Meta-Learning EECE695D: Efficient ML Systems

Spring 2025

• **Goal.** Efficient Training

How? Use "experience" gained from previous training episodes

- Last Class. Continual Learning
 - Multiple tasks, shown sequentially
- Today. Use it for unseen tasks?

Recap

<u>Goal</u>. Preserve knowledge on seen tasks, to perform well on seen tasks

Basic idea

- Gains experience over multiple learning episodes
 - Covering a distribution of related tasks

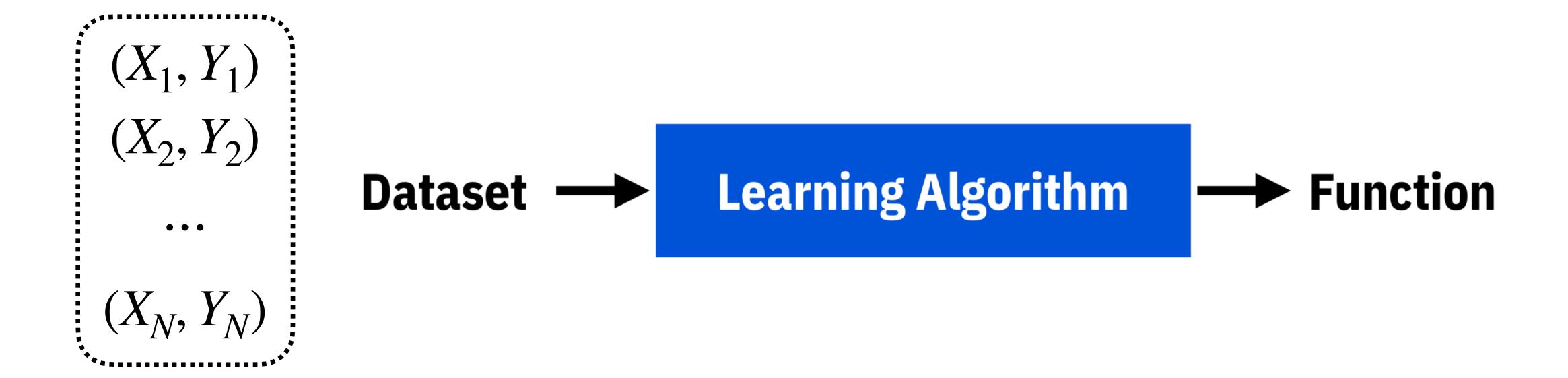
- Goal. Improve its performance on future learning tasks
 - Has two names
 - "Learning to learn"
 - "Meta-learning"

Idea

Hospidales et al., "Meta-Learning in Neural networks: A Survey," IEEE TPAMI 2022

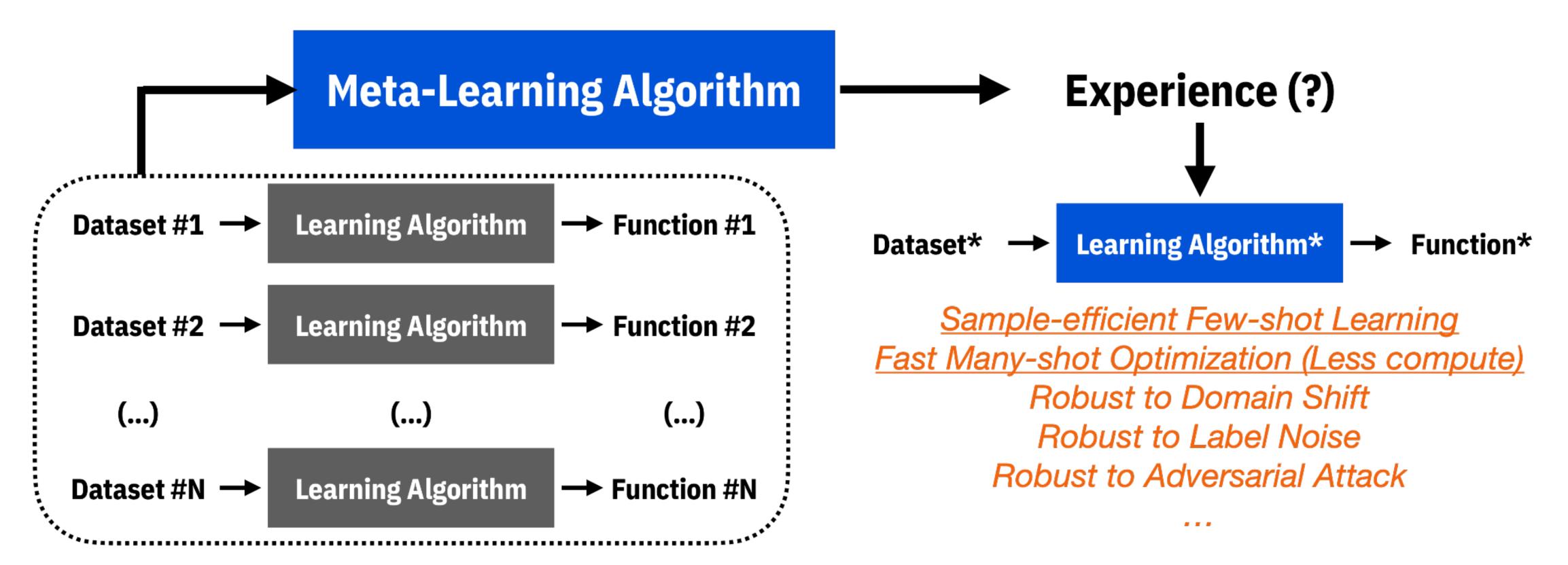
Learning

- Given. A dataset drawn from a distribution (i.e., training data)
- Goal. Find a model (function) that works well on the dataset
 - Should work well on new data drawn from the distribution (i.e., test data)



"Meta"-Learning

- Given. A "task" set drawn from a distribution
- Goal. Find a "meta-model" (experience) that works well on the task set
 - Should work well on new "task" drawn from the distribution



Formalism

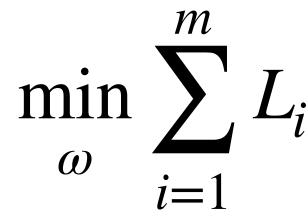
- We have a set of tasks drawn from an unknown distribution
 - Each task consist of a triplet
 - D_i^t, D_i^v : Training (support) / Validation (query) set of task i
 - Loss function • L:
 - $L_i(\theta, \omega, D_i^v)$ is the loss of model param θ on dataset D_i^v , when we have transferred the **meta-knowledge** ω

 $T_1, \ldots, T_m \sim P_{\text{task}}$

 $T_i = (D_i^t, D_i^v, L_i)$

Formalism

- Training. Fit the model parameter θ on each task:
 - $\theta_i^*(\omega) = \arg\min_{\theta} L_i(\theta, \omega, D_i^t)$
- **Meta-Training.** Minimize the average task-wise losses: \bullet



 ${ \bullet }$

$$u_i(\theta_i^*(\omega), \omega, D_i^v)$$

Note. We care about the validation loss, evaluated after per-task fitting

Formalism

- Question. Which meta-knowledge ω can we transfer?
 - Initial Parameters, Optimizer, Hyperparameters, Black-box Model, Embedding (Metric), Modules, Instance Weights, Exploration Policy, Attention, Architecture, Noise Generator, Curriculum, Dataset, Environment, Loss/Reward, Data Augmentation, (...)

Today we'll cover the most popular ideas

Hospidales et al., "Meta-Learning in Neural networks: A Survey," IEEE TPAMI 2022



Example task

- As a running example, we consider few-shot classification
 - Each task is a k-class classification
 - For each class, we have few samples (e.g., *n* samples)
 - Classes differ from task to task
 - At (meta-)test, we receive another k-class classification problem with *n* training samples for each class.

(called k-way, n-shot classification)

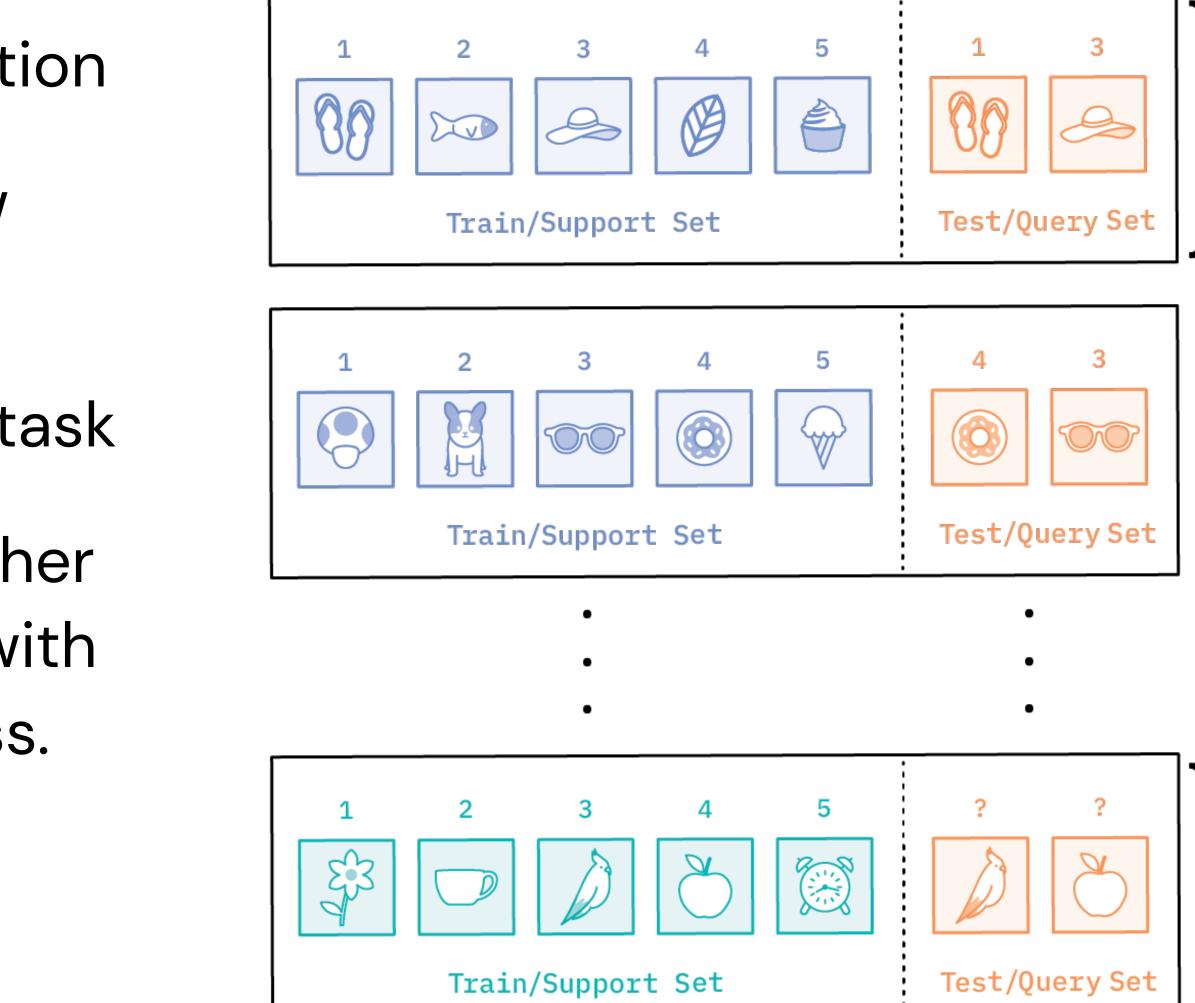
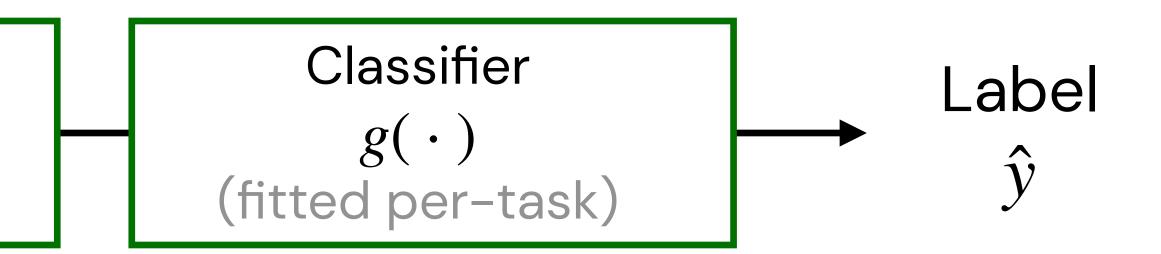


Image source: https://meta-learning.fastforwardlabs.com/

Algorithms

- Idea. Learn a feature-space metric that works well for future tasks
 - That is, train an embedding function $f_{\phi}(\cdot)$ so that classification based on the latent features $f_{\phi}(\mathbf{x})$ can be done accurately
 - <u>Meta-knowledge</u> ω . Embedding function $f_{\phi}(\cdot)$
 - Model parameter θ . Metric-based classifier $g(\cdot)$ (will be explained shortly)

Input Embedding $f_{\phi}(\cdot)$ **X** (meta-trained)



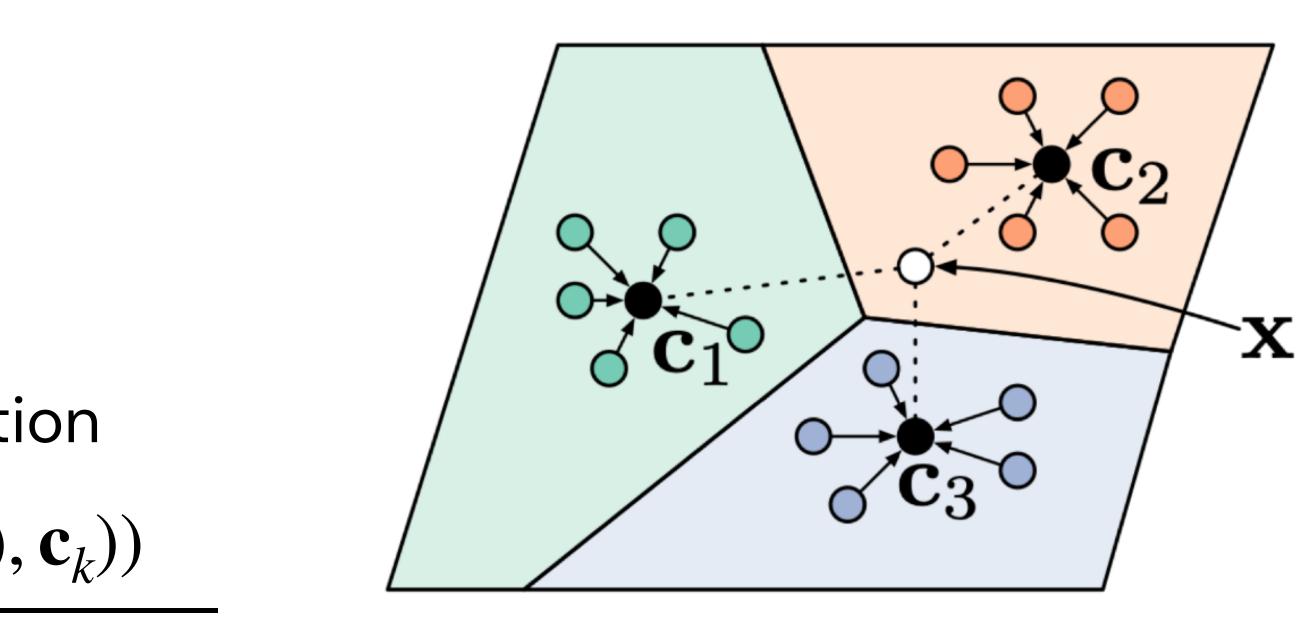
- **Classifier.** Prototype Classifiers
 - Prototype features are defined for each class, as the mean embedding

$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{\substack{(\mathbf{x}_i, y_i) \in S_k}} f_{\phi}(\mathbf{x}_i)$$

Perform the softmax classification

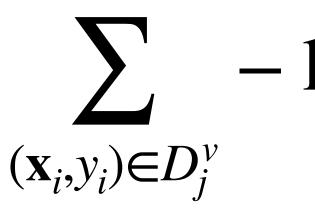
$$p_{\phi}(y = k \,|\, \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x})))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x})))}$$

No training needed; not many samples needed



 $(\mathbf{x}), \mathbf{c}_{k'}))$

- Meta-Training. Find ϕ which minimizes classification loss on each task:
 - i.e., average of the per-task losses, where the loss for task j is:



- <u>Note</u>. We use validation samples
- Note. Prototypes \mathbf{c}_k also depend on ϕ

 $\sum -\log p_{\phi}(y = y_i | \mathbf{x}_i)$

- Algorithm. Take an episode-based approach:
 - Iterate over:
 - Randomly draw a task (or tasks, if RAM permits)
 - Compute prototypes with the training split
 - Compute loss on validation split
 - Update features for several SGD steps

Gradients through <u>both prototypes & validation samples</u>

Snell et al., "Prototypical networks for few-shot learning," NeurIPS 2017

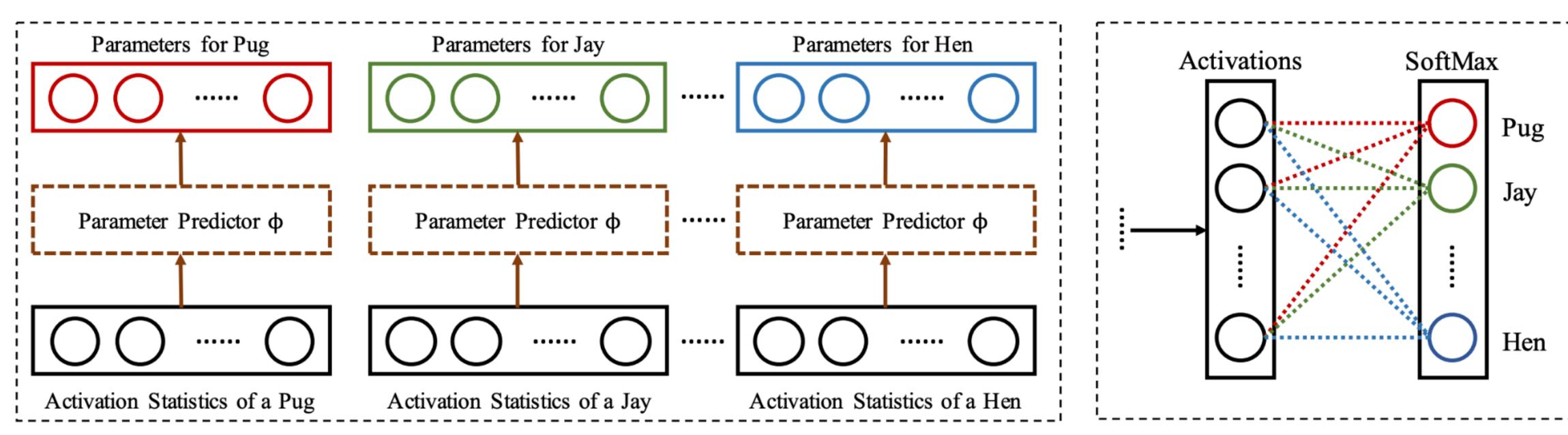


- **Pros.** Zero adaptation cost
- Cons.
 - No flexibility
 - Meta-training cost is large
 - Feature map is usually large
 - Gradients flow through both support & query samples

• Given f_{ϕ} , we cannot improve much even with many test samples

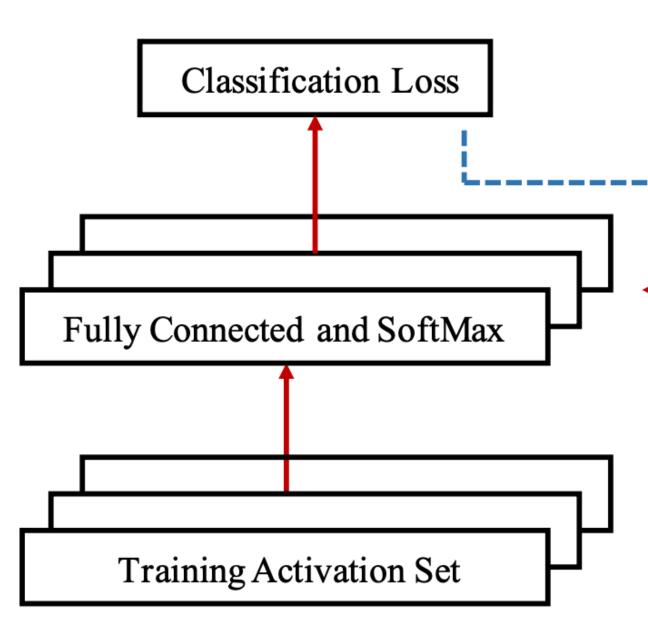
Snell et al., "Prototypical networks for few-shot learning," NeurIPS 2017

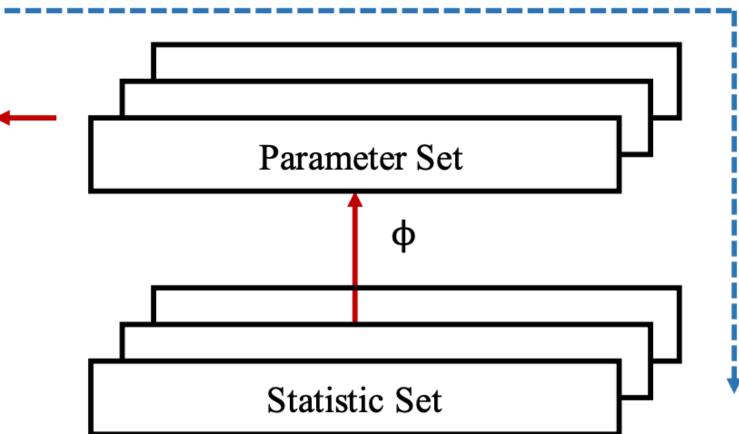
- Idea. Train a model which predict classifier weights for each class, based on the activation statistics of a pre-trained feature map
 - Meta-knowledge ω . Weight prediction model
 - Model parameter θ . The predicted weights



Qiao et al., "Few-Shot Image Recognition by Predicting Parameters from Activations," CVPR 2017

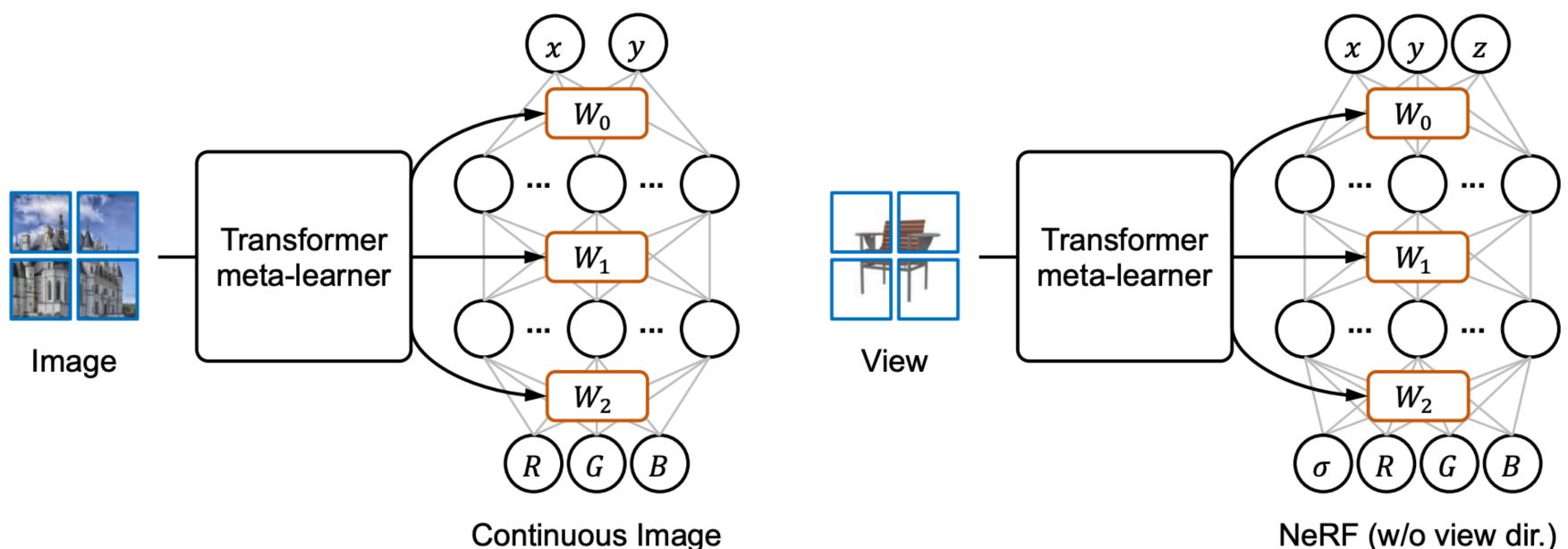
- Meta-Training. Similar to ProtoNet, but update the weight predictors not feature maps
 - Gradient on parameter predictors flows through the support samples only Small-scale, and query samples do not affect the parameter predictor





Qiao et al., "Few-Shot Image Recognition by Predicting Parameters from Activations," CVPR 2017

- This approach is quite popular in NeRF / 3DGS literature
 - All layer weights are predicted, from the given image/views
 - Sometimes a "modulation" added or multiplied to the base model
 - Requires a very large meta-learner, sometimes



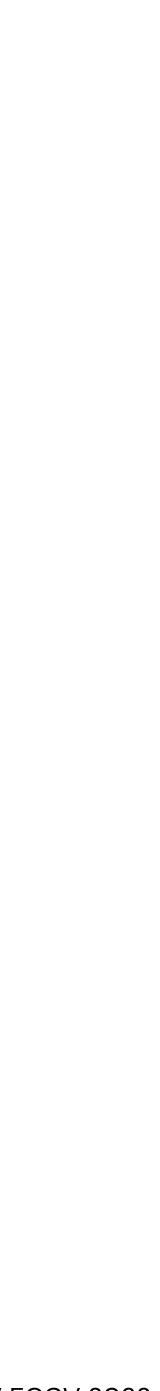
Continuous Image

Chen and Wang, "Transformers as Meta-Learners for Implicit Neural Representations," ECCV 2022



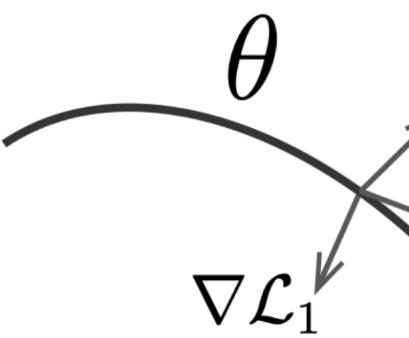
- **Pros.** Potentially reduced computational cost
 - Can play with the model size
- **Cons.** Still, suffers from restricted expressive power
 - On unseen data, limited capacity to adapt further

Chen and Wang, "Transformers as Meta-Learners for Implicit Neural Representations," ECCV 2022



Optimization-based: MAML

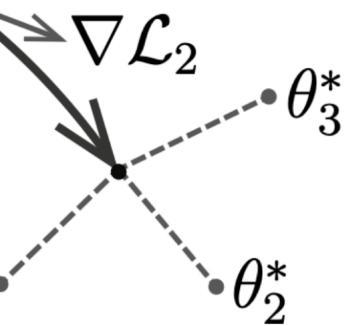
- each task within a small number of SGD steps
 - Meta-knowledge ω . Initial parameters θ_0
 - <u>Model parameter θ </u>. Model weights $\theta_i = \theta_0 + \Delta \theta_i$



• Idea. Train a good initialization from which the model can adapt rapidly to

- meta-learning
- ---- learning/adaptation

 $abla \mathcal{L}_3$



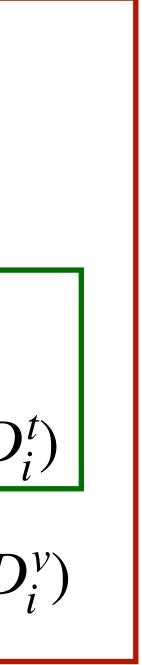


Optimization-based: MAML

- Meta-Training. We iterate over a double loop:
 - Initialize θ
 - **OUTER LOOP:** Sample a batch of task $1, \ldots, t$ • INNER LOOP: For each $i \in \{1, \dots, t\}$ Generate task-adapted parameters with SGD lacksquare• Update θ (pre-adaption) to minimize val loss
 - Return the converged parameter

 $\theta_i'(\theta) = \theta - \alpha \nabla_{\theta} L(\theta, D_i^t)$ $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum L_i(\theta'_i(\theta), D_i^{\nu})$

Finn et al., "Model-agnostic meta-learning for fast adaptation of deep networks," ICML 2017



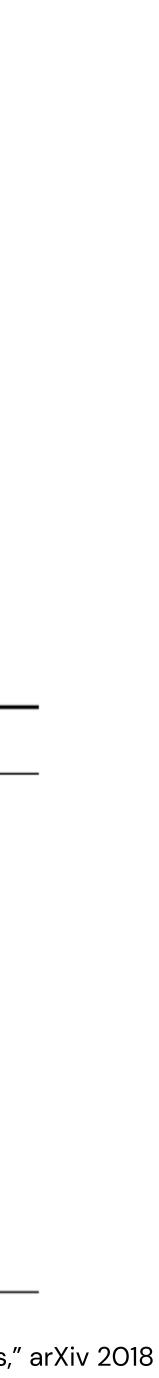
Optimization-based: MAML

- **Pros.** Improved adaptivity just train further!
- Cons. Much memory required (need to track multiple versions of model)
 - Many memory-light variants: iMAML, 1st-order MAML, Reptile
 - Still, long-horizon meta-learning is not satisfactory with these (i.e., many steps in the inner loop)

Algorithm 2 Reptile, batched version

Initialize θ for iteration $= 1, 2, \ldots$ do Sample tasks $\tau_1, \tau_2, \ldots, \tau_n$ for i = 1, 2, ..., n do Compute $W_i = \text{SGD}(L_{\tau_i}, \theta, k)$ end for end for Update $\theta \leftarrow \theta + \beta \frac{1}{n} \sum_{i=1}^{n} (W_i - \theta)$ end for

Nichol et al., "On First-order meta-learning algorithms," arXiv 2018



- Idea. Learn an optimizer to replace SGD
 - Motivation. Adam works extremely well
 - Is it optimal?

we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do** $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Learned Optimizers

How do we remove the need for hyperparameter tuning?

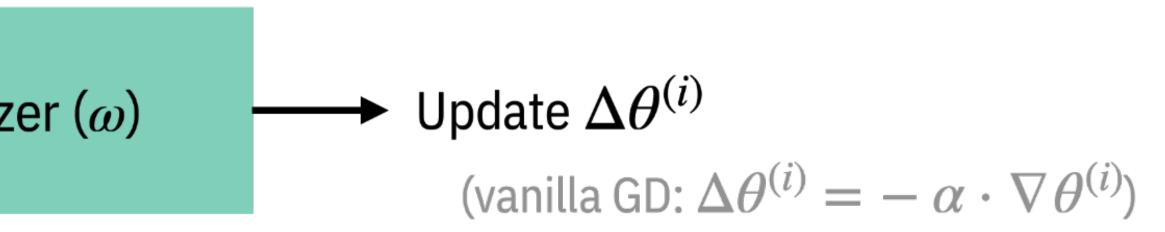
Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t

 $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate)

- Question. How do we parameterize the optimizer?
- **Answer.** View it as a black box that takes current param & gradient as input, and the actual update as an output
 - <u>Challenge</u>. Need to be able to express the momentum
 - <u>Challenge</u>. Need to be able to optimize various-sized tensors / models

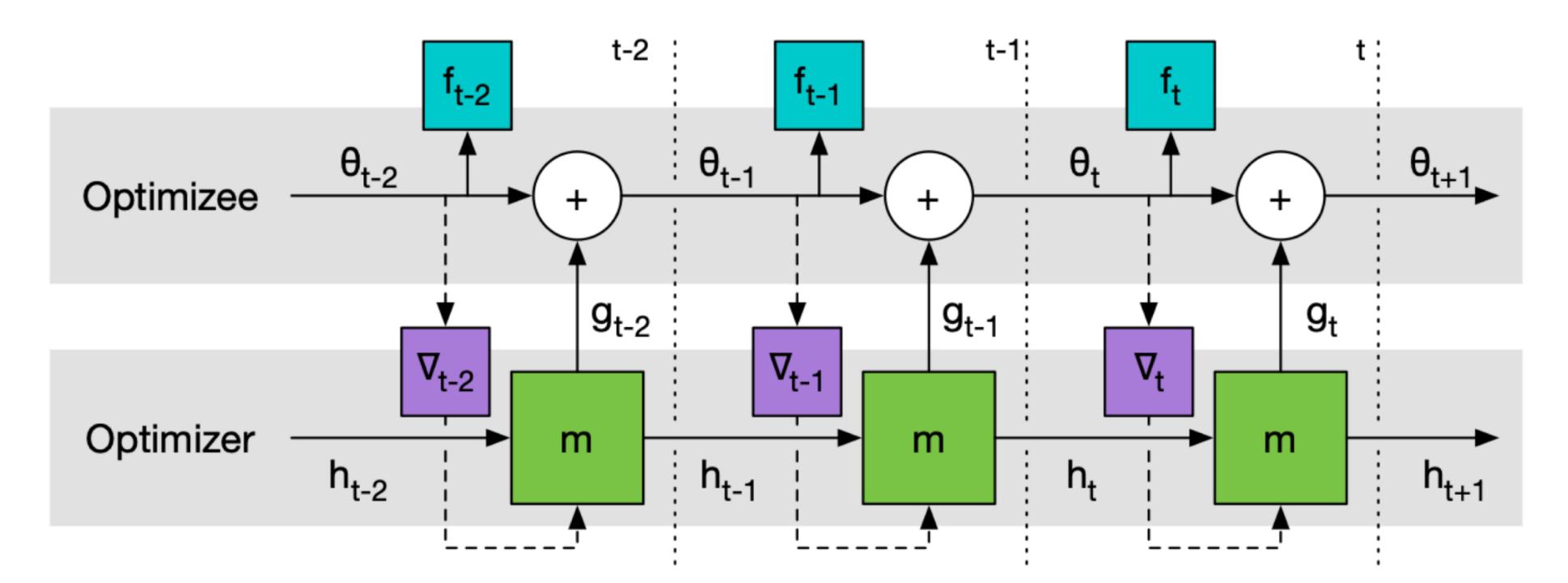
Current parameter $\theta^{(i)} \longrightarrow$ Current gradient $\nabla \theta^{(i)} \longrightarrow$ Optimizer (ω)

Learned Optimizers



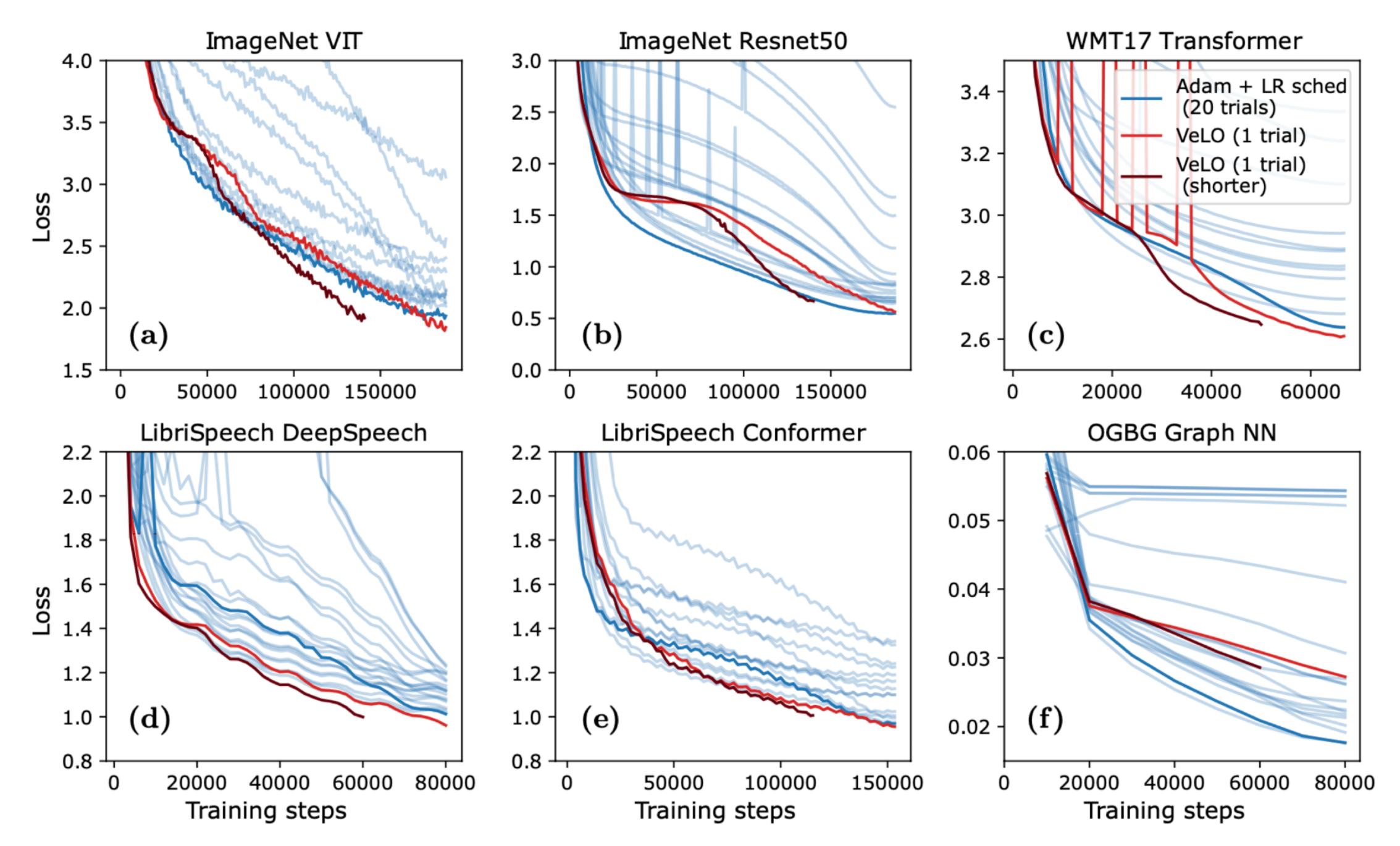
Andrychowicz et al., "Learning to learn by gradient descent by gradient descent," NeurIPS 2016

- We use LSTM-based models
 - Momentum. "States" can keep track of past gradients
 - **Tensor size.** Sequential prediction, coordinate-by-coordinate



Learned Optimizers

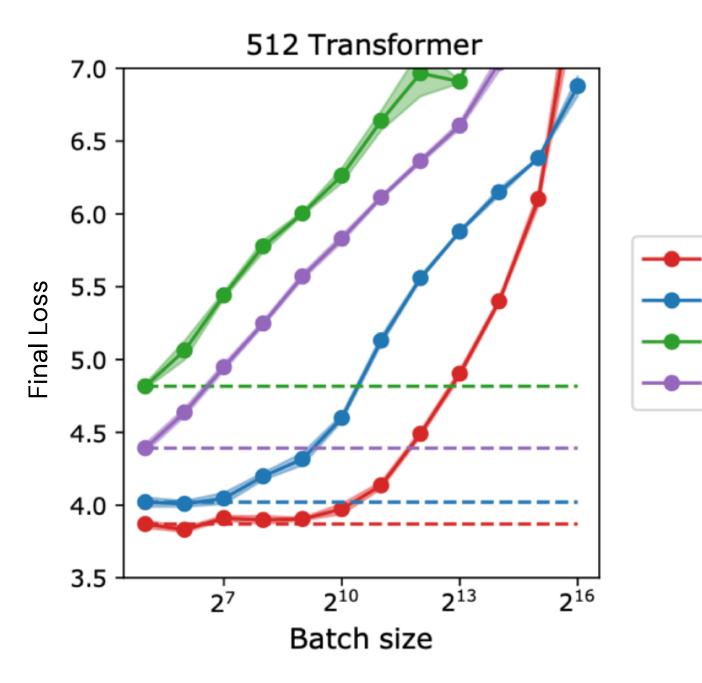
Andrychowicz et al., "Learning to learn by gradient descent by gradient descent," NeurIPS 2016



Metz et al., "VeLO: Training Versatile Learned Optimizers by Scaling Up," arXiv 2022

- Pros.
 - Less need to tune optimizers
 - Can handle larger batch sizes
 - Accelerate training!
- Cons.
 - Does not scale up to large models / long training / RL
 - No actual speedup (more compute)

Learned Optimizers



Andrychowicz et al., "Learning to learn by gradient descent by gradient descent," NeurIPS 2016

Other topics: Test-time adaptation

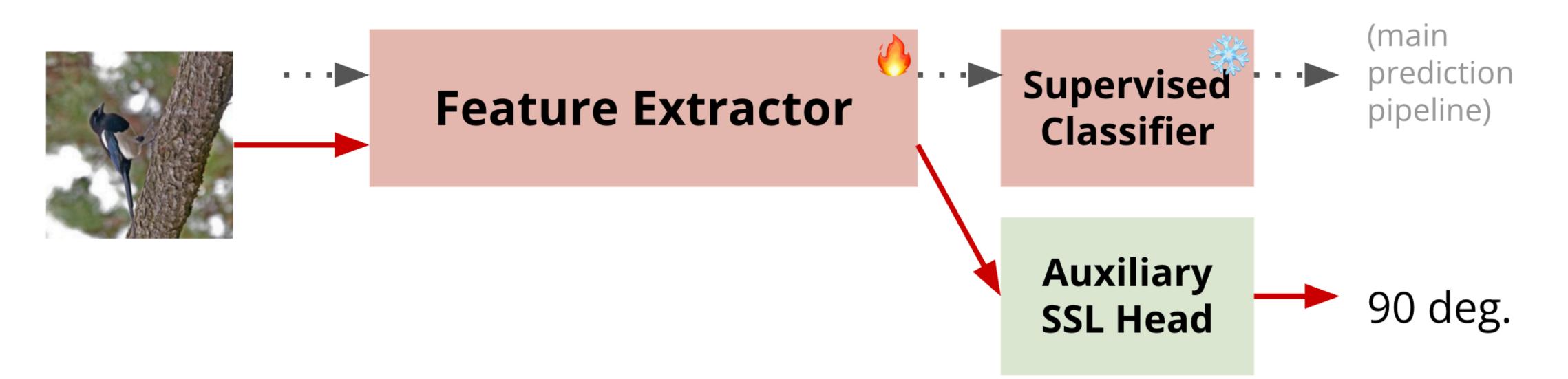
Test-Time Training / Adaptation

- Idea. Perform additional adaptation on given task at test time
 - Unlike meta-learning, use only the (a batch of) unlabeled data
 - Roughly two categories:
 - <u>Test-Time Training</u>. Can utilize some source data
 - <u>Fully Test-Time Adaptation</u>. No access to source data

setting	source data	target data	train loss	test loss
fine-tuning	-	x^t, y^t	$L(x^t, y^t)$	-
domain adaptation	x^s, y^s	x^t	$L(x^s, y^s) + L(x^s, x^t)$	-
test-time training	x^s, y^s	x^t	$L(x^s, y^s) + L(x^s)$	$L(x^t)$
fully test-time adaptation	-	x^t	-	$L(x^t)$

Test-Time Training / Adaptation

- <u>Example</u>. Test-Time Training (2019)
 - Fine-tune the feature map using a self-supervised learning task
 - Uses rotation-prediction task
 - Needs altering the orig. model to be trained using SL + SSL loss jointly



Test-Time Training / Adaptation

- <u>Example</u>. TENT (2021)
 - If we have a good model, maybe our predictor is mostly correct:
 - Thus, reinforce current predictions:
 - Use a batch of data to minimize prediction entropy
 - Tunes only scaling&shifting in BatchNorm layers

$$\begin{array}{ccc} & \theta & & y^s \\ & & & & & \\ & & & & \\ x^s \longrightarrow \widehat{y}^s = f(x^s; \theta) \longrightarrow \widehat{y}^s \longrightarrow \boxed{\operatorname{Loss}(\widehat{y}^s, y^s)} \\ & & & \\ &$$

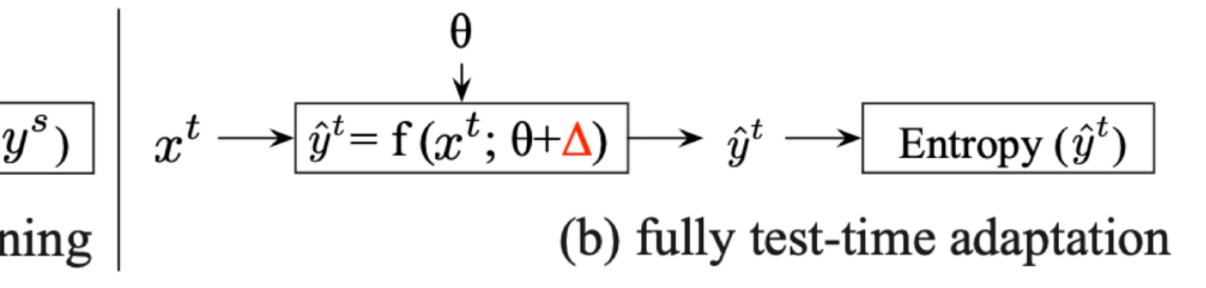


Figure 3: Method overview. Tent does not alter training (a), but minimizes the entropy of predictions during testing (b) over a constrained modulation Δ , given the parameters θ and target data x^t .

Wang et al., "TENT: Fully test-time adaptation by entropy minimization," ICLR 2021

Wrapping up

- Transferring knowledge from a task to task:
 - Continual Learning
 - Meta-Learning
 - Test-time Adaptation

• Next week. A bit more on training efficiency

