Gaussian Mixture Models

Recap

Unsupervised learning

K-means clustering

- Each cluster is represented by the centroid
- Data belongs to a cluster with nearest centroid

Limitations

- Brittle to initialization
- Overlapping clusters
- Wider clusters

Today

- Mixture Model
 - Tackle clusters with overlap & various sizes
 - Will take a generative approach
 - Focus on the most famous case
 - Gaussian mixture models (GMM)

- Take a generative approach
 - Posit that data are coming from some well-defined distribution
 - Fit the parameters of the distribution
- Have done this for naïve Bayes
 - Difference. Do not observe the "labels"

- Solution. Introduce latent variables of cluster identity
 - Not necessarily reflecting reality rather an instrument
- Modeling. We consider:
 - $P_{\phi}(\text{cluster})$: Latent group identity
 - P_{θ} (feature | cluster) Data distribution of each cluster
- Fitting. Use training data to fit the parameters

$$P_{\rm train} \approx P_{\theta,\phi} ({\rm feature})$$

- Example. Suppose the case of two clusters
 - Draw $Y \in \{0,1\} \sim \text{Bern}(p)$
 - If Y=0, then $X\sim \mathcal{N}(\mu_0,\sigma_0^2)$
 - If Y=1, then $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$
 - Allows overlap and varying widths

Generative approach

• Perk. If you have learned a nice probabilistic model from the data you can sample a new data from this $P_{\theta,\phi}(\,\cdot\,)$

(Finite) Mixture Models

• A set of generative models where $P(\,\cdot\,)$ takes the form of a weighted sum of finite elementary distributions

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot p_k(\mathbf{x}), \qquad \pi_k \in [0,1], \sum_{k=1}^{K} \pi_k = 1$$

Gaussian Mixture Models

Gaussian MM. Each base distribution is a Gaussian distribution

$$p(\mathbf{x} \mid \theta) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)$$

• Here, θ is the total parameter set

$$\theta = (\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K, \pi_1, \dots, \pi_K)$$

Gaussian Mixture Models

$$p(x \mid \boldsymbol{\theta}) = 0.5 \mathcal{N}(x \mid -2, \frac{1}{2}) + 0.2 \mathcal{N}(x \mid 1, 2) + 0.3 \mathcal{N}(x \mid 4, 1)$$

Optimizing GMMs

- As in naïve Bayes, our optimization objective comes from the maximum likelihood principle
 - The likelihood of mixture distribution can be written as:

$$p(\mathbf{x}_{1:n} | \theta) = \prod_{i=1}^{n} p(\mathbf{x}_i | \theta)$$

$$= \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k(i)} \cdot \mathcal{N}(\mathbf{x}_i | \mu_{k(i)}, \Sigma_{k(i)})$$

• Goal. Maximize this quantity by selecting $\theta = \{\mu_k, \Sigma_k, \pi_k \mid k \in [K]\}$

Optimizing GMMs

Again, consider the log-likelihood to make it a summation:

$$\mathcal{L}(\theta) := \log p(\mathbf{x}_{1:n} | \theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k) \right)$$

We want to solve the maximization

$$\max_{\theta} \mathscr{L}(\theta)$$

- Problem. Very difficult to optimize by the critical point analysis
 - We'll go through what we call expectation-maximization

Expectation-Maximization (Advanced!)

- An iterative algorithm for optimizing probabilistic latent-variable models
 - Can be thought of as a specialized form of alternating optimization
- Idea. Repeat the following steps
 - Construct a lower bound on the likelihood

$$g(\theta) \leq \mathcal{L}(\theta)$$

• Maximizes the lower bound $g(\theta)$

$$\theta^{\text{(new)}} = \underset{\theta}{\text{arg max }} g(\theta)$$

- Formally, let y_i be the latent variable associate with \mathbf{x}_i
 - In GMM, y_i is the "cluster identity," i.e., which Gaussian \mathbf{x}_i is from
- Then, we know that:

$$\mathcal{L}(\theta) := \sum_{i=1}^{n} \log p(\mathbf{x}_i | \theta)$$

$$= \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} p(\mathbf{x}_i, y_i = k | \theta) \right)$$

- Define any distribution Q(k)
- Then, we have, for any single sample-group pair (\mathbf{x}, y) :

$$\log p(\mathbf{x} \mid \theta) = \log \left(\sum_{k=1}^{K} p(\mathbf{x}, y = k \mid \theta) \right)$$

$$= \log \left(\sum_{k=1}^{K} Q(k) \cdot \frac{p(\mathbf{x}, y = k \mid \theta)}{Q(k)} \right)$$

$$\geq \sum_{k=1}^{K} Q(k) \cdot \log \left(\frac{p(\mathbf{x}, y = k \mid \theta)}{Q(k)} \right)$$

The inequality is due to Jensen's inequality

Jensen's inequality (Advanced!)

Convex functions

Recall that convex functions are functions such that:

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y), \qquad \forall x, y, \forall \lambda \in [0, 1]$$

- Concave functions are the opposite (negative of convex functions)
 - Example. Log function

Jensen's inequality

For convex functions, we have

$$\mathbb{E}[f(X)] \le f(\mathbb{E}[X])$$

For concave functions, we have

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$$

ullet Equality, if X is a constant variable

/Jensen's inequality>

$$\log\left(\sum_{k=1}^{K} Q(k) \cdot \frac{p(\mathbf{x}, y = k \mid \theta)}{Q(k)}\right) \ge \sum_{k=1}^{K} Q(k) \cdot \log\left(\frac{p(\mathbf{x}, y = k \mid \theta)}{Q(k)}\right)$$

- This is applying Jensen's inequality to a concave function $log(\cdot)$
 - Here, the random variable is:

$$p(\mathbf{x}, y = k \mid \theta)$$

$$Q(k)$$

This lower bound on the likelihood is called evidence lower bound (ELBO)

$$ELBO(\mathbf{x} \mid Q, \theta)$$

$$\log p(\mathbf{x} \mid \theta) \ge \text{ELBO}(\mathbf{x} \mid Q, \theta)$$

- ullet Now, we want to make this bound tightest by selecting good Q
 - Recall that Jensen's inequality is tightest for constant R.V.
 - That is,

const =
$$\frac{p(\mathbf{x}, y = k \mid \theta)}{Q(k)} = \frac{p(y = k \mid \mathbf{x}, \theta)}{Q(k)} p(\mathbf{x} \mid \theta)$$

Thus, best if we choose

$$Q(k) = p(y = k \mid \mathbf{x}, \theta)$$

Let's go back to the multi-sample case:

We have

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} p(\mathbf{x}_i, y_i = k | \theta) \right) \ge \sum_{i=1}^{n} \text{ELBO}(\mathbf{x}_i | Q_i, \theta)$$

• Here, we have Q_i as samplewise posteriors

$$Q_i(k) = p(y_i = k \mid \mathbf{x}_i, \theta)$$

EM Algorithm

Now, the EM algorithm can be written as:

- 1. Initialization: Initialize θ
- 2. Expectation: Compute the ELBO-maximizing Q

$$Q_i(k) = p(y_i = k \mid \mathbf{x}_i, \theta)$$

• 3. Maximization: Compute the ELBO-maximizing θ

$$\theta^{\text{(new)}} = \arg\max_{\theta} \sum_{i=1}^{n} \text{ELBO}(\mathbf{x}_i | Q_i, \theta)$$

4. Repeat!

Now, let's apply EM for GMMs

- First, recall that:
 - Multivariate Gaussians

$$\mathcal{N}(\mathbf{x} \mid \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d \mid \Sigma \mid}} \cdot \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Taking log, we get

$$\log \mathcal{N}(\mathbf{x} \mid \mu, \Sigma) = -\frac{1}{2} \left(d \log(2\pi) + \log |\Sigma| + (\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu) \right)$$

Expectation. This step computes the posterior for each sample

$$Q(k) = p(y_i = k \mid \mathbf{x}_i, \theta)$$

In clustering, we call this responsibility

$$r_{ik} = p(y_i = k \mid \mathbf{x}_i, \theta)$$

$$= \frac{p(\mathbf{x}_i, y_i = k \mid \theta)}{p(\mathbf{x}_i \mid \theta)}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_i \mid \mu_j, \Sigma_j)} = p(\mathbf{x}_i \mid y_i = k, \theta)$$

$$= p(\mathbf{x}_i \mid \theta)$$

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_i | \mu_j, \Sigma_j)}$$

- Note. If we plug in:
 - uniform prior $\pi_k = 1/K$
 - uniform variance $\sigma_k = 1/\beta$

then we recover the soft K-means objective

$$r_{ik} = \frac{\exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)}{\sum_{j} \exp(-\beta ||\mathbf{x}_i - \mu_j||_2^2)}$$

• Maximization. Given the r_{ik} fixed, we solve the maximization

$$\max_{\theta} \sum_{i=1}^{n} \text{ELBO}(\mathbf{x}_{i} | Q_{i}, \theta)$$

Recall that the ELBO was:

$$\sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot \log\left(\frac{p(\mathbf{x}_i, y_i = k \mid \theta)}{r_{ik}}\right)$$

Dropping constants, we are solving:

$$\max_{\theta} \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot (\log p(\mathbf{x}_i | y_i = k, \theta) + \log p(y_i = k | \theta))$$

$$\max_{\theta} \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot (\log p(\mathbf{x}_i | y_i = k, \theta) + \log p(y_i = k | \theta))$$

We can divide into two subproblems:

$$\max_{\substack{\{\pi_k\}\\\{\pi_k\}\\\{\mu\},\{\Sigma\}}} \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot \log \pi_k$$

$$\max_{\{\mu\},\{\Sigma\}} \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot \log \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$$

$$\max_{\{\pi_k\}} \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot \log \pi_k$$

- 1st subproblem. Constrained optimization problem
 - Solve this by the method of Lagrangian multipliers, to get

$$\pi_k = \frac{n_k}{n}$$

ullet Here, we use the shorthand n_k as the total responsibility in cluster k

$$n_k = \sum_{i=1}^n r_{ik}$$

$$\max_{\{\mu\},\{\Sigma\}} \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \cdot \log \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$$

- 2nd subproblem. Unconstrained maximization
 - Analyze the critical point, to get:

$$\mu_k = \frac{\sum_i r_{ik} \mathbf{x}_i}{n_k}, \qquad \Sigma_k = \frac{1}{n_k} \sum_{i=1}^n r_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^{\mathsf{T}}$$

For a full derivation, see section 11.2.3 of the MML textbook

- 1. Initialize μ_k, Σ_k, π_k .
- 2. *E-step*: Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using current parameters $\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$:

$$r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$
 (11.53)

3. *M-step*: Reestimate parameters π_k, μ_k, Σ_k using the current responsibilities r_{nk} (from E-step):

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} \boldsymbol{x}_n$$
, (11.54)

$$\mathbf{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top},$$
 (11.55)

$$\pi_k = \frac{N_k}{N} \,. \tag{11.56}$$

Next up

Dimensionality reduction

</le></le></le>