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Recap
• Goal. Efficient Training 

• How? Use “experience” gained from previous training episodes 

• Last Class. Continual Learning 

• Multiple tasks, shown sequentially 

• Goal. Preserve knowledge on seen tasks, to perform well on seen tasks 

• Today. Use it for unseen tasks?



Basic idea



Idea
• Gains experience over multiple learning episodes 

• Covering a distribution of related tasks 

• Goal. Improve its performance on future learning tasks 

• Has two names 

• “Learning to learn” 

• “Meta-learning”

Hospidales et al., “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022



Learning
• Given. A dataset drawn from a distribution (i.e., training data) 

• Goal. Find a model (function) that works well on the dataset 

• Should work well on new data drawn from the distribution (i.e., test data)

(X1, Y1)
(X2, Y2)

(XN, YN)
⋯



“Meta”-Learning
• Given. A “task” set drawn from a distribution 

• Goal. Find a ”meta-model” (experience) that works well on the task set 

• Should work well on new “task” drawn from the distribution



Formalism
• We have a set of tasks drawn from an unknown distribution 

 

• Each task consist of a triplet 

 

• , :   Training (support) / Validation (query) set of task  

• :           Loss function 

•  is the loss of model param  on dataset , 
when we have transferred the meta-knowledge 
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Formalism
• Training. Fit the model parameter  on each task: 

 

• Meta-Training. Minimize the average task-wise losses: 

 

•  Note. We care about the validation loss, evaluated after per-task fitting

θ

θ*i (ω) = arg min
θ

Li(θ, ω, Dt
i)

min
ω

m

∑
i=1

Li(θ*i (ω), ω, Dv
i )



Formalism
• Question. Which meta-knowledge  can we transfer? 

• Initial Parameters,    Optimizer,    Hyperparameters, 
Black-box Model,    Embedding (Metric),    Modules,     
Instance Weights,    Exploration Policy,    Attention, 
Architecture,    Noise Generator,    Curriculum, 
Dataset,    Environment,    Loss/Reward, 
Data Augmentation,   (…) 

• Today we’ll cover the most popular ideas

ω

Hospidales et al., “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022



Example task
• As a running example, we consider few-shot classification 

• Each task is a -class classification 

• For each class, we have few 
samples (e.g.,  samples) 

• Classes differ from task to task 

• At (meta-)test, we receive another 
-class classification problem with 
 training samples for each class. 

(called -way, -shot classification)
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Image source: https://meta-learning.fastforwardlabs.com/

https://meta-learning.fastforwardlabs.com/


Algorithms



Metric-based: ProtoNet
• Idea. Learn a feature-space metric that works well for future tasks 

• That is, train an embedding function  so that classification based on 
the latent features  can be done accurately 

• Meta-knowledge . Embedding function  

• Model parameter . Metric-based classifier  
                                  (will be explained shortly)

fϕ( ⋅ )
fϕ(x)

ω fϕ( ⋅ )

θ g( ⋅ )

Input 
x

Label 
̂y

Embedding 
 

(meta-trained)
fϕ( ⋅ )

Classifier 
 

(fitted per-task)
g( ⋅ )

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017



• Classifier. Prototype Classifiers 

• Prototype features are defined for each 
class, as the mean embedding 

 

• Perform the softmax classification 

 

• No training needed; not many samples needed

ck =
1

|Sk | ∑
(xi,yi)∈Sk

fϕ(xi)

pϕ(y = k |x) =
exp(−d( fϕ(x), ck))

∑k′ 

exp(−d( fϕ(x), ck′ 
))

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet



• Meta-Training. Find  which minimizes classification loss on each task: 

• i.e.,, average of the per-task losses, where the loss for task  is: 

 

• Note. We use validation samples 

• Note. Prototypes  also depend on 

ϕ

j

∑
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− log pϕ(y = yi |xi)

ck ϕ

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet



• Algorithm. Take an episode-based approach: 

• Iterate over: 

• Randomly draw a task (or tasks, if RAM permits) 

• Compute prototypes with the training split 

• Compute loss on validation split 

• Update features for several SGD steps 

• Gradients through both prototypes & validation samples

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet



• Pros. Zero adaptation cost 

• Cons.  

• No flexibility 

• Given , we cannot improve much even with many test samples 

• Meta-training cost is large 

• Feature map is usually large 

• Gradients flow through both support & query samples

fϕ

Snell et al., “Prototypical networks for few-shot learning,” NeurIPS 2017

Metric-based: ProtoNet



• Idea. Train a model which predict classifier weights for each class, 
          based on the activation statistics of a pre-trained feature map 

• Meta-knowledge . Weight prediction model 

• Model parameter . The predicted weights

ω

θ

Qiao et al., “Few-Shot Image Recognition by Predicting Parameters from Activations,” CVPR 2017

Model-based: Parameter Prediction



• Meta-Training. Similar to ProtoNet, but update the weight predictors 
                           not feature maps 

• Gradient on parameter predictors flows through the support samples only 

• Small-scale, and query samples do not affect the parameter predictor

Qiao et al., “Few-Shot Image Recognition by Predicting Parameters from Activations,” CVPR 2017

Model-based: Parameter Prediction



• This approach is quite popular in NeRF / 3DGS literature 

• All layer weights are predicted, from the given image/views 

• Sometimes a “modulation” added or multiplied to the base model 

• Requires a very large meta-learner, sometimes

Chen and Wang, “Transformers as Meta-Learners for Implicit Neural Representations,” ECCV 2022

Model-based: Parameter Prediction



• Pros. Potentially reduced computational cost 

• Can play with the model size 

• Cons. Still, suffers from restricted expressive power 

• On unseen data, limited capacity to adapt further

Chen and Wang, “Transformers as Meta-Learners for Implicit Neural Representations,” ECCV 2022

Model-based: Parameter Prediction



• Idea. Train a good initialization from which the model can adapt rapidly to 
          each task within a small number of SGD steps 

• Meta-knowledge . Initial parameters  

• Model parameter . Model weights      

ω θ0

θ θi = θ0 + Δθi

Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017

Optimization-based: MAML



• Meta-Training. We iterate over a double loop: 

• Initialize  

• OUTER LOOP: 

• Sample a batch of task  

• INNER LOOP: For each  

• Generate task-adapted parameters with SGD                

• Update  (pre-adaption) to minimize val loss                   

• Return the converged parameter

θ

1,…, t

i ∈ {1,…, t}

θ′ i(θ) = θ − α∇θL(θ, Dt
i)

θ θ ← θ − β∇θ ∑ Li(θ′ i(θ), Dv
i )

Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017

Optimization-based: MAML



• Pros. Improved adaptivity — just train further! 

• Cons. Much memory required (need to track multiple versions of model) 

• Many memory-light variants: iMAML, 1st-order MAML, Reptile 

• Still, long-horizon meta-learning is not satisfactory with these 
(i.e., many steps in the inner loop)

Nichol et al., “On First-order meta-learning algorithms,” arXiv 2018

Optimization-based: MAML



• Idea. Learn an optimizer to replace SGD 

• Motivation. Adam works extremely well 

• Is it optimal? 

• How do we remove the need for hyperparameter tuning?

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers



• Question. How do we parameterize the optimizer? 

• Answer. View it as a black box that takes current param & gradient as input, 
               and the actual update as an output 

• Challenge. Need to be able to express the momentum 

• Challenge. Need to be able to optimize various-sized tensors / models

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers



• We use LSTM-based models 

• Momentum. “States” can keep track of past gradients 

• Tensor size. Sequential prediction, coordinate-by-coordinate

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers



Metz et al., “VeLO: Training Versatile Learned Optimizers by Scaling Up,” arXiv 2022



• Pros. 

• Less need to tune optimizers 

• Can handle larger batch sizes 

• Accelerate training! 

• Cons.  

• Does not scale up to large models / long training / RL 

• No actual speedup (more compute)

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Learned Optimizers
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Other topics: 
Test-time adaptation



• Idea. Perform additional adaptation on given task at test time 

• Unlike meta-learning, use only the (a batch of) unlabeled data 

• Roughly two categories: 

• Test-Time Training. Can utilize some source data 

• Fully Test-Time Adaptation. No access to source data

Test-Time Training / Adaptation



• Example. Test-Time Training (2019) 

• Fine-tune the feature map using a self-supervised learning task 

• Uses rotation-prediction task 

• Needs altering the orig. model to be trained using SL + SSL loss jointly

Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” NeurIPS 2016

Test-Time Training / Adaptation



• Example. TENT (2021) 

• If we have a good model, maybe our predictor is mostly correct: 

• Thus, reinforce current predictions: 

• Use a batch of data to minimize prediction entropy 

• Tunes only scaling&shifting in BatchNorm layers

Wang et al., “TENT: Fully test-time adaptation by entropy minimization,” ICLR 2021

Test-Time Training / Adaptation



Wrapping up
• Transferring knowledge from a task to task: 

• Continual Learning 

• Meta-Learning 

• Test-time Adaptation 

• Next week. A bit more on training efficiency



That’s it for today 🙌


