Soft & Kernel SVMs

Recap

- Logistic Regression
 - Bayesian interpretation
 - Gradient descent on convex function

- Support Vector Machine
 - Margin maximization
 - Analytic solution via Lagrangian dual
 - Required. Linearly separable data

Today

- SVMs for handling non-separable data
 - Soft-margin SVM
 - Kernel SVM

Soft(-Margin) SVM

Data with outliers

- Suppose that there exists some outliers in data
 - Then, there exists no linear separator
 - Finding a minimum-error separating hyperplane becomes NP-hard (Minsky & Papert, 1969)

Data with outliers

- Idea. Handle this by introducing a "slack" ξ
 - i.e., error allowed for each sample
 - We want to (1) maximize the margin, while
 (2) minimizing the slack

Formulation

More formally, we solve the optimization problem

$$\mathcal{E}^* = \min_{\mathbf{w}, b, \xi} \frac{\|\mathbf{w}\|^2}{2} + C \cdot \sum_i \xi_i$$
subject to $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i$, $\xi_i \ge 0$

- ξ_i : Slack we allow for sample i
- C: Hyperparameter
 - like k in nearest neighbor, or η in gradient descent
 - ullet sending $C o \infty$ recovers the vanilla SVM

Formulation

$$\mathcal{E}^* = \min_{\mathbf{w}, b, \xi} \frac{\|\mathbf{w}\|^2}{2} + C \cdot \sum_i \xi_i$$
subject to $y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) \ge 1 - \xi_i$, $\xi_i \ge 0$

- We know that this problem is always feasible
 - i.e., the search space is nonempty, regardless of the data drawn
 - Any idea?

Formulation

$$\ell^* = \min_{\mathbf{w}, b, \xi} \frac{\|\mathbf{w}\|^2}{2} + C \cdot \sum_i \xi_i$$

subject to $y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

- We know that this problem is always feasible
 - i.e., the search space is nonempty, regardless of the data drawn

- Any idea?
 - Let $(\mathbf{w}, b) = (\mathbf{0}, 0)$ and $\xi_i = 1$

Again, to solve this constrained optimization, we invoke its dual form

$$\min_{\mathbf{w},b,\xi} \max_{\alpha,\eta \geq 0} \left(\frac{\|\mathbf{w}\|^2}{2} + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left(y_i(\mathbf{x}_i^{\mathsf{T}} \mathbf{w} + b) + \xi_i - 1 \right) - \sum_{i} \eta_i \xi_i \right)$$

• This time, we have additional dual variables η to handle the nonnegativity constraints on the slack

• The optimal (\mathbf{w},b,ξ) is at the saddle point with (α,η)

$$\min_{\mathbf{w},b,\xi} \max_{\alpha,\eta} \left(\frac{\|\mathbf{w}\|^2}{2} + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left(y_i(\mathbf{x}_i^\mathsf{T} \mathbf{w} + b) + \xi_i - 1 \right) - \sum_{i} \eta_i \xi_i \right)$$

• Analyzing the derivatives with respect to (\mathbf{w}, b, ξ) :

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = \mathbf{0}$$

$$\nabla_b \mathcal{L} = \sum \alpha_i y_i = 0$$

$$\nabla_{\xi_i} \mathcal{L} = C - \alpha_i - \eta_i = 0$$

$$\min_{\mathbf{w},b,\xi} \max_{\alpha,\eta} \left(\frac{\|\mathbf{w}\|^2}{2} + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left(y_i(\mathbf{x}_i^\mathsf{T}\mathbf{w} + b) + \xi_i - 1 \right) - \sum_{i} \eta_i \xi_i \right)$$

• Analyzing the derivatives with respect to (\mathbf{w}, b, ξ) :

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

(same as in SVM)

$$\nabla_b \mathcal{L} = \sum_i \alpha_i y_i = 0$$

$$\nabla_{\xi_i} \mathcal{L} = C - \alpha_i - \eta_i = 0$$

$$C = \alpha_i + \eta_i$$

i.e., given α_i , η_i is unique

Via similar steps as in vanilla SVM, we get the Lagrangian

$$-\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j + \sum_i \alpha_i - \sum_i \alpha_i \xi_i + C \sum_i \xi_i - \sum_i \eta_i \xi_i$$

• Plugging in the condition $C=\alpha_i+\eta_i$, we get

$$-\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j + \sum_i \alpha_i$$

Surprisingly, the optimand did not change at all!

Softness only matters in terms of the search space:

$$\max_{\alpha} \left(-\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j + \sum_{i=1}^n \alpha_i \right) \quad \text{subject to} \quad \sum_i \alpha_i y_i = 0 \quad 0 \le \alpha_i \le C$$

• In vanilla SVM, we could have very large lpha

- In soft SVM, the maximum size of lpha is constrained by C
 - Recalling that $\mathbf{w}^* = \sum \alpha_i y_i \mathbf{x}_i$, this means that each datapoint has limited impact on \mathbf{w}^*

Impact of C

ullet With larger C, the soft-SVM looks for a smaller slack solution

Limitations

 Still, "allowing some errors" cannot be a fundamental solution for nonlinear data

Nonlinear data

- Suppose that we have an XOR-like data
 - Not linearly separable
 - Yet highly structured we can think of nice predictors
- How do we handle this data?

Nonlinear data

- Idea. Map it to a high-dimensional space
 - In the lifted space, there exists a clean linear classifier

$$f(\mathbf{x}) = \operatorname{sign} \left[\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right)$$

Formalization

Formally, we consider mapping data to nonlinear feature using

$$\Phi(\cdot): \mathbb{R}^d \to \mathbb{R}^k$$

where, typically d < k (but not necessarily)

Then, we can consider predictors of the form

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} a_i \cdot \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}) \rangle + b\right)$$

• This form comes from the SVMs, where

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum a_i \cdot \langle \mathbf{x}_i, \mathbf{x} \rangle + b\right)$$

Selecting the feature

- Question. How should we choose $\Phi(\cdot)$?
 - Handcrafting (classical & compute-light)
 - Design "good" kernels
 - Test them on data
 - Select the one that works best

- Data-driven (modern & compute-heavy)
 - Build a parameterized set of kernels
 - Optimize the kernel parameters, jointly with SVM params

Question. How do we handcraft the feature?

 Answer (naive). Simply throw in many features, and let SVM choose the useful dimension

$$\Phi(\mathbf{x}) = (x_1, \dots, x_d, x_1 x_2, \dots, x_{d-1} x_d, \dots, x_k^{100})$$

- Overfitting to a weird feature
- Computational cost
 - Both computing $\Phi(\,\cdot\,)$ and computing $\langle\,\cdot\,,\,\cdot\,
 angle$ is expensive

$$f(\mathbf{x}) = \text{sign}(\sum a_i \cdot \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}) \rangle + b)$$

- Interestingly, some features admit computational shortcut
- Example. Recall the XOR, and consider two features

$$\Phi_a((x_1, x_2)) = (x_1, x_2, x_1x_2)$$

$$\Phi_b((x_1, x_2)) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

- Looks similar...
 - However, one is computationally much better than the other
 - Which one is better?

$$\Phi_a((x_1, x_2)) = (x_1, x_2, x_1 x_2)$$

$$\Phi_b((x_1, x_2)) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2)$$

- Answer. Surprisingly, Φ_b is better!
 - Feature Φ_a

$$\langle \Phi_a(\mathbf{x}), \Phi_a(\mathbf{y}) \rangle = x_1 y_1 + x_2 y_2 + x_1 x_2 y_1 y_2$$

- Compute 3D features $\phi_{\mathbf{x}} = \Phi_a(\mathbf{x}), \phi_{\mathbf{y}} = \Phi_a(\mathbf{y})$
- Compute 3D inner prod $\langle \phi_{\mathbf{x}}, \phi_{\mathbf{y}} \rangle$

$$\Phi_a((x_1, x_2)) = (x_1, x_2, x_1 x_2)$$

$$\Phi_b((x_1, x_2)) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2)$$

- Answer. Surprisingly, Φ_b is better!
 - Feature Φ_b

$$\langle \Phi_b(\mathbf{x}), \Phi_b(\mathbf{y}) \rangle = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2 = (\langle \mathbf{x}, \mathbf{y} \rangle)^2$$

- Compute 2D inner prod $\langle \mathbf{x}, \mathbf{y} \rangle$
- Take a square $(\cdot)^2$
- Reason. Can compute <u>dot products of features</u>, <- called "kernels" without actually computing features

- Inspired by this, the Kernel SVM does the following:
 - Choose some similarity metric $K(\cdot,\cdot)$
 - Build predictors of form

$$f(\mathbf{x}) = \text{sign}\left(\sum a_i \cdot K(\mathbf{x}_i, \mathbf{x}) + b\right)$$

- Optimize a_i , b to fit the training data
 - As in vanilla SVM, will resort to solving

$$\max_{\alpha} \left(-\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i=1}^n \alpha_i \right)$$

• Simply a quadratic program — use solvers

- But can we use any $K(\cdot, \cdot)$?
 - What if there is no corresponding $\Phi(\cdot)$?

Mercer's Theorem

If $K(\,\cdot\,,\,\cdot\,)$ is a Mercer kernel, then there always exists $\Phi(\,\cdot\,)$ such that $K({\bf x},{\bf x}')=\langle\Phi({\bf x}),\Phi({\bf x}')\rangle$

Thus, as long as K is well-behaved, it is a valid SVM

Definition (Mercer Kernel)

A real-valued function $K(\cdot,\cdot)$ is a Mercer kernel, if

•
$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x})$$

i.e., symmetric

$$\lim_{n\to\infty} K(\mathbf{x}^{(n)},\mathbf{x}) \to K\left(\lim_{n\to\infty} \mathbf{x}^{(n)},\mathbf{x}\right)$$

i.e., continuous

$$\sum_{i \in \mathcal{I}} \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j) \geq 0, \quad \forall \alpha_i, \alpha_j, \mathbf{x}_i, \mathbf{x}_j$$

i.e., positive-semidefinite

Kernels for kernel SVM

- Here are some popular kernels:
 - Gaussian RBF
 - Laplacian RBF
 - Polynomial
 - B-Spline

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\lambda ||\mathbf{x} - \mathbf{x}'||_2^2)$$

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\lambda ||\mathbf{x} - \mathbf{x}'||_2)$$

$$K(\mathbf{x}, \mathbf{x}') = (\langle \mathbf{x}, \mathbf{x}' \rangle + c)^d$$

(...)

Kernels for kernel SVM

- For Gaussian kernel ($\exp(-\lambda ||\mathbf{x}-\mathbf{x}'||_2^2)$), large λ means narrower region of similarity
 - Thus more fine-grained decision boundary

Wrapping up

- In large-scale ML, we usually model $\Phi(\,\cdot\,)$ using neural nets, and tune its parameters with data
 - Expensive, but we now have GPUs for compute
 - Conduct logistic regression, instead of SVD
 - Ease of joint training
 - When train long enough, tend to maximize margin
 - Use nice augmentations to find good similarity metrics such that

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}_{\text{aug}}) \rangle \gg \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle$$

Next up

Unsupervised learning — K-means!

</le></le></le>