
Gaussian Mixture Models



Recap
• Unsupervised learning 

• K-means clustering 
• Each cluster is represented by the centroid 
• Data belongs to a cluster with nearest centroid 

• Limitations 
• Brittle to initialization 
• Overlapping clusters 
• Wider clusters



Today
• Mixture Model 

• Tackle clusters with overlap & various sizes 
• Will take a generative approach 

• Focus on the most famous case 
• Gaussian mixture models (GMM)



Mixture Model



Mixture Model
• Take a generative approach 

• Posit that data are coming from some well-defined distribution 
• Fit the parameters of the distribution 

• Have done this for naïve Bayes 
• Difference. Do not observe the “labels”



Mixture Model
• Solution. Introduce latent variables of cluster identity 

• Not necessarily reflecting reality — rather an instrument 

• Modeling. We consider: 

• :                        Latent group identity 

•        Data distribution of each cluster 

• Fitting. Use training data to fit the parameters 

Pϕ(cluster)
Pθ(feature | cluster)

Ptrain ≈ Pθ,ϕ(feature)



Mixture Model
• Example. Suppose the case of two clusters 

• Draw  

• If , then  

• If , then  

• Allows overlap and varying widths

Y ∈ {0,1} ∼ Bern(p)
Y = 0 X ∼ 𝒩(μ0, σ2

0)
Y = 1 X ∼ 𝒩(μ1, σ2

1)



Generative approach
• Perk. If you have learned a nice probabilistic model from the data 

           you can sample a new data from this Pθ,ϕ( ⋅ )



(Finite) Mixture Models
• A set of generative models where  takes the form of 

a weighted sum of finite elementary distributions 
P( ⋅ )

p(x) =
K

∑
k=1

πk ⋅ pk(x), πk ∈ [0,1], ∑ πk = 1



Gaussian Mixture Models
• Gaussian MM. Each base distribution is a Gaussian distribution 

 

• Here,  is the total parameter set 

p(x |θ) =
K

∑
k=1

πk ⋅ 𝒩(x |μk, Σk)

θ
θ = (μ1, Σ1, …, μK, ΣK, π1, …, πK)



Gaussian Mixture Models



Optimizing GMMs
• As in naïve Bayes, our optimization objective comes from the 

maximum likelihood principle 
• The likelihood of mixture distribution can be written as: 

 

             

• Goal. Maximize this quantity by selecting 

p(x1:n |θ) =
n

∏
i=1

p(xi |θ)

=
n

∏
i=1

K

∑
k=1

πk(i) ⋅ 𝒩(xi |μk(i), Σk(i))

θ = {μk, Σk, πk | k ∈ [K]}



Optimizing GMMs
• Again, consider the log-likelihood to make it a summation: 

 

• We want to solve the maximization 

 

• Problem. Very difficult to optimize by the critical point analysis 
• We’ll go through what we call expectation-maximization

ℒ(θ) := log p(x1:n |θ) =
n

∑
i=1

log (
K

∑
k=1

πk ⋅ 𝒩(xi |μk, Σk))

max
θ

ℒ(θ)



Expectation-Maximization 
(Advanced!)



Expectation-Maximization
• An iterative algorithm for optimizing probabilistic latent-variable models 

• Can be thought of as a specialized form of alternating optimization 

• Idea. Repeat the following steps 
• Construct a lower bound on the likelihood 

 

• Maximizes the lower bound  

 

g(θ) ≤ ℒ(θ)
g(θ)

θ(new) = arg max
θ

g(θ)



Expectation-Maximization
• Formally, let  be the latent variable associate with  

• In GMM,  is the “cluster identity,” i.e., which Gaussian  is from 

• Then, we know that: 

 

            

yi xi

yi xi

ℒ(θ) :=
n

∑
i=1

log p(xi |θ)

=
n

∑
i=1

log (
K

∑
k=1

p(xi, yi = k |θ))



Expectation-Maximization
• Define any distribution  

• Then, we have, for any single sample-group pair : 

 

                     

                      

• The inequality is due to Jensen’s inequality

Q(k)
(x, y)

log p(x |θ) = log(
K

∑
k=1

p(x, y = k |θ))
= log(

K

∑
k=1

Q(k) ⋅
p(x, y = k |θ)

Q(k) )
≥

K

∑
k=1

Q(k) ⋅ log( p(x, y = k |θ)
Q(k) )



Jensen’s inequality 
(Advanced!)



Convex functions
• Recall that convex functions are functions such that: 

 

• Concave functions are the opposite (negative of convex functions) 
• Example. Log function

λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y), ∀x, y, ∀λ ∈ [0,1]



Jensen’s inequality
• For convex functions, we have 

 
• For concave functions, we have 

 

• Equality, if  is a constant variable

𝔼[ f(X)] ≤ f(𝔼[X])

𝔼[ f(X)] ≥ f(𝔼[X])
X



</Jensen’s inequality>



Expectation-Maximization

 

• This is applying Jensen’s inequality to a concave function  
• Here, the random variable is: 

 

• This lower bound on the likelihood is called evidence lower bound (ELBO) 

log(
K

∑
k=1

Q(k) ⋅
p(x, y = k |θ)

Q(k) ) ≥
K

∑
k=1

Q(k) ⋅ log( p(x, y = k |θ)
Q(k) )

log( ⋅ )

p(x, y = k |θ)
Q(k)

ELBO(x |Q, θ)



Expectation-Maximization
 

• Now, we want to make this bound tightest by selecting good  
• Recall that Jensen’s inequality is tightest for constant R.V. 

• That is, 

 

• Thus, best if we choose 

log p(x |θ) ≥ ELBO(x |Q, θ)
Q

const =
p(x, y = k |θ)

Q(k)
=

p(y = k |x, θ)
Q(k)

p(x |θ)

Q(k) = p(y = k |x, θ)



Expectation-Maximization
• Let’s go back to the multi-sample case: 

• We have 

 

• Here, we have  as samplewise posteriors 

ℒ(θ) =
n

∑
i=1

log(
K

∑
k=1

p(xi, yi = k |θ)) ≥
n

∑
i=1

ELBO(xi |Qi, θ)

Qi

Qi(k) = p(yi = k |xi, θ)



EM Algorithm
• Now, the EM algorithm can be written as: 

• 1. Initialization: Initialize  

• 2. Expectation: Compute the ELBO-maximizing  

 

• 3. Maximization: Compute the ELBO-maximizing  

 

• 4. Repeat! 

θ
Q

Qi(k) = p(yi = k |xi, θ)
θ

θ(new) = arg max
θ

n

∑
i=1

ELBO(xi |Qi, θ)



</Expectation-Maximization>



EM for GMMs
• Now, let’s apply EM for GMMs 

• First, recall that: 
• Multivariate Gaussians 

 

• Taking log, we get 

𝒩(x |μ, Σ) =
1

(2π)d |Σ |
⋅ exp (−

1
2

(x − μ)⊤Σ−1(x − μ))
log 𝒩(x |μ, Σ) = −

1
2 (d log(2π) + log |Σ | + (x − μ)⊤Σ−1(x − μ))



EM for GMMs
• Expectation. This step computes the posterior for each sample 

 
• In clustering, we call this responsibility 

 

       

       

Q(k) = p(yi = k |xi, θ)

rik = p(yi = k |xi, θ)

=
p(xi, yi = k |θ)

p(xi |θ)

=
πk𝒩(xi |μk, Σk)

∑j πj𝒩(xi |μj, Σj) = p(xi |θ)

= p(xi |yi = k, θ)p(yi = k |θ) =



EM for GMMs

      

• Note. If we plug in: 

• uniform prior  

• uniform variance  
then we recover the soft K-means objective 

rik =
πk𝒩(xi |μk, Σk)

∑j πj𝒩(xi |μj, Σj)

πk = 1/K
σk = 1/β

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)



EM for GMMs
• Maximization. Given the  fixed, we solve the maximization 

 

• Recall that the ELBO was: 

 

• Dropping constants, we are solving: 

rik

max
θ

n

∑
i=1

ELBO(xi |Qi, θ)

n

∑
i=1

K

∑
k=1

rik ⋅ log( p(xi, yi = k |θ)
rik

)

max
θ

n

∑
i=1

K

∑
k=1

rik ⋅ (log p(xi |yi = k, θ) + log p(yi = k |θ))



EM for GMMs

 

• We can divide into two subproblems: 

 

max
θ

n

∑
i=1

K

∑
k=1

rik ⋅ (log p(xi |yi = k, θ) + log p(yi = k |θ))

max
{πk}

n

∑
i=1

K

∑
k=1

rik ⋅ log πk

max
{μ},{Σ}

n

∑
i=1

K

∑
k=1

rik ⋅ log 𝒩(xi |μk, Σk)



EM for GMMs

 

• 1st subproblem. Constrained optimization problem 
• Solve this by the method of Lagrangian multipliers, to get 

 

• Here, we use the shorthand  as the total responsibility in cluster  

max
{πk}

n

∑
i=1

K

∑
k=1

rik ⋅ log πk

πk =
nk

n
nk k

nk =
n

∑
i=1

rik



EM for GMMs

 

• 2nd subproblem. Unconstrained maximization 
• Analyze the critical point, to get: 

 

• For a full derivation, see section 11.2.3 of the MML textbook

max
{μ},{Σ}

n

∑
i=1

K

∑
k=1

rik ⋅ log 𝒩(xi |μk, Σk)

μk =
∑i rikxi

nk
, Σk =

1
nk

n

∑
i=1

rik(xi − μk)(xi − μk)⊤







Next up
• Dimensionality reduction



</lecture 6>


