Meta-Learning

Spring 2025

Recap

Goal. Efficient Training
How? Use “experience” gained from previous training episodes
Last Class. Continual Learning

 Multiple tasks, shown sequentially

e Goal. Preserve knowledge on seen tasks, to perform well on seen tasks

Today. Use it for unseen tasks?

Basic idea

ldea

e Gains experience over multiple learning episodes

e Covering a distribution of related tasks

e Goal. Improve its performance on future learning tasks
e Has two names
e “Learning to learn”

¢ “Meta-learning”

Hospidales et al, “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022

Learning

e Given. A dataset drawn from a distribution (i.e., training data)
e Goal. Find a model (function) that works well on the dataset

e Should work well on new data drawn from the distribution (i.e., test data)

* Yo

Dataset = B E-E170 119\ 01416 [1 e = Function

* *

“Meta"-Learning

e Given. A “task” set drawn from a distribution
e Goal.Find a "meta-model” (experience) that works well on the task set

e Should work well on new “task” drawn from the distribution

V[EREET T LT [W —) Experience (?)

¢ Dataset#1 —> BUET L \ls B — Function #1
i Latase earning Algorl unctio Dataset* —> RIETGIGERAGG]i —> Function®

CETT LT B —> Function #2 Sample-efficient Few-shot Learning
: Fast Many-shot Optimization (Less compute)
() () () Robust to Domain Shift
: Robust to Label Noise
Robust to Adversarial Attack

Dataset #2 —»

LTV \ELTE T 88 —> Function #N

Dataset #N —>

*
*

¢ .
.....

Formalism
e \We have a set of tasks drawn from an unknown distribution
Tl? veeo Tm ~ Ptask
e Each task consist of a triplet

7;' — (Dta Di\/, Ll)

l
» D!, D: Training (support) / Validation (query) set of task i

o L Loss function

e L(0,w,D;)is the loss of model param 6 on dataset D,
when we have transferred the meta-knowledge @

Formalism

e Training. Fit the model parameter @ on each task:
0F(w) = arg mgn L(6, w, D))

e Meta-Training. Minimize the average task-wise losses:

min Z Ll-(cS’l.>I< (w), w, D)
Y=l

e Note. We care about the validation loss, evaluated after per-task fitting

Formalism

e Question. Which meta-knowledge @ can we transfer?

e |nitial Parameters, Optimizer, Hyperparameters,
Black-box Model, Embedding (Metric), Modules,
Instance Weights, Exploration Policy, Attention,
Architecture, Noise Generator, Curriculum,
Dataset, Environment, Loss/Reward,

Data Augmentation, (..)

 Today we'll cover the most popular ideas

Hospidales et al, “Meta-Learning in Neural networks: A Survey,” IEEE TPAMI 2022

Example task

e As arunning example, we consider few-shot classification

e Each task is a k-class classification

e For each class, we have few
samples (e.g., n samples)

e Classes differ from task to task

o At (meta-)test, we receive another
k-class classification problem with
n training samples for each class.

o
\ " D) é \j @)
@@ >/ky;>‘ é;&b (@ } | n "{D’
- — N
2 | ©
L +
| s
upp Set =
o0
c
-~
c
-
s
: 5 —
I / p -~ .FI’
~ - s
@ el @ | | O i
\{,,,‘)/’ A C\\')/ﬁQ P | O : ‘{/) Q
=T | =
1J ’)O el
1 2 3 4 5 -
& @
@
wlivillielli& £2
O—A S 4&;
(Y
=
Train/Support Set

Image source: https://meta-learning.fastforwardlabs.com/

https://meta-learning.fastforwardlabs.com/

Algorithms

Metric-based: ProtoNet

e |dea. Learn a feature-space metric that works well for future tasks

e That s, train an embedding functionf¢(.) so that classification based on
the latent featuresf¢(x) can be done accurately

» Meta-knowledge @. Embedding function f,(-)

e Model parameter 8. Metric-based classifier g(-)

Embedding Classifier
Input Label
E)(f¢(.) y

Snell et al,, “Prototypical networks for few-shot learning,” NeurlPS 2017

Metric-based: ProtoNet

e Classifier. Prototype Classifiers

 Prototype features are defined for each
class, as the mean embedding

e Perform the softmax classification

exp(—d(f,(X), €)
Y exp(—d(f,(X), ¢))

 No training needed; not many samples needed

p¢(y=k\x):

Snell et al,, “Prototypical networks for few-shot learning,” NeurlPS 2017

Metric-based: ProtoNet

e Meta-Training. Find ¢ which minimizes classification loss on each task:

e i.e., average of the per-task losses, where the loss for task j is:
Z — Ingqs(y =0710.9)
(X y,)ED;

e Note. We use validation samples

* Note. Prototypes ¢, also depend on ¢

Snell et al,, “Prototypical networks for few-shot learning,” NeurlPS 2017

Metric-based: ProtoNet

e Algorithm. Take an episode-based approach:
e |terate over:
 Randomly draw a task (or tasks, if RAM permits)
e Compute prototypes with the training split
e Compute loss on validation split
 Update features for several SGD steps

e Gradients through both prototypes & validation samples

Snell et al,, “Prototypical networks for few-shot learning,” NeurlPS 2017

Metric-based: ProtoNet

 Pros. Zero adaptation cost
e Cons.

e No flexibility
. Givenf¢, we cannot improve much even with many test samples

e Meta-training cost is large
e Feature map is usually large

 Gradients flow through both support & query samples

Snell et al,, “Prototypical networks for few-shot learning,” NeurlPS 2017

Model-based: Parameter Prediction

e |dea. Train a model which predict classifier weights for each class,
based on the activation statistics of a pre-trained feature map

e Meta-knowledge w. Weight prediction model

e Model parameter 8. The predicted weights

Qiao et al, “Few-Shot Image Recognition by Predicting Parameters from Activations,” CVPR 2017

Model-based: Parameter Prediction

e Meta-Training. Similar to ProtoNet, but update the weight predictors
not feature maps

 Gradient on parameter predictors flows through the support samples only

e Small-scale, and query samples do not affect the parameter predictor

Classification Loss

_—
Fully Connected and SoftMax I

Parameter Set I

¢

D ———

_—

Training Activation Set

Qiao et al, “Few-Shot Image Recognition by Predicting Parameters from Activations,” CVPR 2017

Model-based: Parameter Prediction

e This approach is quite popular in NeRF / 3DGS literature
o All layer weights are predicted, from the given image/views
e Sometimes a “modulation” added or multiplied to the base model

e Requires a very large meta-learner, sometimes

HE Transformer »{
[T ﬁ’l meta-learner

O O O o L O O O
N o) Sy

Continuous Image NeRF (w/o view dir.)

Transformer »{]
w;
meta-learner

Chen and Wang, “Transformers as Meta-Learners for Implicit Neural Representations,” ECCV 2022

Model-based: Parameter Prediction

 Pros. Potentially reduced computational cost
e Can play with the model size
e Cons. Still, suffers from restricted expressive power

e On unseen data, limited capacity to adapt further

Chen and Wang, “Transformers as Meta-Learners for Implicit Neural Representations,” ECCV 2022

Optimization-based: MAML

e |dea. Train a good initialization from which the model can adapt rapidly to
each task within a small number of SGD steps

e Meta-knowledge w. Initial parameters 0,

e Model parameter 6. Model weights 0. = 0, + A0,

— meta-learning
9 ---- |earning/adaptation

VL3

’/
=
&
’/

Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017

Optimization-based: MAML

* Meta-Training. We iterate over a double loop:

e |nitialize @

e OUTER LOOP:
e Sample a batch of task 1,...,1¢

e INNER LOOP: Foreachi € {1,...,t}

e Generate task-adapted parameters with SGD 0:(0) = 0 — aV,L(6, D))

« Update @ (pre-adaption) to minimize val loss 0 «— 6 — ,BVQZ L(6:0),D;)

e Return the converged parameter

Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017

Optimization-based: MAML

 Pros. Improved adaptivity — just train further!
e Cons. Much memory required (need to track multiple versions of model)
e Many memory-light variants: IMAML, Ist-order MAML, Reptile

o Still, long-horizon meta-learning is not satisfactory with these

Algorithm 2 Reptile, batched version

Initialize 6
for iteration = 1,2,... do
Sample tasks 71,72, ..., ™)
for:=1,2,....,ndo
Compute W; = SGD(L., 8, k)
end for

Update 6 < 0 + 8- Z

end for

Nichol et al.,, “On First-order meta-learning algorithms,” arXiv 2018

L earned Optimizers

e |dea. Learn an optimizer to replace SGD

e Motivation. Adam works extremely well

e |s it optimal?

e How do we remove the need for hyperparameter tuning?

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g;. Good default settings for the tested machine learning problems are a = 0.001,
B = 0.9, B2 = 0.999 and € = 10~%. All operations on vectors are element-wise. With 3¢ and 3}
we denote (3; and (32 to the power t.
Require: o: Stepsize
Require: (1,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 0: Initial parameter vector
mo < 0 (Initialize 1%' moment vector)
vo < 0 (Initialize 2"¢ moment vector)
t < 0 (Initialize timestep)
while 6; not converged do
t<—t+1
9t < Vo fi(0;-1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my_1 + (1 — B1) - g« (Update biased first moment estimate)
vy < B2 - vi—1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vy < v /(1 — B%) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — o - My /(V/V; + €) (Update parameters)
end while
return 6, (Resulting parameters)

Andrychowicz et al, “Learning to learn by gradient descent by gradient descent,” NeurlPS 2016

L earned Optimizers

e Question. How do we parameterize the optimizer?

e Answer. View It as a black box that takes current param & gradient as input,
and the actual update as an output

e Challenge. Need to be able to express the momentum

e Challenge. Need to be able to optimize various-sized tensors / models

Current parameter 8% — |
. Optimizer (w) — Update AW
Current gradient Vo) —s>

Andrychowicz et al, “Learning to learn by gradient descent by gradient descent,” NeurlPS 2016

Learned Optimizers

e We use LSTM-based models
e Momentum. “States” can keep track of past gradients

e Tensor size. Sequential prediction, coordinate-by-coordinate

t-2
6, 6,
Optimizee R @]

Optimizer

9

ht-2 ht+1

Andrychowicz et al, “Learning to learn by gradient descent by gradient descent,” NeurlPS 2016

Loss

Loss

4.0

1.5

2.2

0.8

ImageNet VIT

0

50000 100000 150000
LibriSpeech DeepSpeech

0

20000 40000 60000 80000
Training steps

3.0

ImageNet Resnet50

0.5 -

(b)

0.0

0

50000 100000 150000

LibriSpeech Conformer

2.2

0.8

50000 100000 150000

Training steps

Metz et al., “VelLO: Training Versatile Learned Optimizers by Scaling Up,” arXiv 2022

3.4 -

3.2 -

3.0 -

2.8 -

2.6 -

0.06

0.05 -

0.04 -

0.03 -

0.02 -

WMT17 Transformer

Adam + LR sched
(20 trials)

—— VelLO (1 trial)
VelLO (1 trial)

(shorter)
N

(c)

0

20000 40000 60000

OGBG Graph NN

~ ~

0

20000 40000 60000 80000
Training steps

L earned Optimizers

o Pros. . 512 Transformer
. 6.5 A
* Less need to tune optimizers N
5 c —eo— VelO
 Can handle larger batch sizes §° e Adam
£ —e— SGDM
* Accelerate training! +5°
4.0 -
e Cons. 35—

Batch size

 Does not scale up to large models / long training / RL

* No actual speedup (more compute)

Andrychowicz et al, “Learning to learn by gradient descent by gradient descent,” NeurlPS 2016

Other topics:
Test-time adaptation

Test-Time Training / Adaptation

e |dea. Perform additional adaptation on given task at test time
e Unlike meta-learning, use only the (a batch of) unlabeled data
 Roughly two categories:

e Test-Time Training. Can utilize some source data

e Fully Test-Time Adaptation. No access to source data

setting source data target data train loss test loss
fine-tuning - zt, 1yt L(zt, y") -
domain adaptation zs, y° zt L(z%,y®) + L(x*, x*) -
test-time training s, y° zt L(:v)+ L(z?® L(z?")
fully test-time adaptation - xt - L(x?)

Test-Time Training / Adaptation

e Example. Test-Time Training (2019)

 Fine-tune the feature map using a self-supervised learning task
e Uses rotation-prediction task

 Needs altering the orig. model to be trained using SL + SSL loss jointly

¢y

Feature Extractor L

Classifier

Andrychowicz et al, “Learning to learn by gradient descent by gradient descent,” NeurlPS 2016

Test-Time Training / Adaptation

o Example. TENT (2021)

e |f we have a good model, maybe our predictor is mostly correct:
 Thus, reinforce current predictions:
e Use a batch of data to minimize prediction entropy

 Tunes only scaling&shifting in BatchNorm layers

8 Y ?
r®—> 9°=f(x%0) —> §° —> Loss (J;¥°) || xt —>|9'=f(z"; 0+A) —> §4* —>| Entropy (9")

(a) training (b) fully test-time adaptation

Figure 3. Method overview. Tent does not alter training (a), but minimizes the entropy of predictions
during testing (b) over a constrained modulation A, given the parameters 6 and target data x°.

Wang et al, “TENT: Fully test-time adaptation by entropy minimization,” ICLR 2021

Wrapping up
* Transferring knowledge from a task to task:
e Continual Learning
e Meta-Learning

e Jest-time Adaptation

* Next week. A bit more on training efficiency

That's it for today (-

