K-Means Clustering



Recap

» So far, we have discussed supervised learning
» Given. A labeled dataset D = {(X;, ;) }._;

+ Goal. Learnf( - )suchthatf(xX) =~y

e X: Time & Location

e y: temperature

* Predict temeperature
at new time & location




Unsupervised Learning



Unsupervised Learning

+ Given. An unlabeled dataset D = {x;}_

* No labeling cost needed
» (Can utilize very large datasets!

» Examples. Most web-crawled datasets Language #iokens  # words
Russian 102,825,040,945 14,679,750

e Text on Web Japanese  92,827,457,545 9,073,245
Spanish 72.493.240.645 10.614.696

. . French 68.358.270,953 12.488.607

* GPTs are being trained on these! o 6518657780 19767 924

, [talian 36.237.951.419 10.404.913

o |mageS on F||Ck|‘ Portuguese  35,841,247,814 8,370,569
Chinese 30.176.342.544 17,599,492

o : Polish 21.859.939.298  10.209.556
Codes on GitHub Czech 13.070.585.221  8.694.576

. Finnish 6.059.887.126  9.782.381

e Videos on YouTube Hindi 1.885.189.625  1.876.665

Table 3: Comparison accross languages of the size of the
datasets obtained using the Common Crawl. The second
column indicates the vocabulary size of the models trained
on this data.



Unsupervised Learning

* Goal. Get insights from data — underlying structures, causality, relation
» |Learned structures can be used for supervised learning tasks

e e.g., learning a feature map @( - )

Supervised learning Unsupervised learning



What can unsupervised learning do?

» 1957. People were clustering data points for classification

Original unclustered data Clustered data




What can unsupervised learning do?

» 2012. Discovered patterns from YouTube videos, without any supervision
» Useful for classification & generation

Q. V. Le "Building High-Level Features Using Large Scale Unsupervised Learning,” [CASSP 2013



What can unsupervised learning do?

» 2014. Used face images to genarate new faces

Goodfellow et al., “Generative Adversarial Nets” NeurlPS 2074



What can unsupervised learning do?

» 2025. Multimodal generator with rich knowledge

Draw me a picture of your cartoonized face (I
know you don't have a face).

. User

What is the pH of a 0.10 M solution of NH4F
?The K, of NH; is 5.6 x 10" and the
K, of HFis 6.8 x 1074,

Image created

Hide chain of thought A

First, let’'s understand what is being asked.

We need to find the pH of a 0.10 M solution of ammonium
fluoride, NH4F.




K-Means Clustering



Clustering

* Assigning (imaginary) group identities to a set of unlabeled data points
¢ K-Means | Cluster 2
» Hierarchical / Spectral Clustering Cluster 1 :

: . Cluster 3
« Gaussian Mixture Models =

D-OULVV C ( D-OU00C »

* Requires some notion of similarity idibe pid iagets ot -
L. peo pi2 i3
* e.g., geometric distance between data

» Maximize the intra-group similarity
* Optionally, minimize the inter-group similarity



K-Means

» Each cluster is represented by a single point in space
 called “centroid”
* The loss is measured by

dist(data, centroid)
» Centroid-data similarity as a proxy for intra-group similarity

Unlabelled Data Labelled Clusters

K-means

@ X = Centroid




K-Means

* Formally, suppose that we have a dataset
— d
D=1x}icp % E€ER

« We will make K clusters, by making two decisions
 Decide their centroids

d
His s U € R
* Decide the assignments

K
e €101} ) 1y =
k=1



K-Means

» Goal. Choose nice {4, }, ;) So that we can minimize the

mean-squared distance of each data to centroids
n

. : 2
min min E l”ikHXi —ukHz
{/’tk} {rik} l=1

e Joint minimization of two variables

* Discrete: Assignments
e Continuous: Centroids

* Problem. Cannot apply a useful tool: critical point analysis



Strategy

* More generally, can be written as solving

min min f(x, y)
X oy
» Typical strategy. Tackle two subproblems separately:

* Fix X and optimizey

» Fix y and optimize x
* Repeat

» Known as alternating minimization procedure



Strategy

* More formally, define the following algorithm:
0)

Initialize x, y(
Fort = 1,2..., repeat:

x® = arg min f(x, y= )
X

y® = arg min f(x"", y)
y

» If we assume that f(x,y) > 0, we can prove that

S0, YD) < @, y©)
* the loss converges



Strategy

* Proof Sketch. .

* Note. Not guaranteeing that it will converge to optimum!




Algorithm

* Come back to the problem of K-means
n

: : 2
min min 2 I’ikHX,- — ﬂkHZ
{//tk} {rik} =1

* Applying the alternating minimization, we have:
» Fix {y; } and optimize {r;,}
» Fix {r;} and optimize {y; }
* Repeat!



Algorithm

» Thankfully, each subproblem is easy to solve

« Subproblem 1. Optimize assignment { ;. }, given centroids { 4 (t_l)}

n

(1) — _ (t—l)
r® = arg %1 Z rillX; 15

» Solution. Assign the nearest centroid:

- 2
o {1 e k= argming||x; — 13
ik — .

O - otherwise



Algorithm

« Subproblem 2. Optimize centroids {4, } assignment {rl.(]?}, given

minz rO1x; — w13

/%

» Solution. Take an average of all assigned points:

o I Xy, .05 Xy ) ATE assigned to cluster k, then

U, = arg min Z |1 — X(l)”2 Z ()

Rd
HE 11



Algorithm

e Summing up, the final algorithm becomes:

Algorithm 1 k£-means algorithm

1: Specify the number k of clusters to assign.

2: Randomly initialize k centroids.

3: repeat

4: expectation: Assign each point to its closest centroid.

5:  maximization: Compute the new centroid (mean) of each cluster.
6: until The centroid positions do not change.

* Known as Lloyd’s algorithm
 Originally proposed for pulse-code modulation
» Special case of expectation-maximization



(<)

(b)

(a)

()

(e)

(d)



Hyperparameter

» The number of clusters — K — is the key hyperparameter

* Problem. Previous strategy of “run all, select the best” does not work

» Reason. Larger K means finer clustering

* Thus almost always smaller in loss

K-means (k=9) K-means (k=12)
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Hyperparameter

» Solution. Many approaches, but the popular heuristic is:
“Stop adding if the marginal gain is small”
» Example. “elbow method”
* Advanced methods include Akaike information criterion

Elbow Method For Optimal k

200 -

150 A

100 A
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Values of K

Line plot between K and inertia



Application

e One can apply this to compress an image

+ Cluster in the RGB space ( C R”)

» Reduce the number of colors used; representable with low bit
Original image k=3 k=8




Limitations

» Sensitivity to initialization
e With random initialization, some chance to fall to a local minima

Poor Clustering Ideal Clustering
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» Sensitivity to outliers

Limitations

» Under outliers, leads to suboptimal clustering

* Assigning additional cluster is undesirable in some cases
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Limitations

* Nonlinear data
» Difficult to apply to nonlinear data

original data (with ground truth) original data (with kmeans clustering)
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Limitations

* Nonuniform cluster sizes
» Even further, the ground-truth cluster sizes may not be linear

Original Data k-Means Clustering
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K-Means++

» Resolve the initialization-sensitivity

* |dea. Have the initial centroids well-spread
» Choose u; uniformly at random, among all data points

e Fori=2,...,u

* For all data, compute the distance-to-nearest centroid
D(x)= min |X;— ﬂiHZ
jell,...,i—1)

* Draw with new centroid with inverse probability

p(u; = X;) < 1/D(X))



K-Means++

Select 1 th centroid

15
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» data points
® previously selected centroids
® nextcentroid
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K-Means++

Select 2 th centroid
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K-Means++

Select 3 th centroid
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Soft K-Means




Soft K-Means

* A version of K-means that allows room for overlapping clusters
» where should the “middle” go?




Soft K-Means

* ldea. Make soft assignments (“responsibility”) instead of hard one

* Hard. A point belongs to a specific cluster
K

riy. € 10,11, Z’”ik: ]

k=1

e Soft. A point may belong to 90% to a cluster, 10% to another
K

2T =

k=1

ry. € [0,1],




Soft K-Means

» Again, the optimization can be written as
n

: : 2
min min 2 I’ikHX,- — ﬂkHZ
{//tk} {rik} =1

* Problem. Solving this will always lead to hard assignments!
* Want to introduce some fuzziness purposefully
» Solution. Replace with Bayesian objective & Gaussian model
» Will be discussed in detail in the next lecture




Soft K-Means

» Assignment. Larger responsibility for a closer centroid

 For some hardness hyperparameter f > 0, we let
__epplx =l
 E—_
t X exp(=plixi = uill})

* This function is known as softmay, i.e., a soft version of argmax

+ Letting / — 00, we recover the hard K-means



Soft K-Means

» Update. Take a weighted average of the assigned data
Z,- Fik&i
k= <
Z] ’/:ik

* (Can be derived as a solution to the subproblem
n

- 2
i 2 i1 X; = el
278 i—1



Other variants (informally)



Clustered Iris data set

Hierarchical Clustering

 |dea. Clusters inside clusters
« (Can discover hierarchical structures

e Waive strict decision of K
 (Can handle “different-sized” clusters

* (Can be done top-down or bottom-up



Spectral Clustering

* |dea. Cluster using graph distance

» Construct neighbor graphs
» Use graph distance for cluster

Can handle nonlinear data

15

o8 o %@ Euclidean distance in
o oo lidsy DB
° 0, 3FHE | the 3D space used by
G TP e N linear approaches
10 Q)C%

Geodesic distance computéd by
finding the shortest path through | ©
the neigborhood graph o

(approximation for illustration purposes)



Next up

 (Gaussian mixture models



</lecture 6>



