
Spring 2025

Model Merging & Editing
EECE695D: Efficient ML Systems

Recap
• Last week. Train a model, using knowledge transferred from other training runs

• Continual Learning

• Meta-Learning

• Today. Post-training methods

• Merging. Transfer experience

• Editing. Pinpoint fixes

Merging

Model Merging
• Goal. Want to aggregate the knowledge of concurrent training runs

• Decentralize, due to privacy or computational cost

• Depends critically on how often we can communicate

• High. SGD (w/ parallelism)

• Medium. Federated Learning

• Low. Merging

Comm Comm

Dataset 1 Dataset 2 Dataset 3

High Comm.: SGD
• Every step, aggregating experiences of B clients (B: batch size)

• Initialize the parameter

• In each step

• For each client

• Draw a single sample

• Generate a local update

• Aggregate the experiences:

θ0

t = 0,1,…

i ∈ {1,…, B}

(xi, yi)

θ(i)
t = θt − η ⋅ ∇θℓ(yi, fθt

(xi))

θt+1 =
1
B

B

∑
i=1

θ(i)
t

Hospidales et al., “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022

Local Training

Aggregate

Medium Comm.: Federated Learning
• FedAvg (2017). Aggregate every E steps

• Initialize the parameter

• In each round

• For each client

• Initialize the local checkpoint

• For each local step

• Draw a batch of samples

• Update the local checkpoint

• Aggregate the experiences:

θ0
t = 0,1,…

i ∈ {1,…, B}
θ(i)

t,0 = θt

j = 1,…, E

θ(i)
t,j = θ(i)

t,j−1 − η∑
k

∇θℓ(yk, fθ(i)
t,j−1

(xk))

θt+1 =
1
B

B

∑
i=1

θ(i)
t,E

McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017

Local Training
with E steps

Karimireddy et al., “SCAFFOLD: Stochastic Controlled Averaging for Federated Learning,” ICML 2020

Medium Comm.: Federated Learning
• Two factors critically affect the performance:

• (1) Frequency. The number of local steps should be small

• Especially when local data are dissimilar
Higher Local Data Dissimilarity

K: Number of clients

Rounds Rounds Rounds

McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017

Medium Comm.: Federated Learning
• (2) Shared init. The initial parameter should be identical

• Otherwise, high loss barrier between weights

θ0

λ ⋅ θ1 + (1 − λ) ⋅ θ2

λ λ

McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017

Low Comm.: Merging
• Challenge. Can we merge two independently trained models,

 with a single aggregation after training?

• Ideally, we would want:

• If trained on a same dataset,
achieve the accuracy of model ensemble (with cheaper inference)

• If trained on different datasets,
achieve good accuracy in both domains

Low Comm.: Merging
• Scenarios. Roughly two categories:

• Independent initialization:

• Git Re-Basin, REPAIR, ZipIt!

• Pre-trained model as initialization:

• Model Soup

Merging: Independent init.

Mode connectivity
• By 2017, people realized that there exists a nonlinear low-loss curve in the

parameter space between two independently trained models (w/ same data)

• Note. Two sources of randomness; init & SGD ordering

• Problem. Nonlinear, so requires an extensive search for interpolation

Garipov et al., “Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs” NeurIPS 2018

“Linear” mode connectivity
• If two models share the initialization & first k SGD iterations,

then the linear interpolation suddenly works

• i.e., converge to a linearly connected basin

• Question. Can we do a similar thing without much shared randomness?

Frankle et al., “Linear Mode Connectivity and the Lottery Ticket Hypothesis,” ICML 2020

Permutation Invariance
• Turned out that permutation-invariance of neural nets play a role:

• If we permute some neurons of a net:

• Function does not change

• Parameter does change

• That is, there are “equivalent params”

Permutation Invariance
• More generally, consider an MLP

• Suppose that we construct another MLP using the same parameters, except

• Here, is a permutation matrix
(binary matrix with only one 1 in each col/row)

• Then, we have

fθ(x) = WLσ(WL−1σ(⋯σ(W1x)⋯)

W̃i = PWi, W̃i+1 = Wi+1P⊤

P

fθ(x) = fθ̃(x)

Permutation Invariance
• Conjecture. If we permute neurons in a correct way,

 any two modes are linearly connected with each other

• To merge the knowledge, simply permute & linearly interpolate

Entezari et al., “The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks,” ICLR 2022

Matching the neurons
• Question. Given two nets, how can we find the best permutation?

• Naïve. Try all permutations, interpolate, find the best one.

• Challenge. The solution space is too large

• For a two-layer MLP with d neurons, exists permutationsd!

Ainsworth et al., “Git Re-Basin: Merging Models Modulo Permutation Symmetries,” ICLR 2023

Matching the neurons
• Many solutions, but the activation matching is popular

• Idea. Match the neurons with the most similar activations

• Suppose that we have one sample.

• Let be the layer i input activation of model A&B, resp.

• Solve the minimization

• If we do extend this multiple samples, becomes equivalent to:

z(A), z(B) ∈ ℝd

ℓ2 min
P

∥z(A) − Pz(B)∥2

max
P

⟨P, Z(A)(Z(B))⊤⟩F, Z(A), Z(A) ∈ ℝd×n

Ainsworth et al., “Git Re-Basin: Merging Models Modulo Permutation Symmetries,” ICLR 2023

Matching the neurons

• The problem is the linear assignment problem:

• Place exactly one 1 at row/col, so that the inner prod is maximized:

• A well-known solver called “Hungarian method”:

• https://en.wikipedia.org/wiki/Hungarian_algorithm

• Solve this, starting from layer 1 to layer L.

max
P

⟨P, Z(A)(Z(B))⊤⟩F, Z(A), Z(A) ∈ ℝd×n

https://en.wikipedia.org/wiki/Hungarian_algorithm

Matching the neurons
• The matching-based methods greatly improve interpolated performance

• STE-based matching works better with models with BatchNorm

Matching the neurons
• Recent works use these techniques to merge models trained on different

dataset

• Promise.

• Less inference cost than ensembling

• No further training cost

• Limitation.

• Still far from the goal

Jordan et al., “REPAIR: REnormalizing Permuted Activations for Interpolation Repair,” ICLR 2023

Recent work: Star conjecture
• Recent work proposes a “star conjecture”:

• Weaker than linear interpolation, stronger than simple mode connectivity

Sonthalia et al., “Do Deep Neural Network Solutions Form a Star Domain?,” ICLR 2025

Further readings
• REPAIR. Fixed for models with BatchNorms

• https://arxiv.org/abs/2211.08403

• ZipIt. Merges only several layers for better performance

• https://arxiv.org/abs/2305.03053

• Deep Weight Space Alignment. Learn to predict the permutation

• https://arxiv.org/abs/2310.13397

• Star Domain. Alternative conjecture

• https://arxiv.org/abs/2403.07968

Sonthalia et al., “Do Deep Neural Network Solutions Form a Star Domain?,” ICLR 2025

https://arxiv.org/abs/2211.08403
https://arxiv.org/abs/2305.03053
https://arxiv.org/abs/2310.13397
https://arxiv.org/abs/2403.07968

Pretrained model as initialization

Model soup
• Idea. Use large pre-trained models as a shared init

• Generate multiple fine-tuned
versions for a target task

• Diverse hyperparameters

• Average the fine-tuned weights

• Not as good as ensemble, but cheap

θ =
M

∑
i=1

wiθi

Wortsman et al., “Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time” ICML 2022

Model soup
• Selecting the nice ingredients is critical

• Greedy Soup.

• Sort each ingredient
by validation acc.

• Add one and taste:

• If tastes better, keep it

• Otherwise, remove

Wortsman et al., “Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time” ICML 2022

Removing the noise in parameter updates
• Turns out that these parameter updates are quite noisy:

• TIES-merging (2023). Resolving conflicts between updates

• Sign conflict. Ignore a smaller one

• Redundant update. Ignore small one

• Others. Average out

Yadav et al., “TIES-MERGING: Resolving Interference When Merging Models” NeurIPS 2023

Further readings
• DARE. Pruning-inspire version of TIES

• https://arxiv.org/abs/2311.03099

• Model Stock. Layerwise merging & smaller ingredients for soup

• https://arxiv.org/abs/2403.19522

• Evolutionary Optimization. Use EO to find the best weight combination

• https://arxiv.org/abs/2403.13187

https://arxiv.org/abs/2311.03099
https://arxiv.org/abs/2403.19522
https://arxiv.org/abs/2403.13187

Editing

Motivation
• The knowledge of neural nets is not perfect

• Factual mistake

• Outdated information

• Cannot access certain info

Motivation
• Option#1. Retrain the model from scratch, with original dataset + patch data

• Too Costly!

• Option#2. Fine-tune with patch

• Costly, and can affect other predictions

• Option#3. Retrieval-augmented generation

• Good, but sometimes conflict with the original model

Goal
• Given a model , modify the prediction on a sample to be

• We want to find such that:

• Reliable. Makes desired changes
 (e.g., “who’s the president of United States?”)

• Local. Minimally affects unrelated info
 (e.g., “which team does Messi play for?”)

• Generalizes. Corrects output for related input
 (e.g., “who’s the US president?”)

• Plus, we want to minimize the computational cost of doing so

fθ(⋅) x* y*

θ̃

fθ̃(x*) ≈ y*

fθ̃(x) ≈ fθ(x), x ≠ x*

fθ̃(x) ≈ y*, x ≈ x*

Approaches
• Many approaches:

• Partial Retraining

• Meta-Learning

• Task Arithmetics

Partial Retraining
• Retrain only one (or few) layers

• We study the example of Santurkar et al., (2021)

• Given a single pair of exemplar, edit prediction rules to equate them

• e.g., replace certain concepts / robustness to attacks

Santurkar et al., “Editing a Classifier by Rewriting Its Prediction Rules,” NeurIPS 2021

Partial Retraining
• Update the layer i as follows:

• Input. Layer (i-1) activation of a model that sees modified input
 (called “keys”)

• Output. Layer i activation of a model that sees the original input
 (called “values”)

k* ∈ ℝm

v* ∈ ℝn

Partial Retraining
• Find a matrix which solves

• V, K are values/keys for unmodified locations

• This is a least-squares with constraints, with solution expressed as:

• can be found by gradient descent

• For updating a single concept, rank-1 update is enough!

W′￼

W′￼ = arg min ∥V − WK∥2, subject to v* = W′￼k*

W′￼ = W + Λ(KK⊤)−1k*)⊤

Λ

Bau et al., “Rewriting a Deep Generative Model,”ECCV 2020

Further ideas
• This approach requires pinpointing the which-tensor-to-update:

• Idea. Causality-based analysis (will not go into details)

• i.e., corrupt-and-restore several tokens, and trace the corruptions

• e.g., ROME (https://arxiv.org/abs/2202.05262)
 MEMIT (https://arxiv.org/abs/2210.07229)

https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.07229

Meta-Learning
• Train a model editor which maps

“editing task” weight updates

• Super-fast editing

• Problem. “Editing task” is difficult to formalize as a model input

• We study the example of Mitchell et al., (2022)

→

Mitchell et al., “Fast model editing at scale” ICLR 2022

Meta-Learning
• Idea. Train a model that uses the loss gradient as an input,

 and the actual update as an output

• Train separate predictors for each tensor
(Reduced computational cost)

Mitchell et al., “Fast model editing at scale” ICLR 2022

Meta-Learning
• Trick. Weight gradients for each sample are rank-1

• Linear model:

• Deeper model: (Handle similarly)

• Thus, predict from/to concatenated rank-1 vectors

∇W∥y − Wx∥2 = 2(y − Wx)x⊤

Mitchell et al., “Fast model editing at scale” ICLR 2022

Meta-Learning
• Meta-Training.

• At each step, sample:

• Edit sample

• Equivalence sample

• Generated by removing some prefix tokens from edit

• Locality example

• Then, train with the joint loss

(xe, ye)

(x′￼e, y′￼e)

xloc

Mitchell et al., “Fast model editing at scale” ICLR 2022

Task arithmetics
• Suppose that we have a large pre-trained base model

• Then, we can do arithmetics with task-specific fine-tuned weight updates

• Add knowledge: Fine-tune and add

• Remove knowledge: Fine-tune and subtract

Ilharco et al., “Editing models with task arithmetic” ICLR 2023

Challenges
• Scaling up to trillion-scale models

• Editing black-box models:

• https://arxiv.org/abs/2211.03318

• Applying massive edits in parallel

• Transferring edits from model to model

https://arxiv.org/abs/2211.03318

That’s it for today 🙌

