
K-Means Clustering



Recap
• So far, we have discussed supervised learning 

• Given. A labeled dataset  

• Goal.   Learn  such that  

• : Time & Location 

• :  temperature 

• Predict temeperature 
at new time & location

D = {(xi, yi)}n
i=1

f( ⋅ ) f(x) ≈ y

x
y



Unsupervised Learning



Unsupervised Learning
• Given. An unlabeled dataset  

• No labeling cost needed 
• Can utilize very large datasets! 

• Examples. Most web-crawled datasets 
• Text on Web 

• GPTs are being trained on these! 
• Images on Flickr 
• Codes on GitHub 
• Videos on YouTube

D = {xi}n
i=1



Unsupervised Learning
• Goal. Get insights from data — underlying structures, causality, relation 

• Learned structures can be used for supervised learning tasks 

• e.g., learning a feature map Φ( ⋅ )



What can unsupervised learning do?
• 1957. People were clustering data points for classification



What can unsupervised learning do?
• 2012. Discovered patterns from YouTube videos, without any supervision 

• Useful for classification & generation

Q. V. Le “Building High-Level Features Using Large Scale Unsupervised Learning,” ICASSP 2013



What can unsupervised learning do?
• 2014. Used face images to genarate new faces

Goodfellow et al., “Generative Adversarial Nets” NeurIPS 2014



What can unsupervised learning do?
• 2025. Multimodal generator with rich knowledge



K-Means Clustering



Clustering
• Assigning (imaginary) group identities to a set of unlabeled data points 

• K-Means 
• Hierarchical / Spectral Clustering 
• Gaussian Mixture Models 

• Requires some notion of similarity 
• e.g., geometric distance between data 

• Maximize the intra-group similarity 
• Optionally, minimize the inter-group similarity



K-Means
• Each cluster is represented by a single point in space 

• called “centroid” 
• The loss is measured by 

 
• Centroid-data similarity as a proxy for intra-group similarity

dist(data, centroid)



K-Means
• Formally, suppose that we have a dataset 

 

• We will make  clusters, by making two decisions 
• Decide their centroids 

 
• Decide the assignments  (1: belonging, 0: otherwise) 

    

D = {xi}n
i=1, xi ∈ ℝd

K

μ1, …, μK ∈ ℝd

rik ∈ {0,1}
K

∑
k=1

rik = 1



K-Means
• Goal. Choose nice  so that we can minimize the 

           mean-squared distance of each data to centroids 

 

• Joint minimization of two variables 
• Discrete:        Assignments 
• Continuous:  Centroids 

• Problem. Cannot apply a useful tool: critical point analysis

{μk}, {rik}

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2



Strategy
• More generally, can be written as solving 

 

• Typical strategy. Tackle two subproblems separately: 

• Fix  and optimize  

• Fix  and optimize  
• Repeat 

• Known as alternating minimization procedure

min
x

min
y

f(x, y)

x y
y x



• More formally, define the following algorithm: 
                               Initialize  

                               For  repeat: 

                                         

                                                     

• If we assume that , we can prove that 

•  
• the loss converges

x(0), y(0)

t = 1,2…,
x(t) = arg min

x
f(x, y(t−1))

y(t) = arg min
y

f(x(t), y)

f(x, y) ≥ 0
f(x(i+1), y(i+1)) ≤ f(x(i), y(i))

Strategy



• Proof Sketch. ✏ 

• Note. Not guaranteeing that it will converge to optimum!

Strategy



Algorithm
• Come back to the problem of K-means 

 

• Applying the alternating minimization, we have: 

• Fix  and optimize  

• Fix  and optimize  
• Repeat!

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2

{μk} {rik}
{rik} {μk}



Algorithm
• Thankfully, each subproblem is easy to solve 

• Subproblem 1. Optimize assignment , given centroids  

 

• Solution. Assign the nearest centroid: 

{rik} {μ(t−1)
k }

r(t)
ik = arg min

{rik}

n

∑
i=1

rik∥xi − μ(t−1)
k ∥2

2

rik = {1 ⋯ k = argmink∥xi − μk∥2
2

0 ⋯ otherwise



Algorithm
• Subproblem 2. Optimize centroids  assignment , given 

 

• Solution. Take an average of all assigned points: 

• If  are assigned to cluster , then 

{μk} {r(t)
ik }

min
{μk}

n

∑
i=1

r(t)
ik ∥xi − μk∥2

2

x(1), …, x(nk) k

μk = arg min
μ∈ℝd

nk

∑
i=1

∥μ − x(i)∥2
2 =

1
nk

nk

∑
i=1

x(i)



Algorithm
• Summing up, the final algorithm becomes: 

• Known as Lloyd’s algorithm   (or simply K-means) 
• Originally proposed for pulse-code modulation 
• Special case of expectation-maximization





Hyperparameter
• The number of clusters —  — is the key hyperparameter 

• Problem. Previous strategy of “run all, select the best” does not work 

• Reason. Larger  means finer clustering 
• Thus almost always smaller in loss

K

K



Hyperparameter
• Solution. Many approaches, but the popular heuristic is: 

“Stop adding if the marginal gain is small” 
• Example. “elbow method” 

• Advanced methods include Akaike information criterion



Application
• One can apply this to compress an image 

• Cluster in the RGB space ( ) 
• Reduce the number of colors used; representable with low bit

⊆ ℝ3



Limitations
• Sensitivity to initialization 

• With random initialization, some chance to fall to a local minima



Limitations
• Sensitivity to outliers 

• Under outliers, leads to suboptimal clustering 
• Assigning additional cluster is undesirable in some cases 

• e.g., image compression —  clusters is efficient2b



Limitations
• Nonlinear data 

• Difficult to apply to nonlinear data



Limitations
• Nonuniform cluster sizes 

• Even further, the ground-truth cluster sizes may not be linear



K-Means++



K-Means++
• Resolve the initialization-sensitivity 

• Idea. Have the initial centroids well-spread 

• Choose  uniformly at random, among all data points 

• For  
• For all data, compute the distance-to-nearest centroid 

 

• Draw with new centroid with inverse probability 

μ1
i = 2,…, μ

D(xj) = min
j∈{1,…,i−1}

∥xj − μi∥2

p(μi = xj) ∝ 1/D(xj)



K-Means++



K-Means++



K-Means++



Soft K-Means



Soft K-Means
• A version of K-means that allows room for overlapping clusters 

• where should the “middle” go?



Soft K-Means
• Idea. Make soft assignments (“responsibility”) instead of hard one 

• Hard. A point belongs to a specific cluster 

 

• Soft. A point may belong to 90% to a cluster, 10% to another 

rik ∈ {0,1},
K

∑
k=1

rik = 1

rik ∈ [0,1],
K

∑
k=1

rik = 1



Soft K-Means
• Again, the optimization can be written as 

 

• Problem. Solving this will always lead to hard assignments! 
• Want to introduce some fuzziness purposefully 
• Solution. Replace with Bayesian objective & Gaussian model 

• Will be discussed in detail in the next lecture

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2



Soft K-Means
• Assignment. Larger responsibility for a closer centroid 

• For some hardness hyperparameter , we let 

 

• This function is known as softmax, i.e., a soft version of argmax 

• Letting , we recover the hard K-means

β > 0

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)

β → ∞



Soft K-Means
• Update. Take a weighted average of the assigned data 

 

• Can be derived as a solution to the subproblem 

μk =
∑i rikxi

∑j rjk

min
{μk}

n

∑
i=1

rik∥xi − μk∥2
2



Other variants (informally)



Hierarchical Clustering
• Idea. Clusters inside clusters 

• Can discover hierarchical structures 

• Waive strict decision of  
• Can handle “different-sized” clusters 

• Can be done top-down or bottom-up

K



Spectral Clustering
• Idea. Cluster using graph distance 

• Construct neighbor graphs 
• Use graph distance for cluster 

• Can handle nonlinear data



Next up
• Gaussian mixture models



</lecture 6>


