Dimensionality Reduction

Recap

Unsupervised learning

- Learning from unlabeled data $\{\mathbf{x}_1, ..., \mathbf{x}_n\}_{i=1}^m \subseteq \mathbb{R}^d$
- Easy to scale up necessary for large-scale training

Clustering

- Learning a mapping $\Phi(\cdot): \mathbb{R}^d \to \{1, ..., k\}$
- Each k may be represented by some mean $\mu_i \in \mathbb{R}^d$ (and variance, and so on ...)
 - K-Means
 - Gaussian Mixture Models

Today

- Dimensionality Reduction
 - Learning a mapping $\Phi(\cdot): \mathbb{R}^d \to \mathbb{R}^k \ (k < d)$

- ullet In particular, we focus on the case of linear $\Phi(\,\cdot\,)$
 - Precisely, we discuss Principal Component Analysis (PCA)

- Other examples
 - ICA (Independent Component Analysis)
 - Autoencoders

Motivations

Dealing with high-dimensional data

Many datasets are extremely high-dimensional, in its raw form

- Example. Suppose you are an ML engineer at Google
 - Goal. A model that detect copyrighted clips from Youtube shorts

• The dimensionality of Youtube shorts $\mathbf{x} \in \mathbb{R}^d$ are: 1920 x 1080 x RGB x 60FPS x 60 Seconds =22.4 Billion dimension

Curse of dimensionality

- Learning from high-dimensional data is challenging
 - Computation
 - Higher chance of noise
 - Difficult to visualize for human insights
 - Difficult to find generalizable patterns (important)

Nominal dimensionality vs. True

- But do we really need all these dimensions?
- Example. Handwritten digit recognition (MNIST, 28x28)

... and not like this

• That is, we are not fully utilizing $\mathbb{R}^{28 \times 28} = \mathbb{R}^{784}$

Nominal dimensionality vs. True

- Hypothesis.
 - There exists some low-dim. subspace (or submanifold) in the high-dim. space where the real data lies in

- Dimensionality Reduction
 Using unlabeled data to find the right mapping b/w high-dim & low-dim spaces
 - Caveat. Data could be noisy

Principal Component Analysis

Overview

- A dimensionality reduction technique, invented by Karl Pearson (1909)
 - Uses an affine subspace of the original space
 - Many aliases e.g., Karhunen-Loève Transform

- Suppose that we are given a 2D dataset
- Goal. Find a nice 1d subspace and the corresponding mappings, such that the mapped data have desirable properties

- Let's simplify a bit
 - We confine the mapping to be an orthogonal projection
 - Given a subspace, the mapping is uniquely determined.

- Goal (restated). Find a nice 1D subspace such that the projected data have desirable properties
 - Exactly what properties do we need?

- Answer. Preserve task-relevant information as much as possible
 - However, this is a difficult task
 - task-relevance: no label given to us!
 - information: usual metrics, e.g., entropy is hard to estimate

Simpler approach. Which projection is more informative?

- Answer. Left is considered informative, for two reasons
 - (A) Projected points are more well-spread
 - Does not ignore differences b/w points
 - Noise-robust
 - (B) Projected points (●) are closer to their original data (●)
 - That is, more accurate reconstruction is possible

- Answer. Left is considered informative, for two reasons
 - (A) Projected points are more well-spread
 - Does not ignore differences b/w points
 - Noise-robust
 - (B) Projected points (●) are <u>closer</u> to their original data (●)
 - That is, more accurate reconstruction is possible

Interestingly, these two criteria are equivalent!

Key Result

- We are given a dataset $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- Goal. Find a k-dimensional subset $U \subseteq \mathbb{R}^d$ with
 - (A) Maximum variance of projected points $\max_{\mathsf{U}} \mathrm{Var}(\pi_{\mathsf{U}}(\mathbf{x}_1), \dots, \pi_{\mathsf{U}}(\mathbf{x}_n))$
 - (B) Minimum \mathcal{C}^2 distortion from projection

$$\min_{\mathbf{U}} \sum_{i=1}^{n} \|\mathbf{x}_i - \pi_{\mathbf{U}}(\mathbf{x}_i)\|_2^2$$

• But first, let's formally define what "projection" is...

Formalisms: Projection

- A k-dimensional affine subspace $U \subset \mathbb{R}^d$ can be characterized by:
 - Orthonormal basis $\mathbf{u}_1, ..., \mathbf{u}_k \in \mathbb{R}^d$
 - Orthogonal bias $\mathbf{b} \in \mathbb{R}^d$

$$U = \{a_1\mathbf{u}_1 + \dots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in \mathbb{R}\}$$

- Any element on U can be represented in two ways:
 - A d-dimensional vector $\mathbf{u} \in \mathsf{U}$
 - A k-dimensional vector $\mathbf{a} = (a_1, a_2, \dots, a_k)$
 - where $\mathbf{u} = a_1 \mathbf{u}_1 + \cdots + a_k \mathbf{u}_k + \mathbf{b}$ holds

• A projection of a vector $\mathbf{x} \in \mathbb{R}^d$ to the affine subspace U is:

$$\pi_{\mathsf{U}}(\mathbf{x}) = \sum_{i=1}^{k} (\mathbf{u}_i^{\mathsf{T}} \mathbf{x}) \cdot \mathbf{u}_i + \mathbf{b}$$

This is a d-dimensional quantity, with an alternative representation:

$$\mathbf{a} = (\mathbf{u}_1^\mathsf{T} \mathbf{x}, ..., \mathbf{u}_k^\mathsf{T} \mathbf{x}) \in \mathbb{R}^k$$

The projection admits a matrix form:

$$\pi_{U}(\mathbf{x}) = \left(\sum_{i=1}^{k} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}\right) \mathbf{x} + \mathbf{b}$$
$$=: \mathbf{U}\mathbf{x} + \mathbf{b}$$

- Here, the projection matrix U is:
 - $d \times d$ matrix with rank k
 - $\mathbf{U}^{\mathsf{T}} = \mathbf{U}$
 - $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}$
- Conversely, called projection matrix if these are satisfied

- In a sense, projection consists of two operations
- Compression $\mathbb{R}^d o \mathbb{R}^k$
 - Also known as "encoding"

$$\mathbf{z} = \mathbf{U}_{\mathrm{enc}} \mathbf{x}, \qquad \text{where} \quad \mathbf{U}_{\mathrm{enc}} = \left| \begin{array}{ccc} \leftarrow & \mathbf{u}_{1}^{\mathsf{T}} & \rightarrow \\ & \cdots & \\ \leftarrow & \mathbf{u}_{k}^{\mathsf{T}} & \rightarrow \end{array} \right| \in \mathbb{R}^{k \times d}$$

- Reconstruction $\mathbb{R}^k \to \mathbb{R}^d$
 - Also known as "decoding"

$$\hat{\mathbf{x}} = \mathbf{U}_{\text{dec}}\mathbf{z} + \mathbf{b}$$
, where $\mathbf{U}_{\text{dec}} = \mathbf{U}_{\text{enc}}^{\mathsf{T}} \in \mathbb{R}^{d \times k}$

PCA: Variance Maximization

• In PCA, we want to find a nice (\mathbf{U}, \mathbf{b}) which solves

$$\max_{\mathbf{U},\mathbf{b}} \operatorname{Var} \left(\mathbf{U} \mathbf{x}_1 + \mathbf{b}, ..., \mathbf{U} \mathbf{x}_n + \mathbf{b} \right)$$

As the constant term does not affect the variance, this is equivalent to

$$\max_{\mathbf{U}} \text{Var}(\mathbf{U}\mathbf{x}_1, ..., \mathbf{U}\mathbf{x}_n)$$

- Define $\bar{\mathbf{x}}$ as the mean of $\{\mathbf{x}_i\}_{i=1}^n$
- Then, the variance can be written as:

$$\operatorname{Var}(\mathbf{U}\mathbf{x}_{1},...,\mathbf{U}\mathbf{x}_{n}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{U}(\mathbf{x}_{i} - \bar{\mathbf{x}})\|_{2}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \mathbf{U}(\mathbf{x}_{i} - \bar{\mathbf{x}})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{U}(\mathbf{x}_{i} - \bar{\mathbf{x}})$$

$$\max_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^\mathsf{T} \mathbf{U} (\mathbf{x}_i - \bar{\mathbf{x}})$$

ullet By the definition of ${f U}$, we can re-write the above as

$$\max_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{u}_{j} \mathbf{u}_{j}^{\mathsf{T}} (\mathbf{x}_{i} - \bar{\mathbf{x}})$$

$$= \max_{\mathbf{U}} \sum_{j=1}^{k} \mathbf{u}_{j}^{\mathsf{T}} \left(\frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \right) \mathbf{u}_{j}$$

= sample covariance matrix S (positive-semidefinite)

Thus, PCA is about solving the constrained quadratic optimization

$$\max_{\mathbf{u}_1, \dots, \mathbf{u}_k} \sum_{j=1}^k \mathbf{u}_j^\mathsf{T} \mathbf{S} \mathbf{u}_j, \quad \text{subject to} \quad \mathbf{u}_i^\mathsf{T} \mathbf{u}_j = \begin{cases} 1 & \dots & i = j \\ 0 & \dots & i \neq j \end{cases}$$

Question. How do we solve this?

$$\max_{\mathbf{u}_1,...,\mathbf{u}_k} \sum_{j=1}^k \mathbf{u}_j^\mathsf{T} \mathbf{S} \mathbf{u}_j, \quad \text{subject to} \quad \mathbf{u}_i^\mathsf{T} \mathbf{u}_j = \mathbf{1} \{i = j\}$$

- Answer. Of course, the method of Lagrangian multipliers
 - Standard derivation requires complicated matrix derivatives instead, will give you a simplified proof idea.

- Strategy. Conduct a greedy optimization
 - Select a nice \mathbf{u}_1 that maximizes $\mathbf{u}_1^\mathsf{T} \mathbf{S} \mathbf{u}_1$ s.t. $\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$
 - Select a nice \mathbf{u}_2 that maximizes $\mathbf{u}_2^\mathsf{T} \mathbf{S} \mathbf{u}_2$ s.t. $\mathbf{u}_2^\mathsf{T} \mathbf{u}_2 = 1$, $\mathbf{u}_2^\mathsf{T} \mathbf{u}_1 = 0$

•

• First step is to determine \mathbf{u}_1

$$\max \mathbf{u}^{\mathsf{T}} \mathbf{S} \mathbf{u}$$
, subject to $\mathbf{u}^{\mathsf{T}} \mathbf{u} = 1$

To solve this, consider the Lagrangian relaxation

$$\max_{\mathbf{u}} \mathbf{u}^{\mathsf{T}} \mathbf{S} \mathbf{u} + \alpha (1 - \mathbf{u}^{\mathsf{T}} \mathbf{u})$$

- Critical point is where $\mathbf{Su} = \alpha \mathbf{u}$ holds
 - i.e., eigenvectors
- Choose the principal component i.e., eigenvector w/ maximum eigenvalue to maximize the value of $\boldsymbol{u}^{\top}\boldsymbol{S}\boldsymbol{u}$

• Next, we determine \mathbf{u}_2

$$\max_{\mathbf{u}} \mathbf{u}^{\mathsf{T}} \mathbf{S} \mathbf{u}, \quad \text{subject to} \quad \mathbf{u}^{\mathsf{T}} \mathbf{u} = 1, \mathbf{u}^{\mathsf{T}} \mathbf{u}_{1} = 0$$

Lagrangian relaxation becomes

$$\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u} + \alpha(1 - \mathbf{u}^{\mathsf{T}}\mathbf{u}) - \beta(\mathbf{u}^{\mathsf{T}}\mathbf{u}_{1})$$

The critical point condition is:

$$\mathbf{S}\mathbf{u} = \alpha\mathbf{u} + \frac{\beta}{2}\mathbf{u}_1$$

$$\mathbf{S}\mathbf{u} = \alpha\mathbf{u} + \frac{\beta}{2}\mathbf{u}_1$$

• Multiplying \mathbf{u}_1^T on both sides, we get:

$$0 = 0 + \frac{\beta}{2}$$

- Thus, we have $\beta = 0$
- Then, the Lagrangian becomes

$$\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u} + \alpha(1 - \mathbf{u}^{\mathsf{T}}\mathbf{u})$$

- ullet Thus the things are the same as in the derivation of $oldsymbol{u}_1$
 - Thus, choose the eigenvector for 2nd largest eigenvalue

- Repeat this, the solution is to let $\mathbf{u}_1,\dots,\mathbf{u}_k$ be the top-k principal components of our sample covariance matrix
- This can be done by performing SVD on the data matrix

$$\mathbf{X} = [\mathbf{x}_1 - \bar{\mathbf{x}} \mid \cdots \mid \mathbf{x}_n - \bar{\mathbf{x}}] = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$

and then selecting the columns of ${f U}$ corresponding to top-k singular values

Note. Did not cover determining b — will be covered soone

PCA: Distortion Minimization

Distortion Minimization

Here is the spirit:

"If the projected point is close to the original point, then we did not lose too much information"

We'll show that this distortion minimization = variance maximization

Distortion Minimization

Formally, we try to find an affine subspace

$$U = \{a_1\mathbf{u}_1 + \dots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in \mathbb{R}\}$$

such that the mean squared error of data from projection is minimized

$$\min_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \pi_{\mathbf{U}}(\mathbf{x}_i)\|^2$$

Distortion Minimization

Using the definition of projection, we know that

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \pi_{\mathbf{U}}(\mathbf{x}_{i})\|^{2}
= \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{U}\mathbf{x}_{i} - \mathbf{b}\|^{2}
= \frac{1}{n} \sum_{i=1}^{n} (\|\mathbf{x}_{i}\|^{2} + \|\mathbf{b}\|^{2} - \mathbf{x}_{i}^{\mathsf{T}}\mathbf{U}\mathbf{x}_{i} - 2\mathbf{b}^{\mathsf{T}}\mathbf{x}_{i} + 2\mathbf{b}^{\mathsf{T}}\mathbf{U}\mathbf{x}_{i})
= \frac{1}{n} \left(\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} \right) + \|\mathbf{b}\|^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} \mathbf{x}_{i}^{\mathsf{T}}\mathbf{U}\mathbf{x}_{i} \right) - 2\mathbf{b}^{\mathsf{T}}\bar{\mathbf{x}} + 2\mathbf{b}^{\mathsf{T}}\mathbf{U}\bar{\mathbf{x}}_{i}$$

Distortion Minimization

Removing the irrelevant terms, we are solving:

$$\min_{\mathbf{U},\mathbf{b}} \left(\|\mathbf{b}\|^2 - \frac{1}{n} \sum_{i} \mathbf{x}_i^{\mathsf{T}} \mathbf{U} \mathbf{x}_i - 2\mathbf{b}^{\mathsf{T}} \bar{\mathbf{x}} + 2\mathbf{b}^{\mathsf{T}} \mathbf{U} \bar{\mathbf{x}} \right)$$

ullet For any fixed ${f U}$, we have

$$\mathbf{b}^* = \bar{\mathbf{x}} - \mathbf{U}\bar{\mathbf{x}}$$

Plugging in and removing constant terms again, we get:

$$\min_{\mathbf{U}} \left(\bar{\mathbf{x}}^{\mathsf{T}} \mathbf{U} \bar{\mathbf{x}} - \frac{1}{n} \sum_{i} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{U} \mathbf{x}_{i} \right) = -\max_{\mathbf{U}} \left(\sum_{j=1}^{k} \mathbf{u}_{j} \mathbf{S} \mathbf{u}_{j} \right)$$

Applications & Limitations

Face Recognition

Many applications, but here's an interesting one: Eigenface (1991)

- Goal. Identify specific person, based on facial image
 - Robust to glass, lightning, ...
 - Using 256 x 256 is difficult!

Face Recognition

- Idea. Build a PCA database for whole dataset
 - Each \mathbf{u}_i can capture some "feature"
 - Classify based on $(\mathbf{u}_1^\mathsf{T}\mathbf{x}, ..., \mathbf{u}_k^\mathsf{T}\mathbf{x})$
 - Rapid recognition
 - Tracking

- Limitations.
 - Requires the same size
 - Sensitive to angles
 - Needs "centering"

Image Compression

- Goal. Represent an image using less dimensions
- Idea. Do the following:
 - Divide each image in 12 x 12 patches
 - Conduct PCA
 - For each patch, save K digits $(\mathbf{u}_1^\mathsf{T}\mathbf{x}, ..., \mathbf{u}_k^\mathsf{T}\mathbf{x})$

144-dimension (full)

60-dimension

6-dimension

1-dimension

Image Compression

- Interestingly, the eigenvectors look similar to cosine transforms (DCT)
 - A version using DCT is called JPEG

Eigenvectors

DCT bases

Limitations

- Difficult to capture nonlinear dataset
- Does not account for class labels

Advanced methods

- Kernel PCA. Conduct PCA for $\Phi(\mathbf{x})$
 - Requires careful hyperparameter tuning & validation

Isomap

- Similarly to spectral clustering, build a graph of points by connecting each point to k-nearest neighbors
- Then, find a mapping to a low-dimensional space such that:
 distance on graph ≈ distance on embedded space

t-SNE

Similar to Isomap, but use the neighborhood information

$$p_{i}(j) = \frac{\exp(-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}/2\sigma^{2})}{\sum_{k \neq i} \exp(-\|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2}/2\sigma^{2})}$$

• Find a low-dimensional embedding such that $dist(p_i, p_j) \approx dist(\mathbf{z}_i, \mathbf{z}_j)$

Next up

Decision trees

</le>