Dimensionality Reduction



Recap

* Unsupervised learning
. m d
» Learning from unlabeled data {X;, ...,X,};_; € R
» Easyto scale up — necessary for large-scale training

e Clustering

+ Learning a mapping®(-) : RY = {1,..., k)
» Each k may be represented by some mean u. € R4
(and variance, and soon ...)
* K-Means

 Gaussian Mixture Models



Today

* Dimensionality Reduction
e Learning a mapping ®( - ) : RY > R* (k < d)

 |n particular, we focus on the case of linear ®( - )
* Precisely, we discuss Principal Component Analysis (PCA)

e Other examples
e |CA (Independent Component Analysis)
e Autoencoders



Motivations




Dealing with high-dimensional data

» Many datasets are extremely high-dimensional, in its raw form

» Example. Suppose you are an ML engineer at Google
* Goal. A model that detect copyrighted clips from Youtube shorts

e The dimensionality of Youtube shorts X & R are:
1920 x 1080 x RGB x 60FPS x 60 Seconds

=22.4 Billion dimension




Curse of dimensionality

» Learning from high-dimensional data is challenging

Computation

Higher chance of noise

Difficult to visualize — for human insights
Difficult to find generalizable patterns (important)
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Nominal dimensionality vs. True

» But do we really need all these dimensions?
« Example. Handwritten digit recognition (MNIST, 28x28)

only looks like this ... and not like this

. That is, we are not fully utilizing R*5%%® = R84



Nominal dimensionality vs. True

* Hypothesis.
There exists some low-dim. subspace -
(or submanifold) in the high-dim. space I A
where the real data lies in "

N

* Dimensionality Reduction |
Using unlabeled data to find the right o)
mapping b/w high-dim & low-dim spaces

e (Caveat. Data could be noisy




Principal Component Analysis



Overview

* A dimensionality reduction technique, invented by Karl Pearson (1909)
» Uses an affine subspace of the original space

* Many aliases — e.g., Karhunen-Loeve Transform




Motivating PCA: Toy Example

e Suppose that we are given a 2D dataset

* Goal. Find a nice 1d subspace and the corresponding mappings,
such that the mapped data have desirable properties




Motivating PCA: Toy Example

» Let's simplify a bit
» We confine the mapping to be an orthogonal projection
* Given a subspace, the mapping is uniquely determined.




Motivating PCA: Toy Example

» Goal (restated). Find a nice 1D subspace such that the projected data
have desirable properties

» Exactly what properties do we need?




Motivating PCA: Toy Example

* Answer. Preserve task-relevant information as much as possible
* However, this is a difficult task
» task-relevance: no label given to us!
 information: usual metrics, e.g., entropy is hard to estimate

» Simpler approach. Which projection is more informative?




Motivating PCA: Toy Example

* Answer. Left is considered informative, for two reasons
* (A) Projected points are more well-spread
* Does not ignore differences b/w points
* Noise-robust
 (B) Projected points (@) are closer to their original data (e)
* That is, more accurate reconstruction is possible




Motivating PCA: Toy Example

 (A) Projected points are more well-spread

* (B) Projected points (@) are closer to their original data (e)

* [nterestingly, these two criteria are equivalent!



Key Resulit

» We are given a datasetX,, ..., X & R4

. Goal. Find a k-dimensional subset U C R with
* (A) Maximum variance of projected points

max Var(z,(x,), ..., 7,(X,))
U

* (B) Minimum from projection

n
min ) [Ix; = 73113
=1

» But first, let's formally define what “projection” is...



Formalisms: Projection



Formalisms

» A k-dimensional affine subspace U C R“ can be characterized by:
+ Orthonormal basis uy, ..., u;, € R?
* Orthogonal bias b € R?
U={agu+--+agu+b : qgecR}




Formalisms

» Any element on U can be represented in two ways:
e A d-dimensional vector u € U
+ Ak-dimensional vector a = (ay,a,,...,aq;)

+ whereu =au; +---+qu, + b holds




Formalisms

e A projection of a vector X € R4 to the affine subspace U is:

k
my(x) = ) (ulx)-u;+b
=1

* This is a d-dimensional quantity, with an alternative representation:

a=(ux,..,ux) R

7y (X)



Formalisms

» The projection admits a matrix form:

k
m,y(X) = 2 ul-ul.T X+ Db
i=1

=: Ux+Db
» Here, the projection matrix U is:
 d X d matrix with rank k
. U'=U
. U'U=U

* Conversely, called projection matrix if these are satisfied



Formalisms

* |n a sense, projection consists of two operations

 Compression RY — RX
» Also known as “encoding”

z=U,_ X, where U, .= c Rixd

. Reconstruction R — R¢
* Also known as “decoding”

X =U,.z+Db, where Uy =U! & R

C1C



PCA: Variance Maximization




Variance Maximization

» In PCA, we want to find a nice (U, b) which solves

max Var(le +b,...,Ux, + b)
Ub

* As the constant term does not affect the variance, this is equivalent to

max Var(le, e, an)
U



Variance Maximization

— n
+ Define X as the mean of {X;}"_,

 Then, the variance can be written as:

1 n
Var(Ux, ..., Ux,) = - Z [U(x; — %I
i=1

1 n
=— ) (x,—%)'UTUx, - %)
& =1

= : i (x; — X)TU(Xi — X)
=1

n -



Variance Maximization
1 14}

max — Z (X; — )_()TU(Xi — X)
U n ]

» By the definition of U, we can re-write the above as

1 n k
max — Z Z (X; — X)TujujT(Xi — X)
oo j=1
k n
1
_ T . T
— mélX Zl u (; Zl (X; — X)(X; — X) ) u;
J= =

= sample covariance matrix S
(positive-semidefinite)



Variance Maximization

* Thus, PCA is about solving the constrained quadratic optimization

k . .
1 ceoe l :]
T - T
max u. Su., subjectto u.u; = L,
ul,...,ukazl ;o J L {O SN EY

* Question. How do we solve this?



Solving the quadratic problem

max Z uTSu subject to ul.Tuj =1{i =/}
u,...
] 1

* Answer. Of course, the method of Lagrangian multipliers

o Standard derivation requires complicated matrix derivatives —
instead, will give you a simplified proof idea.

» Strategy. Conduct a greedy optimization

» Select a nice u, that maximizes u, Sul s.t. ulTul = 1

Toy  — _
+ Select a nice u, that maximizes u, Su, s.t. u,u, = 1, u,u; =0



Solving the quadratic problem

» First step is to determine u,

maxu'Su,  subjectto u'u=1

u

* To solve this, consider the Lagrangian relaxation

maxu'Su + a(1 —u'u)
u

» Critical point is where Su = au holds
* |.e, eigenvectors

e Choose the principal component — i.e., eigenvector w/ maximum
eigenvalue — to maximize the value of u'Su



Solving the quadratic problem

 Next, we determine u,
max u' Su, subjectto u'u=1,u'u, =0
u

» |Lagrangian relaxation becomes
u'Su+a(l —u'u) — ﬁ(uTul)

* The critical point condition is:

p

Su = qu + —u,
2



Solving the quadratic problem
p

Su = aqu + —u,
2

« Multiplying ulT on both sides, we get:

0=0+2
2

* Thus, we have f = 0
* Then, the Lagrangian becomes

u'Su+ a(l —u'u)
» Thus the things are the same as in the derivation of u,
* Thus, choose the eigenvector for 2nd largest eigenvalue



Solving the quadratic problem

 Repeat this, the solutionistoletuy, ..., u; be the top-k principal
components of our sample covariance matrix

* This can be done by performing SVD on the data matrix
X=[x—-X%X]| - | x, —%X]=UZV'

and then selecting the columns of U corresponding to top-k singular
values

» Note. Did not cover determining b — will be covered soone



PCA: Distortion Minimization




Distortion Minimization

* Here is the spirit:

“If the projected point is close to the original point,
then we did not lose too much information”

o We'll show that this distortion minimization = variance maximization




Distortion Minimization

* Formally, we try to find an affine subspace
U = {a1u1+ cee +dkllk+b ) CliE R}
such that the of data from projection is minimized

R ,
mln—z |X. — (X))
U n =




Distortion Minimization

. Using the definition of projection, we know that

—Z Ix; — 7y (x|l
—Z |x; — Ux; - b’

—Z Ix;lI2 + [Ib]|> = xTUx; — 2b"x; + 2bTUx)

n

1
(Z IxI7) + bl = ~( ) x]Ux, ) — 2b7% + 2bTUx

=1



Distortion Minimization

* Removing the irrelevant terms, we are solving:

|
min (Hsz — — Z x!Ux. — 2b'x + 2bTU>‘<)
U.b n
» For any fixed U, we have

b* =Xx — UX

* Plugging in and removing constant terms again, we get:

- Trre T k
min ( X' UX — — E X, UX; ) = —max E uSu;
i

U n I e



Applications & Limitations




Face Recognition

* Many applications, but here’s an interesting one: Eigenface (1991)

» Goal. Identify specific person, based on facial image
* Robust to glass, lightning, ...
* Using 256 x 256 is difficult!




Face Recognition
* |dea. Build a PCA database for whole dataset

» Each u; can capture some “feature”
- T T
» Classify based on (u, X, ...,u, X)
* Rapid recognition
* Tracking

* Limitations.
* Requires the same size
» Sensitive to angles
* Needs “centering”




Image Compression

* Goal. Represent an image using less dimensions
* |dea. Do the following:

* Divide each image in 12 x 12 patches

* Conduct PCA

» For each patch, save K digits (ulTX, oy Uy X)

144-dimension 6-dimension | T-dimension

(full)



Image Compression

* |Interestingly, the eigenvectors look similar to cosine transforms (DCT)
» A version using DCT is called JPEG
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Limitations

 Difficult to capture nonlinear dataset
* Does not account for class labels




Advanced methods

 Kernel PCA. Conduct PCA for ®(x)

» Requires careful hyperparameter tuning & validation
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Isomap

» Similarly to spectral clustering, build a graph of points by connecting
each point to k-nearest neighbors

* Then, find a mapping to a low-dimensional space such that:

distance on graph = distance on embedded space




t-SNE

» Similar to Isomap, but use the neighborhood information

plj)=————>""—
Zk;&i GXP( _Hxi T XkHZ/ZGZ)

- Find a low-dimensional embedding such that diSt(Pian) ~ dist(z; Z)



MNIST embeddings of t-SNE

(requires computing pairwise
distances of 60,000 samples)




Next up

e Decision trees



</lecture 9>



