
Dimensionality Reduction

Recap
• Unsupervised learning

• Learning from unlabeled data

• Easy to scale up — necessary for large-scale training

• Clustering

• Learning a mapping

• Each may be represented by some mean
 (and variance, and so on …)
• K-Means
• Gaussian Mixture Models

{x1, …, xn}m
i=1 ⊆ ℝd

Φ(⋅) : ℝd → {1,…, k}
k μi ∈ ℝd

Today
• Dimensionality Reduction

• Learning a mapping ()

• In particular, we focus on the case of linear
• Precisely, we discuss Principal Component Analysis (PCA)

• Other examples
• ICA (Independent Component Analysis)
• Autoencoders

Φ(⋅) : ℝd → ℝk k < d

Φ(⋅)

Motivations

Dealing with high-dimensional data
• Many datasets are extremely high-dimensional, in its raw form

• Example. Suppose you are an ML engineer at Google
• Goal. A model that detect copyrighted clips from Youtube shorts

• The dimensionality of Youtube shorts are:
1920 x 1080 x RGB x 60FPS x 60 Seconds
=22.4 Billion dimension

x ∈ ℝd

Curse of dimensionality
• Learning from high-dimensional data is challenging

• Computation
• Higher chance of noise
• Difficult to visualize — for human insights
• Difficult to find generalizable patterns (important)

Nominal dimensionality vs. True
• But do we really need all these dimensions?
• Example. Handwritten digit recognition (MNIST, 28x28)

• That is, we are not fully utilizing ℝ28×28 = ℝ784

only looks like this … and not like this

Nominal dimensionality vs. True
• Hypothesis.

There exists some low-dim. subspace
(or submanifold) in the high-dim. space
where the real data lies in

• Dimensionality Reduction
Using unlabeled data to find the right
mapping b/w high-dim & low-dim spaces
• Caveat. Data could be noisy

Principal Component Analysis

Overview
• A dimensionality reduction technique, invented by Karl Pearson (1909)

• Uses an affine subspace of the original space
• Many aliases — e.g., Karhunen-Loève Transform

Motivating PCA: Toy Example
• Suppose that we are given a 2D dataset
• Goal. Find a nice 1d subspace and the corresponding mappings,

 such that the mapped data have desirable properties

Motivating PCA: Toy Example
• Let’s simplify a bit

• We confine the mapping to be an orthogonal projection
• Given a subspace, the mapping is uniquely determined.

Motivating PCA: Toy Example
• Goal (restated). Find a nice 1D subspace such that the projected data

 have desirable properties
• Exactly what properties do we need?

Motivating PCA: Toy Example
• Answer. Preserve task-relevant information as much as possible

• However, this is a difficult task
• task-relevance: no label given to us!
• information: usual metrics, e.g., entropy is hard to estimate

• Simpler approach. Which projection is more informative?

Motivating PCA: Toy Example
• Answer. Left is considered informative, for two reasons

• (A) Projected points are more well-spread
• Does not ignore differences b/w points
• Noise-robust

• (B) Projected points () are closer to their original data ()
• That is, more accurate reconstruction is possible

Motivating PCA: Toy Example
• Answer. Left is considered informative, for two reasons

• (A) Projected points are more well-spread
• Does not ignore differences b/w points
• Noise-robust

• (B) Projected points () are closer to their original data ()
• That is, more accurate reconstruction is possible

• Interestingly, these two criteria are equivalent!

Key Result
• We are given a dataset

• Goal. Find a -dimensional subset with
• (A) Maximum variance of projected points

• (B) Minimum distortion from projection

• But first, let’s formally define what “projection” is…

x1, …, xn ∈ ℝd

k 𝖴 ⊆ ℝd

max
𝖴

Var(π𝖴(𝗑1), …, π𝖴(xn))

ℓ2

min
𝖴

n

∑
i=1

∥xi − π𝖴(xi)∥2
2

𝖴

xi

Formalisms: Projection

Formalisms
• A -dimensional affine subspace can be characterized by:

• Orthonormal basis

• Orthogonal bias

k 𝖴 ⊂ ℝd

u1, …, uk ∈ ℝd

b ∈ ℝd

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

u1
u2

b

Formalisms
• Any element on can be represented in two ways:

• A d-dimensional vector

• A k-dimensional vector

• where holds

𝖴
u ∈ 𝖴
a = (a1, a2, …, ak)

u = a1u1 + ⋯ + akuk + b

u1
u2

b

Formalisms
• A projection of a vector to the affine subspace is:

• This is a d-dimensional quantity, with an alternative representation:

x ∈ ℝd 𝖴

π𝖴(x) =
k

∑
i=1

(u⊤
i x) ⋅ ui + b

a = (u⊤
1 x, …, u⊤

k x) ∈ ℝk

b
u

x

(u⊤x) ⋅ u

πU(x)

Formalisms
• The projection admits a matrix form:

• Here, the projection matrix is:

• matrix with rank

•

•
• Conversely, called projection matrix if these are satisfied

π𝖴(x) = (
k

∑
i=1

uiu⊤
i) x + b

=: Ux + b
U

d × d k
U⊤ = U
U⊤U = U

Formalisms
• In a sense, projection consists of two operations

• Compression
• Also known as “encoding”

• Reconstruction
• Also known as “decoding”

ℝd → ℝk

z = Uencx, where Uenc =
← u⊤

1 →
⋯

← u⊤
k →

∈ ℝk×d

ℝk → ℝd

x̂ = Udecz + b, where Udec = U⊤
enc ∈ ℝd×k

x z x̂Uenc Udec

PCA: Variance Maximization

Variance Maximization
• In PCA, we want to find a nice which solves

• As the constant term does not affect the variance, this is equivalent to

(U, b)

max
U,b

Var(Ux1 + b, …, Uxn + b)

max
U

Var(Ux1, …, Uxn)

Variance Maximization
• Define as the mean of

• Then, the variance can be written as:

x̄ {xi}n
i=1

Var(Ux1, …, Uxn) =
1
n

n

∑
i=1

∥U(xi − x̄)∥2
2

=
1
n

n

∑
i=1

(xi − x̄)⊤U⊤U(xi − x̄)

=
1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)

Variance Maximization

• By the definition of , we can re-write the above as

max
U

1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)

U

max
U

1
n

n

∑
i=1

k

∑
j=1

(xi − x̄)⊤uju⊤
j (xi − x̄)

= max
U

k

∑
j=1

u⊤
j (1

n

n

∑
i=1

(xi − x̄)(xi − x̄)⊤) uj

= sample covariance matrix
(positive-semidefinite)

S

Variance Maximization
• Thus, PCA is about solving the constrained quadratic optimization

• Question. How do we solve this?

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = {1 ⋯ i = j
0 ⋯ i ≠ j

Solving the quadratic problem

• Answer. Of course, the method of Lagrangian multipliers
• Standard derivation requires complicated matrix derivatives —

instead, will give you a simplified proof idea.

• Strategy. Conduct a greedy optimization

• Select a nice that maximizes s.t.

• Select a nice that maximizes s.t. ,

• …

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = 1{i = j}

u1 u⊤
1 Su1 u⊤

1 u1 = 1
u2 u⊤

2 Su2 u⊤
2 u2 = 1 u⊤

2 u1 = 0

Solving the quadratic problem
• First step is to determine

• To solve this, consider the Lagrangian relaxation

• Critical point is where holds
• i.e., eigenvectors

• Choose the principal component — i.e., eigenvector w/ maximum
eigenvalue — to maximize the value of

u1
max

u
u⊤Su, subject to u⊤u = 1

max
u

u⊤Su + α(1 − u⊤u)

Su = αu

u⊤Su

Solving the quadratic problem
• Next, we determine

• Lagrangian relaxation becomes

• The critical point condition is:

u2
max

u
u⊤Su, subject to u⊤u = 1, u⊤u1 = 0

u⊤Su + α(1 − u⊤u) − β(u⊤u1)

Su = αu +
β
2

u1

Solving the quadratic problem

• Multiplying on both sides, we get:

• Thus, we have
• Then, the Lagrangian becomes

• Thus the things are the same as in the derivation of
• Thus, choose the eigenvector for 2nd largest eigenvalue

Su = αu +
β
2

u1

u⊤
1

0 = 0 +
β
2

β = 0

u⊤Su + α(1 − u⊤u)
u1

Solving the quadratic problem
• Repeat this, the solution is to let be the top-k principal

components of our sample covariance matrix

• This can be done by performing SVD on the data matrix

and then selecting the columns of corresponding to top-k singular
values

• Note. Did not cover determining — will be covered soone

u1, …, uk

X = [x1 − x̄ | ⋯ | xn − x̄] = UΣV⊤

U

b

PCA: Distortion Minimization

Distortion Minimization
• Here is the spirit:

“If the projected point is close to the original point,
then we did not lose too much information”

• We’ll show that this distortion minimization = variance maximization

𝖴

xi

Distortion Minimization
• Formally, we try to find an affine subspace

such that the mean squared error of data from projection is minimized

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

min
𝖴

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

𝖴

xi

Distortion Minimization
• Using the definition of projection, we know that

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

=
1
n

n

∑
i=1

∥xi − Uxi − b∥2

=
1
n

n

∑
i=1

(∥xi∥2 + ∥b∥2 − x⊤
i Uxi − 2b⊤xi + 2b⊤Uxi)

=
1
n (

n

∑
i=1

∥xi∥2) + ∥b∥2 −
1
n (

n

∑
i=1

x⊤
i Uxi) − 2b⊤x̄ + 2b⊤Ux̄

Distortion Minimization
• Removing the irrelevant terms, we are solving:

• For any fixed , we have

• Plugging in and removing constant terms again, we get:

min
U,b (∥b∥2 −

1
n ∑ x⊤

i Uxi − 2b⊤x̄ + 2b⊤Ux̄)
U

b* = x̄ − Ux̄

min
U (x̄⊤Ux̄ −

1
n ∑ x⊤

i Uxi) = − max
U

k

∑
j=1

ujSuj

Applications & Limitations

Face Recognition
• Many applications, but here’s an interesting one: Eigenface (1991)

• Goal. Identify specific person, based on facial image
• Robust to glass, lightning, …
• Using 256 x 256 is difficult!

Face Recognition
• Idea. Build a PCA database for whole dataset

• Each can capture some “feature”

• Classify based on

• Rapid recognition
• Tracking

• Limitations.
• Requires the same size
• Sensitive to angles
• Needs “centering”

ui

(u⊤
1 x, …, u⊤

k x)

Image Compression
• Goal. Represent an image using less dimensions
• Idea. Do the following:

• Divide each image in 12 x 12 patches
• Conduct PCA

• For each patch, save K digits (u⊤
1 x, …, u⊤

k x)

144-dimension
(full)

60-dimension 6-dimension 1-dimension

Image Compression
• Interestingly, the eigenvectors look similar to cosine transforms (DCT)

• A version using DCT is called JPEG

Eigenvectors DCT bases

Limitations
• Difficult to capture nonlinear dataset
• Does not account for class labels

Advanced methods
• Kernel PCA. Conduct PCA for

• Requires careful hyperparameter tuning & validation
Φ(x)

Spherical Data No Kernel Gaussian Kernel ()σ = 20

Isomap
• Similarly to spectral clustering, build a graph of points by connecting

each point to -nearest neighbors
• Then, find a mapping to a low-dimensional space such that:

distance on graph distance on embedded space

k

≈

t-SNE
• Similar to Isomap, but use the neighborhood information

• Find a low-dimensional embedding such that

pi(j) =
exp(−∥xi − xj∥2/2σ2)

∑k≠i exp(−∥xi − xk∥2/2σ2)
dist(pi, pj) ≈ dist(zi, zj)

MNIST embeddings of t-SNE
(requires computing pairwise
distances of 60,000 samples)

Next up
• Decision trees

</lecture 9>

