
Dimensionality Reduction



Recap
• Unsupervised learning 

• Learning from unlabeled data  

• Easy to scale up — necessary for large-scale training 

• Clustering 

• Learning a mapping  

• Each  may be represented by some mean  
                                                       (and variance, and so on …) 
• K-Means 
• Gaussian Mixture Models

{x1, …, xn}m
i=1 ⊆ ℝd

Φ( ⋅ ) : ℝd → {1,…, k}
k μi ∈ ℝd



Today
• Dimensionality Reduction 

• Learning a mapping   ( ) 

• In particular, we focus on the case of linear  
• Precisely, we discuss Principal Component Analysis (PCA) 

• Other examples 
• ICA (Independent Component Analysis) 
• Autoencoders

Φ( ⋅ ) : ℝd → ℝk k < d

Φ( ⋅ )



Motivations



Dealing with high-dimensional data
• Many datasets are extremely high-dimensional, in its raw form 

• Example. Suppose you are an ML engineer at Google 
• Goal. A model that detect copyrighted clips from Youtube shorts 

• The dimensionality of Youtube shorts  are: 
1920 x 1080 x RGB x 60FPS x 60 Seconds 
=22.4 Billion dimension

x ∈ ℝd



Curse of dimensionality
• Learning from high-dimensional data is challenging 

• Computation 
• Higher chance of noise 
• Difficult to visualize — for human insights 
• Difficult to find generalizable patterns (important)



Nominal dimensionality vs. True
• But do we really need all these dimensions? 
• Example. Handwritten digit recognition (MNIST, 28x28) 

• That is, we are not fully utilizing ℝ28×28 = ℝ784

only looks like this … and not like this



Nominal dimensionality vs. True
• Hypothesis. 

There exists some low-dim. subspace 
(or submanifold) in the high-dim. space 
where the real data lies in 

• Dimensionality Reduction 
Using unlabeled data to find the right 
mapping b/w high-dim & low-dim spaces 
• Caveat. Data could be noisy



Principal Component Analysis



Overview
• A dimensionality reduction technique, invented by Karl Pearson (1909) 

• Uses an affine subspace of the original space 
• Many aliases — e.g., Karhunen-Loève Transform



Motivating PCA: Toy Example
• Suppose that we are given a 2D dataset 
• Goal. Find a nice 1d subspace and the corresponding mappings, 

          such that the mapped data have desirable properties



Motivating PCA: Toy Example
• Let’s simplify a bit 

• We confine the mapping to be an orthogonal projection 
• Given a subspace, the mapping is uniquely determined. 



Motivating PCA: Toy Example
• Goal (restated). Find a nice 1D subspace such that the projected data 

                             have desirable properties 
• Exactly what properties do we need?



Motivating PCA: Toy Example
• Answer. Preserve task-relevant information as much as possible 

• However, this is a difficult task 
• task-relevance:    no label given to us! 
• information:         usual metrics, e.g., entropy is hard to estimate 

• Simpler approach. Which projection is more informative?



Motivating PCA: Toy Example
• Answer. Left is considered informative, for two reasons 

• (A) Projected points are more well-spread 
• Does not ignore differences b/w points 
• Noise-robust 

• (B) Projected points (   ) are closer to their original data (  ) 
• That is, more accurate reconstruction is possible



Motivating PCA: Toy Example
• Answer. Left is considered informative, for two reasons 

• (A) Projected points are more well-spread 
• Does not ignore differences b/w points 
• Noise-robust 

• (B) Projected points (   ) are closer to their original data (  ) 
• That is, more accurate reconstruction is possible 

• Interestingly, these two criteria are equivalent!



Key Result
• We are given a dataset  

• Goal. Find a -dimensional subset  with 
• (A) Maximum variance of projected points 

 

• (B) Minimum  distortion from projection 

 

• But first, let’s formally define what “projection” is…

x1, …, xn ∈ ℝd

k 𝖴 ⊆ ℝd

max
𝖴

Var(π𝖴(𝗑1), …, π𝖴(xn))

ℓ2

min
𝖴

n

∑
i=1

∥xi − π𝖴(xi)∥2
2

𝖴

xi



Formalisms: Projection



Formalisms
• A -dimensional affine subspace  can be characterized by: 

• Orthonormal basis     

• Orthogonal bias          

k 𝖴 ⊂ ℝd

u1, …, uk ∈ ℝd

b ∈ ℝd

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

u1
u2

b



Formalisms
• Any element on  can be represented in two ways: 

• A d-dimensional vector      

• A k-dimensional vector       

• where  holds

𝖴
u ∈ 𝖴
a = (a1, a2, …, ak)

u = a1u1 + ⋯ + akuk + b

u1
u2

b



Formalisms
• A projection of a vector  to the affine subspace  is: 

 

•  This is a d-dimensional quantity, with an alternative representation: 

x ∈ ℝd 𝖴

π𝖴(x) =
k

∑
i=1

(u⊤
i x) ⋅ ui + b

a = (u⊤
1 x, …, u⊤

k x) ∈ ℝk

b
u

x

(u⊤x) ⋅ u

πU(x)



Formalisms
• The projection admits a matrix form: 

 

                               

• Here, the projection matrix  is: 

•  matrix with rank  

•  

•  
• Conversely, called projection matrix if these are satisfied

π𝖴(x) = (
k

∑
i=1

uiu⊤
i ) x + b

=: Ux + b
U

d × d k
U⊤ = U
U⊤U = U



Formalisms
• In a sense, projection consists of two operations 

• Compression  
• Also known as “encoding” 

 

• Reconstruction  
• Also known as “decoding” 

ℝd → ℝk

z = Uencx, where Uenc =
← u⊤

1 →
⋯

← u⊤
k →

∈ ℝk×d

ℝk → ℝd

x̂ = Udecz + b, where Udec = U⊤
enc ∈ ℝd×k

x z x̂Uenc Udec



PCA: Variance Maximization



Variance Maximization
• In PCA, we want to find a nice  which solves 

 

• As the constant term does not affect the variance, this is equivalent to 

(U, b)

max
U,b

Var(Ux1 + b, …, Uxn + b)

max
U

Var(Ux1, …, Uxn)



Variance Maximization
• Define  as the mean of  

• Then, the variance can be written as: 

 

                

               

x̄ {xi}n
i=1

Var(Ux1, …, Uxn) =
1
n

n

∑
i=1

∥U(xi − x̄)∥2
2

=
1
n

n

∑
i=1

(xi − x̄)⊤U⊤U(xi − x̄)

=
1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)



Variance Maximization

 

• By the definition of , we can re-write the above as 

 

max
U

1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)

U

max
U

1
n

n

∑
i=1

k

∑
j=1

(xi − x̄)⊤uju⊤
j (xi − x̄)

= max
U

k

∑
j=1

u⊤
j ( 1

n

n

∑
i=1

(xi − x̄)(xi − x̄)⊤) uj

= sample covariance matrix  
(positive-semidefinite)

S



Variance Maximization
• Thus, PCA is about solving the constrained quadratic optimization 

 

• Question. How do we solve this?

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = {1 ⋯ i = j
0 ⋯ i ≠ j



Solving the quadratic problem

 

• Answer. Of course, the method of Lagrangian multipliers 
• Standard derivation requires complicated matrix derivatives — 

instead, will give you a simplified proof idea. 

• Strategy. Conduct a greedy optimization 

• Select a nice  that maximizes  s.t.  

• Select a nice  that maximizes  s.t. ,  

• …

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = 1{i = j}

u1 u⊤
1 Su1 u⊤

1 u1 = 1
u2 u⊤

2 Su2 u⊤
2 u2 = 1 u⊤

2 u1 = 0



Solving the quadratic problem
• First step is to determine  

 

• To solve this, consider the Lagrangian relaxation 

 

• Critical point is where  holds 
• i.e., eigenvectors 

• Choose the principal component — i.e., eigenvector w/ maximum 
eigenvalue — to maximize the value of 

u1
max

u
u⊤Su, subject to u⊤u = 1

max
u

u⊤Su + α(1 − u⊤u)

Su = αu

u⊤Su



Solving the quadratic problem
• Next, we determine  

 

• Lagrangian relaxation becomes 

 

• The critical point condition is: 

u2
max

u
u⊤Su, subject to u⊤u = 1, u⊤u1 = 0

u⊤Su + α(1 − u⊤u) − β(u⊤u1)

Su = αu +
β
2

u1



Solving the quadratic problem

 

• Multiplying  on both sides, we get: 

 

• Thus, we have  
• Then, the Lagrangian becomes 

 

• Thus the things are the same as in the derivation of  
• Thus, choose the eigenvector for 2nd largest eigenvalue

Su = αu +
β
2

u1

u⊤
1

0 = 0 +
β
2

β = 0

u⊤Su + α(1 − u⊤u)
u1



Solving the quadratic problem
• Repeat this, the solution is to let  be the top-k principal 

components of our sample covariance matrix 

• This can be done by performing SVD on the data matrix 

 

and then selecting the columns of  corresponding to top-k singular 
values 

• Note. Did not cover determining  — will be covered soone

u1, …, uk

X = [x1 − x̄ | ⋯ | xn − x̄] = UΣV⊤

U

b



PCA: Distortion Minimization



Distortion Minimization
• Here is the spirit: 

“If the projected point is close to the original point, 
then we did not lose too much information” 

• We’ll show that this distortion minimization = variance maximization

𝖴

xi



Distortion Minimization
• Formally, we try to find an affine subspace  

 
such that the mean squared error of data from projection is minimized 

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

min
𝖴

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

𝖴

xi



Distortion Minimization
• Using the definition of projection, we know that 

 

 

 

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

=
1
n

n

∑
i=1

∥xi − Uxi − b∥2

=
1
n

n

∑
i=1

(∥xi∥2 + ∥b∥2 − x⊤
i Uxi − 2b⊤xi + 2b⊤Uxi)

=
1
n (

n

∑
i=1

∥xi∥2) + ∥b∥2 −
1
n (

n

∑
i=1

x⊤
i Uxi) − 2b⊤x̄ + 2b⊤Ux̄



Distortion Minimization
• Removing the irrelevant terms, we are solving: 

 

• For any fixed , we have 

 
• Plugging in and removing constant terms again, we get: 

min
U,b (∥b∥2 −

1
n ∑ x⊤

i Uxi − 2b⊤x̄ + 2b⊤Ux̄)
U

b* = x̄ − Ux̄

min
U (x̄⊤Ux̄ −

1
n ∑ x⊤

i Uxi) = − max
U

k

∑
j=1

ujSuj



Applications & Limitations



Face Recognition
• Many applications, but here’s an interesting one: Eigenface (1991) 

• Goal. Identify specific person, based on facial image 
• Robust to glass, lightning, … 
• Using 256 x 256 is difficult!



Face Recognition
• Idea. Build a PCA database for whole dataset 

• Each  can capture some “feature” 

• Classify based on  

• Rapid recognition 
• Tracking 

• Limitations. 
• Requires the same size 
• Sensitive to angles 
• Needs “centering”

ui

(u⊤
1 x, …, u⊤

k x)



Image Compression
• Goal. Represent an image using less dimensions 
• Idea. Do the following: 

• Divide each image in 12 x 12 patches 
• Conduct PCA 

• For each patch, save K digits (u⊤
1 x, …, u⊤

k x)

144-dimension 
(full)

60-dimension 6-dimension 1-dimension



Image Compression
• Interestingly, the eigenvectors look similar to cosine transforms (DCT) 

• A version using DCT is called JPEG

Eigenvectors DCT bases



Limitations
• Difficult to capture nonlinear dataset 
• Does not account for class labels



Advanced methods
• Kernel PCA. Conduct PCA for  

• Requires careful hyperparameter tuning & validation
Φ(x)

Spherical Data No Kernel Gaussian Kernel ( )σ = 20



Isomap
• Similarly to spectral clustering, build a graph of points by connecting 

each point to -nearest neighbors 
• Then, find a mapping to a low-dimensional space such that: 

distance on graph  distance on embedded space

k

≈



t-SNE
• Similar to Isomap, but use the neighborhood information 

 

• Find a low-dimensional embedding such that 

pi( j) =
exp( −∥xi − xj∥2/2σ2)

∑k≠i exp( −∥xi − xk∥2/2σ2)
dist(pi, pj) ≈ dist(zi, zj)



MNIST embeddings of t-SNE 
(requires computing pairwise 
distances of 60,000 samples)



Next up
• Decision trees



</lecture 9>


