
Spring 2025

Efficient Fine-Tuning
EECE695D: Efficient ML Systems

Recap
• Last three classes.

• Efficient Training

• Transferring knowledge from another model

• Editing

• Pinpoint knowledge injection to a model with minimal ops

• Today. Efficient Fine-Tuning

• Update less parameters than full model

Basic idea

Motivation
• Often, we are not happy with large pre-trained models (e.g., LLMs)

• Specialize for certain downstream tasks

• Correct errors / outdated info / harmful behavior

• Personalize for individuals

Ground TruthSAM outputPhoto
Photo Credit: Cpt. Yuji Byun

Motivation
• Thus, we often want to train further using additional data—i.e., fine-tune

• Problem.

• Memory. Too many trainable parameters

• Quality. Forgets what model knows

• Storage. Need to store the delta

+ Need to do it many times (personalization, recent info, …)

Idea
• Reduce the number of trainable parameters

• Less memory

• Less forgetting

• Less storage

• Classic example.

• Fine-tune later layers

• Early layers frozen

• Intuition. Early layers extract elementary features

Approaches
• Roughly three categories:

Han et al., “Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey” TMLR 2024

Additive PEFT

Additive PEFT
• Idea. Add some extra parameters, and use them during inference

• Model dim. Adding model parameters

• Data dim. Adding prompt

f(x; θ) ⇒ f(x; (θ, ϕ))

f(x; θ) ⇒ f(p ⊕ x; θ)

Adding parameters
• Example. Adapter (Houlsby et al., 2019)

• Adds small hourglass-like MLP after each layer

• Very small init. w/ skip connection

• Begin from “no adapter”

Houlsby et al., “Parameter-Efficient Transfer Learning for NLP” ICML 2019

Adding parameters
• Drawback. Slower inference

• Added computation

• Serial structure

Adding parameters
• Remedy.

• Parallelization

• LoRA (later today)

He et al., “Towards a unified view of parameter-efficient transfer learning” ICLR 2022

Serial Parallel

Adding prompts
• Motivation. Prepending additional

examples make LLMs work better

• Do we really need them to be
“examples”?

• Can we optimize them explicitly?

Brown et al., “Language Models are Few-Shot Learners,” arXiv 2020

Adding prompts
• Option 1. Human thinks hard, and write them manually

• Option 2. Automated search, in the discrete word space

• Reinforcement learning

• Gradient-based search (e.g., Autoprompt)

Shin et al., “AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts,” EMNLP 2020

Adding prompts
• Option 3. Continuous optimization (Prompt tuning)

• Train embedding vectors with SGD

• Lose interpretability, but good performance

Lester et al., “The Power of Scale for Parameter-Efficient Prompt Tuning,” EMNLP 2021

Adding prompts
• Prefix Tuning. Continuous optimization for the intermediate features

• i.e., modifies key-value cache, not the input

• more storage, less computation, same memory

Li and Liang, “Prefix-Tuning: Optimizing Continuous Prompts for Generation,” ACL 2021
https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part28.html

https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part28.html

Adding prompts
• Prefix tuning matches / outperforms full fine-tuning

• Especially good in the low-data scenarios

https://magazine.sebastianraschka.com/

https://magazine.sebastianraschka.com/

Selective PEFT

Selective PEFT
• Idea. Fine-tune only a fraction of the parameters

• Naturally, involves the notion of sparsity:

• Unstructured

• Structured

Unstructured sparse PEFT
• Example. Diff pruning (2020)

• Train a sparse update vector with -norm penalty

• Uses a stochastic gating function, similar to usual sparse training

ℓ0

min
δ (𝔼[ℓ(f(x; θ + δ), y)] + λ ⋅ ∥δ∥0)

Guo et al., “Parameter-efficient transfer learning with diff pruning” ACL 2021

Structured sparse PEFT
• Example. BitFit (2022)

• Trains only the bias terms, not weights

Ben-Zaken et al., “BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models” ACL 2022

Reparameterization PEFT

Reparameterization PEFT
• Idea. Similar to additive, but the additional parameters can be merged

• Zero increase in the inference cost!

LoRA
• Idea. Add low-rank updates to the model

• Here, with small rank

• Very few parameters;

• is initialized as

• Initial model is same as “no LoRA”

f(x; W) ⇒ f(x; W + BA)

B ∈ ℝm×r, A ∈ ℝr×n r

mn → r(m + n)

B 0

Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models” ICLR 2022

LoRA
• LoRA matches or outperforms full fine-tuning

• with very small rank, usually (e.g., 8)

• applied only to self-attention layer

Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models” ICLR 2022

Variants
• VeRA reduces the number of per-task parameters using random features

Kopiczko et al., “VeRA: Vector-based Random Matrix Adaptation,” ICLR 2024

Variants
• DoRA additionally separates out magnitude vector

(related: training only scale&shift works well for CNNs; Frankle et al., 2021)

• Much lower rank needed

• Intuition. Plays a similar role as
“weight/batch normalization,”
which makes the loss Hessian
closer to the identity matrix

• Thus enhances training

Frankle et al., “Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs,” ICLR 2021
Liu et al., “DoRA: Weight-Decomposed Low-Rank Adaptation” ICML 2024

Further ideas
• Initialization matters in LoRA

• Is initialization optimal?

• Suppose that , and

•

• 0 (very slow training)

•
(thus, rescaling changes)

0

f(x) = w2w1x ℓ(y, f(x)) = (y − f(x))2/2

Δw2 = (f(x) − y)w1x

Δw1 = (f(x) − y)w2x ⇐

Δ(w2w1) ≈ (f(x) − y)(w2
1 + w2

2)x
(w1, w2) → (cw1, w2/c)

Further readings
• The Impact of initialization on LoRA Finetuning Dynamics

• https://arxiv.org/abs/2406.08447

• PiSSA

• https://arxiv.org/abs/2404.02948

• MiLoRA

• https://arxiv.org/abs/2406.09044

https://arxiv.org/abs/2406.08447
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2406.09044

Other Ideas

QLoRA
• Motivation. LoRA still requires much memory for loading weight parameters

 of the backbone model

• Idea. Quantize the backbone to a smaller size

Dettmers et al., “QLoRA: Efficient Finetuning of Quantized LLMs” NeurIPS 2023

QLoRA
• QLoRA introduces several tricks

• NormalFloat4. A new 4-bit format that assigns similar number of
elements in each quantized bin (given that data is normally distributed)

• Double quantization. Quantize
the scale factors

• PagedOptimizer. Fast GPU-CPU
transfers of the optimizer states

(will be discussed later)

Dettmers et al., “QLoRA: Efficient Finetuning of Quantized LLMs” NeurIPS 2023

PEQA
• Simpler modification of PTQ that aims for acceleration

• Idea. Fine-tune the scaling factors of PTQ-ed model

Kim et al., “Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization” NeurIPS 2023

PEQA

Kim et al., “Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization” NeurIPS 2023

GaLore
• Motivation. Keeping the optimizer states of Adam requires much memory

• Idea. Keep the weight updates full-rank, but run optimizer in projected space

Zhao et al., “GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection” ICML 2024

Further Readings
• Checkpointing for RAM savings

• LOMO: https://arxiv.org/abs/2306.09782

• Long-Context LoRA

• LongLoRA: https://arxiv.org/abs/2309.12307

https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2309.12307

That’s it for today 🙌

