EECE695D: Efficient ML Systems

Spring 2025

- Last three classes.
 - Efficient Training
 - Transferring knowledge from another model
 - Editing
- **Today.** Efficient Fine-Tuning
 - Update less parameters than full model

Recap

Pinpoint knowledge injection to a model with minimal ops

Basic idea

Motivation

- Often, we are not happy with large pre-trained models (e.g., LLMs)
 - Specialize for certain <u>downstream tasks</u>
 - Correct errors / outdated info / harmful behavior
 - Personalize for individuals

Photo

SAM output Ground Truth

Photo Credit: Cpt. Yuji Byun

Motivation

Thus, we often want to train further using additional data—i.e., fine-tune

- Problem.
 - <u>Memory</u>. Too many trainable parameters
 - <u>Quality</u>. Forgets what model knows
 - <u>Storage</u>. Need to store the delta

+ Need to do it many times (personalization, recent info, ...)

- Reduce the number of trainable parameters
 - Less memory
 - Less forgetting
 - Less storage
- Classic example.
 - Fine-tune later layers
 - Early layers frozen
 - Intuition. Early layers extract elementary features

Idea

Approaches

• Roughly three categories:

(a) Additive PEFT (b) Selective PEFT (c) Reparameterization PEFT

Han et al., "Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey" TMLR 2024

Additive PEFT

Additive PEFT

• Idea. Add some extra parameters, and use them during inference

- <u>Model dim</u>. Adding model parameters $f(x;\theta) \Rightarrow f(x;(\theta,\phi))$
- <u>Data dim</u>. Adding prompt
 - $f(x;\theta) \Rightarrow f(p \oplus x;\theta)$

Adding parameters

- Example. Adapter (Houlsby et al., 2019)
- Adds small hourglass-like MLP after each layer
 - Very small init. w/ skip connection
 - Begin from "no adapter"

Adding parameters

- Drawback. Slower inference
 - Added computation
 - Serial structure

Batch Size Sequence Length	32 512 0.5M	16 256 11M	1 128 11M
Adapter ^L	$\begin{vmatrix} 1482.0 \pm 1.0 (+2.2\%) \\ 1492.2 \pm 1.0 (+3.0\%) \end{vmatrix}$	354.8±0.5 (+5.0%)	23.9±2.1 (+20.7%)
Adapter ^H		366.3±0.5 (+8.4%)	25.8±2.2 (+30.3%)

Inference latency of a single forward pass in GPT-2 medium averaged over 100 trials. Results are based on NVIDIA Quadro RTX8000

Adding parameters

- Remedy.
 - Parallelization
 - LoRA (later today)

Serial

Parallel

He et al., "Towards a unified view of parameter-efficient transfer learning" ICLR 2022

- Motivation. Prepending additional examples make LLMs work better
 - Do we really need them to be "examples"?
 - Can we optimize them explicitly?

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

• **Option 1.** Human thinks hard, and write them manually

- **Option 2.** Automated search, in the discrete word space
 - Reinforcement learning
 - Gradient-based search (e.g., Autoprompt)

Shin et al., "AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts," EMNLP 2020

- Option 3. Continuous optimization (Prompt tuning)
 - Train embedding vectors with SGD
 - Lose interpretability, but good performance

Lester et al., "The Power of Scale for Parameter–Efficient Prompt Tuning," EMNLP 2021

- **Prefix Tuning.** Continuous optimization for the intermediate features
 - i.e., modifies key-value cache, not the input
 - more storage, less computation, same memory

Prefix Tuning						
	"positive	e"				
Tr	ansforr	ner				
۲						
prefix						
	I	like	fruits			

Li and Liang, "Prefix-Tuning: Optimizing Continuous Prompts for Generation," ACL 2021 https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part28.html

- Prefix tuning matches / outperforms full fine-tuning
 - Especially good in the low-data scenarios

Selective PEFT

Selective PEFT

- Idea. Fine-tune only a fraction of the parameters
 - Naturally, involves the notion of sparsity:
 - Unstructured
 - Structured

Unstructured sparse PEFT

- **Example.** Diff pruning (2020)
 - Train a sparse

$$\begin{array}{l} \text{e update vector with } \ell_0 \text{-norm penalty} \\ \min_{\delta} \left(\mathbb{E}[\ell(f(x; \theta + \delta), y)] + \lambda \cdot \|\delta\|_0 \right) \end{array}$$

• Uses a stochastic gating function, similar to usual sparse training

	SQuAD		
	New Params	\mathbf{F}_1	
Houlsby et al. (2019)			
Full finetuning	100%	90.7	
Adapters	2.0%	90.4	
This work			
Full finetuning	100%	90.8	
Diff pruning	1.0%	92.1	
Diff pruning (struct.)	0.5%	91.1	
Diff pruning (struct.)	1.0%	93.2	

Guo et al., "Parameter-efficient transfer learning with diff pruning" ACL 2021

Structured sparse PEFT

- **Example.** BitFit (2022)
 - Trains only the bias terms, not weights

Ben-Zaken et al., "BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models" ACL 2022

Reparameterization PEFT

Reparameterization PEFT

- Idea. Similar to additive, but the additional parameters can be merged
 - Zero increase in the inference cost!

Input

- Idea. Add low-rank updates to the model
 - $f(x; W) \Rightarrow f(x; W + BA)$
 - Here, $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ with small rank r
 - Very few parameters; $mn \rightarrow r(m+n)$

- B is initialized as **0**
 - Initial model is same as "no LoRA"

LoRA

- LoRA matches or outperforms full fine-tuning
 - with very small rank, usually (e.g., 8)
 - applied only to self-attention layer

Model&Method	# Trainable	WikiSQL	MNLI-m	SAMSum
	Parameters	Acc. (%)	Acc. (%)	R1/R2/RL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

LoRA

Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models" ICLR 2022

Variants

VeRA reduces the number of per-task parameters using random features

	Method	# Trainable Parameters	SST-2	MRPC	CoLA	QNLI	RTE	STS-B	Avg.
	FT	125M	94.8	90.2	63.6	92.8	78.7	91.2	85.2
	BitFit	0.1M	93.7	92.7	62.0	91.8	81.5	90.8	85.4
S F	Adpt ^D	0.3M	$94.2_{\pm0.1}$	$88.5_{\pm 1.1}$	$60.8_{\pm 0.4}$	$93.1_{\pm0.1}$	$71.5_{\pm 2.7}$	$89.7_{\pm0.3}$	83.0
BA	Adpt ^D	0.9M	$94.7_{\pm0.3}$	$88.4{\scriptstyle \pm 0.1}$	$62.6_{\pm 0.9}$	$93.0{\scriptstyle \pm 0.2}$	$75.9_{\pm 2.2}$	$90.3_{\pm0.1}$	84.2
	LoRA	0.3M	95.1 $_{\pm 0.2}$	$89.7_{\pm 0.7}$	$63.4_{\pm 1.2}$	93.3 $_{\pm 0.3}$	$86.6_{\pm 0.7}$	$91.5_{\pm 0.2}$	86.6
	VeRA	0.043M	$94.6_{\pm0.1}$	$89.5_{\pm 0.5}$	$65.6_{\pm0.8}$	$91.8_{\pm0.2}$	$78.7_{\pm0.7}$	$90.7_{\pm 0.2}$	85.2
	Adpt ^P	3M	$96.1_{\pm 0.3}$	$90.2_{\pm 0.7}$	68.3 ±1.0	$\textbf{94.8}_{\pm 0.2}$	$83.8_{\pm 2.9}$	$92.1_{\pm 0.7}$	87.6
Ľ	Adpt ^P	0.8M	96.6 ±0.2	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm 0.3}$	$80.1_{\pm 2.9}$	$91.9_{\pm 0.4}$	86.8
RG.	Adpt ^H	6M	$96.2_{\pm 0.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm 0.2}$	$83.4{\scriptstyle \pm 1.1}$	$91.0_{\pm 1.7}$	86.8
N N	Adpt ^H	0.8M	$96.3_{\pm 0.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm 0.2}$	$72.9_{\pm 2.9}$	$91.5_{\pm 0.5}$	84.9
_	LoRA-FA	3.7M	96.0	90.0	68.0	94.4	86.1	92.0	87.7
	LoRA	0.8M	$96.2_{\pm 0.5}$	$90.2_{\pm 1.0}$	$68.2_{\pm 1.9}$	$94.8_{\pm0.3}$	$85.2_{\pm 1.1}$	92.3 $_{\pm 0.5}$	87.8
	VeRA	0.061M	$96.1_{\pm 0.1}$	$90.9_{\pm0.7}$	$68.0_{\pm 0.8}$	$94.4_{\pm0.2}$	85.9 $_{\pm 0.7}$	$91.7_{\pm 0.8}$	87.8

Variants

- DoRA additionally separates out magnitude vector
 - Much lower rank needed
- Intuition. Plays a similar role as "weight/batch normalization," which makes the loss Hessian closer to the identity matrix
 - Thus enhances training

(related: training only scale&shift works well for CNNs; Frankle et al., 2021)

Frankle et al., "Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs," ICLR 2021 Liu et al., "DoRA: Weight-Decomposed Low-Rank Adaptation" ICML 2024

- Initialization matters in LoRA
 - Is **0** initialization optimal?

- Suppose that $f(x) = w_2 w_1 x_1$, and $\ell(y, f(x)) = (y f(x))^2/2$
 - $\Delta w_2 = (f(x) y)w_1x$
 - $\Delta w_1 = (f(x) y)w_2x$
 - $\Delta(w_2w_1) \approx (f(x) y)(w_1^2 + w_2^2)x$ (thus, rescaling $(w_1, w_2) \rightarrow (cw_1, w_2/c)$ changes)

 \Leftarrow 0 (very slow training)

Further readings

- The Impact of initialization on LoRA Finetuning Dynamics
 - <u>https://arxiv.org/abs/2406.08447</u>
- PiSSA
 - <u>https://arxiv.org/abs/2404.02948</u>
- MiLoRA
 - <u>https://arxiv.org/abs/2406.09044</u>

Other Ideas

- of the backbone model
- Idea. Quantize the backbone to a smaller size

QLoRA

Motivation. LoRA still requires much memory for loading weight parameters

Dettmers et al., "QLoRA: Efficient Finetuning of Quantized LLMs" NeurIPS 2023

- QLoRA introduces several tricks

 - Double quantization. Quantize the scale factors
 - PagedOptimizer. Fast GPU-CPU transfers of the optimizer states

(will be discussed later)

QLoRA

NormalFloat4. A new 4-bit format that assigns similar number of elements in each quantized bin (given that data is normally distributed)

Dettmers et al., "QLoRA: Efficient Finetuning of Quantized LLMs" NeurIPS 2023

- Simpler modification of PTQ that aims for acceleration
- Idea. Fine-tune the scaling factors of PTQ-ed model

Parameter-efficient Fine-tuning

PEQA

Kim et al., "Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization" NeurIPS 2023

Method	DRAM (Fine-Tuning)	DRAM (Deployment)	Inference Speed	Task- Switching
Full Fine-Tuning	457GB	131 GB	Slow	Slow
PEFT	131 GB	131 GB	Slow	Fast
PEFT+PTQ	131 GB	33GB	Fast	Slow
PTQ+PEFT	33GB	33GB	Slow	Fast
PEQA (Ours)	33GB	33GB	Fast	Fast

Method	W Bits	GPT-Neo 2.7B	GPT-J 6B	LLaMA 7B	LLaMA 13B
QAT	4	11.07	8.81	5.76	5.26
LoRA + OPTQ	4	12.09	8.91	7.13	5.31
PEQA (Ours)	4	11.38	8.84	5.84	5.30
QAT	3	12.37	9.60	6.14	5.59
LoRA + OPTQ	3	21.93	11.22	19.47	7.33
PEQA (Ours)	3	12.54	9.36	6.19	5.54

Kim et al., "Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization" NeurIPS 2023

PEQA

Galore

• Motivation. Keeping the optimizer states of Adam requires much memory

• Idea. Keep the weight updates full-rank, but run optimizer in projected space

Algorithm 1: GaLore, PyTorch-like

```
for weight in model.parameters():
grad = weight.grad
# original space -> compact space
lor_grad = project(grad)
# update by Adam, Adafactor, etc.
lor_update = update(lor_grad)
# compact space -> original space
update = project_back(lor_update)
weight.data += update
```


Further Readings

- Checkpointing for RAM savings
 - LOMO: <u>https://arxiv.org/abs/2306.09782</u>
- Long-Context LoRA
 - LongLoRA: <u>https://arxiv.org/abs/2309.12307</u>

