Gaussian Mixture Models




Recap

* Unsupervised learning

 K-means clustering
* Each cluster is represented by the centroid
» Data belongs to a cluster with nearest centroid

* Limitations
* Brittle to initialization ®
* Qverlapping clusters
* Wider clusters




Today

 Mixture Model
» Tackle clusters with overlap & various sizes
» Will take a generative approach

 Focus on the most famous case
 Gaussian mixture models (GMM)



Mixture Model




Mixture Model

» Take a generative approach
» Posit that data are coming from some well-defined distribution
* Fit the parameters of the distribution

» Have done this for naive Bayes
 Difference. Do not observe the “labels”



Mixture Model

» Solution. Introduce latent variables of cluster identity
* Not necessarily reflecting reality — rather an instrument

* Modeling. We consider:

. P¢(cluster): Latent group identity

+ Py(teature | cluster) Data distribution of each cluster

* Fitting. Use training data to fit the parameters
Py

rain

~ Py ¢(feature)



Mixture Model

» Example. Suppose the case of two clusters
» Draw Y € {0,1} ~ Bern(p)
e IfY =0 thenX ~ /V(,uo,ag

e IfY=1,thenX ~ /V(//tl,dlz)
» Allows overlap and varying widths




Generative approach

* Perk. If you have learned a nice probabilistic model from the data
you can sample a new data from this PQ ¢( - )




(Finite) Mixture Models

» A set of generative models where P( - ) takes the form of
a weighted sum of finite elementary distributions

K
p(X) = Z 7.+ Pi(X), m, € [0,1], Z =1
k=1




Gaussian Mixture Models

 Gaussian MM. Each base distribution is a Gaussian distribution

K
p(x[6) = ) m - N(X|py, Zp)
k=1

» Here, 0 is the total parameter set

H — (//tl, Zl’ ...,//tK, ZK’ 7[1, ceos ﬂ«'K)
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Optimizing GMMs

* As in nailve Bayes, our optimization objective comes from the
maximum likelihood principle

 The likelihood of mixture distribution can be written as:

p(x;,10) = Hp(xi 0)

— H 2 Ty * Y X | By Zaiy)

=1 k=1

» Goal. Maximize this quantity by selecting 0 = {y,, 2., 7, | k € [K]}



Optimizing GMMs
* Again, consider the log-likelihood to make it a summation:

n K
Z0) =1logp(x;,,|0) = Y log( Y m+ (x| s Zp)
=1 k=1

e We want to solve the maximization

max £ (6)
0

* Problem. Very difficult to optimize by the critical point analysis
» We'll go through what we call expectation-maximization



Expectation-Maximization
(Advanced!)




Expectation-Maximization

* An iterative algorithm for optimizing probabilistic latent-variable models
» (Can be thought of as a specialized form of alternating optimization

* |dea. Repeat the following steps
 Construct a lower bound on the likelihood

g(0) < Z(0)
+ Maximizes the lower bound g(6)

O"W) = areg max g(6)
0



Expectation-Maximization

» Formally, let y; be the latent variable associate with X.

* In GMM, y: is the “cluster identity,” i.e., which Gaussian X; is from

 Then, we know that:

Z(0) = Z log p(x;| 0)

= Zlog(ZP(XZ,yZ = k\H))



Expectation-Maximization

» Define any distribution Q(k)

 Then, we have, for any single sample-group pair (X, y):

K
log p(x10) = log( Y p(x,y = k10))
k=1

~ . p(x,y = k| 6)
— log( ]; Q(k) - W)

S p(X,y = k|6)
> Yy Q) - log| ———=
,; ( 0(k) )

* The inequality is due to Jensen's inequality



Jensens inequality
(Advanced!)




Convex functions

 Recall that convex functions are functions such that:

/1](()6) T (1 _/I)f(y) Zf(/lx_l_ (1 _/l)y)a anya\vl/l & [Oal]

» Concave functions are the opposite (negative of convex functions)
« Example. Log function

g(*) 4

Concave

-
X Y




Jensens inequality

* For convex functions, we have

E[AX)] < AELX])

 For concave functions, we have

E[AX)] = AELX])

» Equality, if X is a constant variable

g(*) 4

Concave

-
X Y




</Jensens inequality>



Expectation-Maximization

c p(x,y = k| 0) & p(x,y = k|0)
10%( /; Q(k) - W) > ;; Q(k) - 10%(w)

» This is applying Jensen'’s inequality to a concave function log( - )
* Here, the random variable is:

pX,y = k|0)
O(k)

 This lower bound on the likelihood is called evidence lower bound (ELBO)

ELBO(x| 0O, 6)



Expectation-Maximization
logp(x|0) > ELBO(x|Q, 0)

» Now, we want to make this bound tightest by selecting good O

» Recall that Jensen’s inequality is tightest for constant R.V.
* Thatis,

pX,y =k|0) _ p(y = k|x,0)

7,
0k) 0w P19

const =

 Thus, best if we choose

Q(k) = p(y = k|x,0)



Expectation-Maximization

» Let's go back to the multi-sample case:

« We have

n K n
#0) = Y log( Y p(x,y, = k160)) = D ELBOK;| 0,0
=1 k=1 =1

» Here, we have (); as samplewise posteriors

Q:k) = p(y; = k|x;,0)



EM Algorithm

* Now, the EM algorithm can be written as:

» 1. Initialization: Initialize &
» 2. Expectation: Compute the ELBO-maximizing O
Q,(k) = p(y; = k|x;,0)

» 3. Maximization: Compute the ELBO-maximizing &

gnew) — arg max Z ELBO(x; | Q;,0)
()

i=1
* 4. Repeat!



</Expectation-Maximization>



EM for GMMs
* Now, let's apply EM for GMMs

* First, recall that:
 Multivariate Gaussians

1
N D)) e — ——(x =) > (x — )
x| pu, 2) oPXIb] eXp ( 2(X 1) (X — u)

» Taking log, we get

log V(X |pu,2) = — % (leg(Zﬂ) +log|Z|+(x—p)' 7 (x = ,u))



EM for GMMs
» Expectation. This step computes the posterior for each sample

Q(k) = p(y; = k|x;,0)

* |n clustering, we call this responsibility
ry = pOy; = k|x;,0)
- p(Xiayi — k‘e)

p(x;|0)
p(y; = k|0) - N (X; | s 21 = p(X;|y; =k, 0)

ZJ- 7Tj«/V (Xi\//tj, Zj) — P(Xi | 6)



EM for GMMs
B NV (X | g 27)
X m A (xilu T)

* Note. If we plug in:

» uniform prior 7, = 1/K

» uniform variance o, = 1/f
then we recover the soft K-means objective

 exp(—Blix; — IR
R
ZJ- exp(—plIx; — uill5)



EM for GMMs

» Maximization. Given the r;, fixed, we solve the maximization

max 2 ELBO(x;| Q. 0)

 Recall that the ELBO was

Z Z r. log(P(Xp)’l — k\&’))

=1 k=1
. Dropping Constants we are solving:

max 2 Z ri - (log p(x; | y; = k,0) + log p(y; = k| 0))
=1 k=1



EM for GMMs

max y Z 7+ (log p(x;|y; = k.60) + log p(y; = k|))

=1 k=1
* We can divide into two subproblems

max 2 Z ry - log m,

17} =1 k=1

max Z 2 ry - log /(X |y, 20)

173892 1 el



EM for GMMs

max Z Z ry - log m,

17} =1 k=1
» 7st subproblem. Constrained optimization problem

» Solve this by the method of Lagrangian multipliers, to get
Hy
N, — —
n

+ Here, we use the shorthand n;, as the total responsibility in cluster k
n

nkzzrik

=1




EM for GMMs

max Y Z ri - 10g N (%] pyo )

iz} "=
» 2nd subproblem. Unconstrained maximization
* Analyze the critical point, to get:

2 TulX; ] -
Wp=——", L= — Z ra(X; — ) (X — 1)
ko i=1

.

* For a full derivation, see section 11.2.3 of the MML textbook



1. Initialize s Zk, TE.
2. E-step: Evaluate responsibilities r,,;, for every data point «,, using cur-
rent parameters my, p4,, 2i:

nk — .

3. M-step: Reestimate parameters my, i, , 25 using the current responsi-
bilities r,,;, (from E-step):

(11.53)

1 N
— L, 11.5
M= 5 ;r o T (11.54)
1 N
Sk = > (@ — ) (@ — ) T (11.55)
k n=1



Original Data k-Means Clustering EM Clustering
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Next up

* Dimensionality reduction



</lecture 6>



