!



LoRA
• Idea. Add low-rank updates to the model 

 

• Here,  with small rank  

• Very few parameters;  

•  is initialized as  

• Initial model is same as “no LoRA”

f(x; W) ⇒ f(x; W + BA)

B ∈ ℝm×r, A ∈ ℝr×n r

mn → r(m + n)

B 0

Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models” ICLR 2022



LoRA
• LoRA matches or outperforms full fine-tuning 

• with very small rank, usually (e.g., 8) 

• applied only to self-attention layer

Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models” ICLR 2022



Variants
• VeRA reduces the number of per-task parameters using random features

Kopiczko et al., “VeRA: Vector-based Random Matrix Adaptation,” ICLR 2024



Variants
• DoRA additionally separates out magnitude vector 

(related: training only scale&shift works well for CNNs; Frankle et al., 2021) 

• Much lower rank needed 

• Intuition. Plays a similar role as 
“weight/batch normalization,” 
which makes the loss Hessian 
closer to the identity matrix 

• Thus enhances training

Frankle et al., “Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs,” ICLR 2021 
Liu et al., “DoRA: Weight-Decomposed Low-Rank Adaptation” ICML 2024



Further ideas
• Initialization matters in LoRA 

• Is  initialization optimal? 

• Suppose that      ,      and      

•  

•                                            0  (very slow training) 

•  
(thus, rescaling  changes)

0

f(x) = w2w1x ℓ(y, f(x)) = (y − f(x))2/2

Δw2 = ( f(x) − y)w1x

Δw1 = ( f(x) − y)w2x ⇐

Δ(w2w1) ≈ ( f(x) − y)(w2
1 + w2

2)x
(w1, w2) → (cw1, w2/c)



Further readings
• The Impact of initialization on LoRA Finetuning Dynamics 

• https://arxiv.org/abs/2406.08447 

• PiSSA 

• https://arxiv.org/abs/2404.02948 

• MiLoRA 

• https://arxiv.org/abs/2406.09044

https://arxiv.org/abs/2406.08447
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2406.09044


Other Ideas



QLoRA
• Motivation. LoRA still requires much memory for loading weight parameters 

                     of the backbone model 

• Idea. Quantize the backbone to a smaller size

Dettmers et al., “QLoRA: Efficient Finetuning of Quantized LLMs” NeurIPS 2023



QLoRA
• QLoRA introduces several tricks 

• NormalFloat4. A new 4-bit format that assigns similar number of 
elements in each quantized bin (given that data is normally distributed) 

• Double quantization. Quantize 
the scale factors 

• PagedOptimizer. Fast GPU-CPU 
transfers of the optimizer states 

(will be discussed later)

Dettmers et al., “QLoRA: Efficient Finetuning of Quantized LLMs” NeurIPS 2023



PEQA
• Simpler modification of PTQ that aims for acceleration 

• Idea. Fine-tune the scaling factors of PTQ-ed model

Kim et al., “Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization” NeurIPS 2023



PEQA

Kim et al., “Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization” NeurIPS 2023



GaLore
• Motivation. Keeping the optimizer states of Adam requires much memory 

• Idea. Keep the weight updates full-rank, but run optimizer in projected space

Zhao et al., “GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection” ICML 2024



Further Readings
• Checkpointing for RAM savings 

• LOMO: https://arxiv.org/abs/2306.09782 

• Long-Context LoRA 

• LongLoRA: https://arxiv.org/abs/2309.12307

https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2309.12307


That’s it for today 🙌


