
Spring 2025

Meta-Learning
EECE695D: Efficient ML Systems

Recap
• Goal. Efficient Training

• How? Use “experience” gained from previous training episodes

• Last Class. Continual Learning

• Multiple tasks, shown sequentially

• Goal. Preserve knowledge on seen tasks, to perform well on seen tasks

• Today. Use it for unseen tasks?

Basic idea

Idea
• Gains experience over multiple learning episodes

• Covering a distribution of related tasks

• Goal. Improve its performance on future learning tasks

• Has two names

• “Learning to learn”

• “Meta-learning”

Hospidales et al., “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022

Learning
• Given. A dataset drawn from a distribution (i.e., training data)

• Goal. Find a model (function) that works well on the dataset

• Should work well on new data drawn from the distribution (i.e., test data)

(X1, Y1)
(X2, Y2)

(XN, YN)
⋯

“Meta”-Learning
• Given. A “task” set drawn from a distribution

• Goal. Find a ”meta-model” (experience) that works well on the task set

• Should work well on new “task” drawn from the distribution

Formalism
• We have a set of tasks drawn from an unknown distribution

• Each task consist of a triplet

• , : Training (support) / Validation (query) set of task

• : Loss function

• is the loss of model param on dataset ,
when we have transferred the meta-knowledge

T1, …, Tm ∼ Ptask

Ti = (Dt
i , Dv

i , Li)

Dt
i Dv

i i

Li

Li(θ, ω, Dv
i) θ Dv

i
ω

Formalism
• Training. Fit the model parameter on each task:

• Meta-Training. Minimize the average task-wise losses:

• Note. We care about the validation loss, evaluated after per-task fitting

θ

θ*i (ω) = arg min
θ

Li(θ, ω, Dt
i)

min
ω

m

∑
i=1

Li(θ*i (ω), ω, Dv
i)

Formalism
• Question. Which meta-knowledge can we transfer?

• Initial Parameters, Optimizer, Hyperparameters,
Black-box Model, Embedding (Metric), Modules,
Instance Weights, Exploration Policy, Attention,
Architecture, Noise Generator, Curriculum,
Dataset, Environment, Loss/Reward,
Data Augmentation, (…)

• Today we’ll cover the most popular ideas

ω

Hospidales et al., “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022

Example task
• As a running example, we consider few-shot classification

• Each task is a -class classification

• For each class, we have few
samples (e.g., samples)

• Classes differ from task to task

• At (meta-)test, we receive another
-class classification problem with
 training samples for each class.

(called -way, -shot classification)

k

n

k
n

k n

Image source: https://meta-learning.fastforwardlabs.com/

https://meta-learning.fastforwardlabs.com/

Algorithms

Metric-based: ProtoNet
• Idea. Learn a feature-space metric that works well for future tasks

• That is, train an embedding function so that classification based on
the latent features can be done accurately

• Meta-knowledge . Embedding function

• Model parameter . Metric-based classifier
 (will be explained shortly)

fϕ(⋅)
fϕ(x)

ω fϕ(⋅)

θ g(⋅)

Input
x

Label
̂y

Embedding

(meta-trained)
fϕ(⋅)

Classifier

(fitted per-task)
g(⋅)

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

• Classifier. Prototype Classifiers

• Prototype features are defined for each
class, as the mean embedding

• Perform the softmax classification

• No training needed; not many samples needed

ck =
1

|Sk | ∑
(xi,yi)∈Sk

fϕ(xi)

pϕ(y = k |x) =
exp(−d(fϕ(x), ck))

∑k′

exp(−d(fϕ(x), ck′
))

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet

• Meta-Training. Find which minimizes classification loss on each task:

• i.e.,, average of the per-task losses, where the loss for task is:

• Note. We use validation samples

• Note. Prototypes also depend on

ϕ

j

∑
(xi,yi)∈Dv

j

− log pϕ(y = yi |xi)

ck ϕ

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet

• Algorithm. Take an episode-based approach:

• Iterate over:

• Randomly draw a task (or tasks, if RAM permits)

• Compute prototypes with the training split

• Compute loss on validation split

• Update features for several SGD steps

• Gradients through both prototypes & validation samples

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet

• Pros. Zero adaptation cost

• Cons.

• No flexibility

• Given , we cannot improve much even with many test samples

• Meta-training cost is large

• Feature map is usually large

• Gradients flow through both support & query samples

fϕ

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet

• Idea. Train a model which predict classifier weights for each class,
 based on the activation statistics of a pre-trained feature map

• Meta-knowledge . Weight prediction model

• Model parameter . The predicted weights

ω

θ

Qiao et al., “Few-Shot Image Recognition by Predicting Parameters from Activations,” CVPR 2017

Model-based: Parameter Prediction

• Meta-Training. Similar to ProtoNet, but update the weight predictors
 not feature maps

• Gradient on parameter predictors flows through the support samples only

• Small-scale, and query samples do not affect the parameter predictor

Qiao et al., “Few-Shot Image Recognition by Predicting Parameters from Activations,” CVPR 2017

Model-based: Parameter Prediction

• This approach is quite popular in NeRF / 3DGS literature

• All layer weights are predicted, from the given image/views

• Sometimes a “modulation” added or multiplied to the base model

• Requires a very large meta-learner, sometimes

Chen and Wang, “Transformers as Meta-Learners for Implicit Neural Representations,” ECCV 2022

Model-based: Parameter Prediction

• Pros. Potentially reduced computational cost

• Can play with the model size

• Cons. Still, suffers from restricted expressive power

• On unseen data, limited capacity to adapt further

Chen and Wang, “Transformers as Meta-Learners for Implicit Neural Representations,” ECCV 2022

Model-based: Parameter Prediction

• Idea. Train a good initialization from which the model can adapt rapidly to
 each task within a small number of SGD steps

• Meta-knowledge . Initial parameters

• Model parameter . Model weights

ω θ0

θ θi = θ0 + Δθi

Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017

Optimization-based: MAML

• Meta-Training. We iterate over a double loop:

• Initialize

• OUTER LOOP:

• Sample a batch of task

• INNER LOOP: For each

• Generate task-adapted parameters with SGD

• Update (pre-adaption) to minimize val loss

• Return the converged parameter

θ

1,…, t

i ∈ {1,…, t}

θ′ i(θ) = θ − α∇θL(θ, Dt
i)

θ θ ← θ − β∇θ ∑ Li(θ′ i(θ), Dv
i)

Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017

Optimization-based: MAML

• Pros. Improved adaptivity — just train further!

• Cons. Much memory required (need to track multiple versions of model)

• Many memory-light variants: iMAML, 1st-order MAML, Reptile

• Still, long-horizon meta-learning is not satisfactory with these
(i.e., many steps in the inner loop)

Nichol et al., “On First-order meta-learning algorithms,” arXiv 2018

Optimization-based: MAML

• Idea. Learn an optimizer to replace SGD

• Motivation. Adam works extremely well

• Is it optimal?

• How do we remove the need for hyperparameter tuning?

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers

• Question. How do we parameterize the optimizer?

• Answer. View it as a black box that takes current param & gradient as input,
 and the actual update as an output

• Challenge. Need to be able to express the momentum

• Challenge. Need to be able to optimize various-sized tensors / models

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers

• We use LSTM-based models

• Momentum. “States” can keep track of past gradients

• Tensor size. Sequential prediction, coordinate-by-coordinate

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers

Metz et al., “VeLO: Training Versatile Learned Optimizers by Scaling Up,” arXiv 2022

• Pros.

• Less need to tune optimizers

• Can handle larger batch sizes

• Accelerate training!

• Cons.

• Does not scale up to large models / long training / RL

• No actual speedup (more compute)

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers

Fi
na

l L
os

s

Other topics:
Test-time adaptation

• Idea. Perform additional adaptation on given task at test time

• Unlike meta-learning, use only the (a batch of) unlabeled data

• Roughly two categories:

• Test-Time Training. Can utilize some source data

• Fully Test-Time Adaptation. No access to source data

Test-Time Training / Adaptation

• Example. Test-Time Training (2019)

• Fine-tune the feature map using a self-supervised learning task

• Uses rotation-prediction task

• Needs altering the orig. model to be trained using SL + SSL loss jointly

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Test-Time Training / Adaptation

• Example. TENT (2021)

• If we have a good model, maybe our predictor is mostly correct:

• Thus, reinforce current predictions:

• Use a batch of data to minimize prediction entropy

• Tunes only scaling&shifting in BatchNorm layers

Wang et al., “TENT: Fully test-time adaptation by entropy minimization,” ICLR 2021

Test-Time Training / Adaptation

Wrapping up
• Transferring knowledge from a task to task:

• Continual Learning

• Meta-Learning

• Test-time Adaptation

• Next week. A bit more on training efficiency

That’s it for today 🙌

