
Soft & Kernel SVMs



Recap
• Logistic Regression 

• Bayesian interpretation 
• Gradient descent on convex function 

• Support Vector Machine 
• Margin maximization 
• Analytic solution via Lagrangian dual 
• Required. Linearly separable data



Today
• SVMs for handling non-separable data 

• Soft-margin SVM 
• Kernel SVM



Soft(-Margin) SVM



Data with outliers
• Suppose that there exists some outliers in data 

• Then, there exists no linear separator 
• Finding a minimum-error separating hyperplane becomes NP-hard 

(Minsky & Papert, 1969)

w⊤x + b ≥ 1w⊤x + b ≤ − 1

w⊤x + b = 0



Data with outliers
• Idea. Handle this by introducing a “slack”  

• i.e., error allowed for each sample 
• We want to (1) maximize the margin, while 

                     (2) minimizing the slack

ξ

w⊤x + b ≥ 1−ξ
w⊤x + b ≤ − 1+ξ

w⊤x + b = 0



Formulation
• More formally, we solve the optimization problem 

 

 

• :     Slack we allow for sample  

• :     Hyperparameter 

• like  in nearest neighbor, or  in gradient descent 

• sending  recovers the vanilla SVM

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

ξi i
C

k η
C → ∞



Formulation

 

 

• We know that this problem is always feasible 
• i.e., the search space is nonempty, regardless of the data drawn 

• Any idea?

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0



Formulation

 

 

• We know that this problem is always feasible 
• i.e., the search space is nonempty, regardless of the data drawn 

• Any idea? 

• Let  and 

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

(w, b) = (0,0) ξi = 1



Optimization
• Again, to solve this constrained optimization, we invoke its dual form 

 

• This time, we have additional dual variables  to handle the 
nonnegativity constraints on the slack 

• The optimal  is at the saddle point with  

min
w,b,ξ

max
α,η⪰0 ( ∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)

η

(w, b, ξ) (α, η)



Optimization

 

• Analyzing the derivatives with respect to : 

    

                  

         

min
w,b,ξ

max
α,η ( ∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ)

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0



Optimization

 

• Analyzing the derivatives with respect to : 

    

                  

         

min
w,b,ξ

max
α,η ( ∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ)

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0 C = αi + ηi

(same as in SVM)

i.e., given ,  is uniqueαi ηi



Optimization
• Via similar steps as in vanilla SVM, we get the Lagrangian 

 

• Plugging in the condition , we get 

 

• Surprisingly, the optimand did not change at all!

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi−∑
i

αiξi + C∑
i

ξi − ∑
i

ηiξi

C = αi + ηi

−
1
2 ∑
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αiαjyiyjx⊤
i xj + ∑

i

αi



Optimization
• Softness only matters in terms of the search space: 

                     

• In vanilla SVM, we could have very large  

• In soft SVM, the maximum size of  is constrained by  

• Recalling that , 
this means that each datapoint has limited impact on 

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C

α

α C
w* = ∑ αiyixi

w*



Impact of C
• With larger , the soft-SVM looks for a smaller slack solutionC



Limitations
• Still, “allowing some errors” cannot be a fundamental solution for 

nonlinear data



Kernel SVM



Nonlinear data
• Suppose that we have an XOR-like data 

• Not linearly separable 
• Yet highly structured — we can think of nice predictors 

• How do we handle this data?



Nonlinear data
• Idea. Map it to a high-dimensional space 

• In the lifted space, there exists a clean linear classifier 

f(x) = sign [0 0 1]
x1
x2
x3



Formalization
• Formally, we consider mapping data to nonlinear feature using 

 

where, typically  (but not necessarily) 

• Then, we can consider predictors of the form 

 

• This form comes from the SVMs, where 

Φ( ⋅ ) : ℝd → ℝk

d < k

f(x) = sign (
n

∑
i=1

ai ⋅ ⟨Φ(xi), Φ(x)⟩ + b)
f(x) = sign (∑ ai ⋅ ⟨xi, x⟩ + b)



Selecting the feature
• Question. How should we choose ? 

• Handcrafting (classical & compute-light) 
• Design “good” kernels 
• Test them on data 
• Select the one that works best 

• Data-driven (modern & compute-heavy) 
• Build a parameterized set of kernels 
• Optimize the kernel parameters, jointly with SVM params

Φ( ⋅ )



Handcrafting the feature
• Question. How do we handcraft the feature?



Handcrafting the feature
• Answer (naïve). Simply throw in many features, 

                             and let SVM choose the useful dimension 

 

• Overfitting to a weird feature 
• Computational cost 

• Both computing  and computing  is expensive 

Φ(x) = (x1, ⋯, xd, x1x2, ⋯, xd−1xd, ⋯, x100
k )

Φ( ⋅ ) ⟨ ⋅ , ⋅ ⟩
f(x) = sign(∑ ai ⋅ ⟨Φ(xi), Φ(x)⟩ + b)



Handcrafting the feature
• Interestingly, some features admit computational shortcut 

• Example. Recall the XOR, and consider two features 

 

 

• Looks similar… 
• However, one is computationally much better than the other 
• Which one is better?

Φa((x1, x2)) = (x1, x2, x1x2)
Φb((x1, x2)) = (x2

1 , x2
2 , 2x1x2)



Handcrafting the feature
 

 

• Answer. Surprisingly,  is better! 

• Feature  

 

• Compute 3D features         ,  

• Compute 3D inner prod     

Φa((x1, x2)) = (x1, x2, x1x2)
Φb((x1, x2)) = (x2

1 , x2
2 , 2x1x2)

Φb

Φa

⟨Φa(x), Φa(y)⟩ = x1y1 + x2y2 + x1x2y1y2

ϕx = Φa(x) ϕy = Φa(y)
⟨ϕx, ϕy⟩



Handcrafting the feature
 

 

• Answer. Surprisingly,  is better! 

• Feature  

 

• Compute 2D inner prod        

• Take a square                         
• Reason. Can compute dot products of features,       <- called “kernels” 

                without actually computing features

Φa((x1, x2)) = (x1, x2, x1x2)
Φb((x1, x2)) = (x2

1 , x2
2 , 2x1x2)

Φb

Φb

⟨Φb(x), Φb(y)⟩ = x2
1 y2

1 + x2
2 y2

2 + 2x1x2y1y2 = (⟨x, y⟩)2

⟨x, y⟩
( ⋅ )2



Kernel SVM
• Inspired by this, the Kernel SVM does the following: 

• Choose some similarity metric  
• Build predictors of form 

 

• Optimize  to fit the training data 
• As in vanilla SVM, will resort to solving 

 

• Simply a quadratic program — use solvers

K( ⋅ , ⋅ )

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

max
α (−

1
2 ∑

i,j

αiαjyiyjK(xi, xj) +
n

∑
i=1

αi)



Kernel SVM
• But can we use any  

• What if there is no corresponding ? 

Mercer’s Theorem 

If  is a Mercer kernel, then there always exists  such that 

 

• Thus, as long as K is well-behaved, it is a valid SVM

K( ⋅ , ⋅ )?
Φ( ⋅ )

K( ⋅ , ⋅ ) Φ( ⋅ )
K(x, x′￼) = ⟨Φ(x), Φ(x′￼)⟩



Kernel SVM
Definition (Mercer Kernel) 

A real-valued function  is a Mercer kernel, if 

•                                                i.e., symmetric 

•                 i.e., continuous 

•              i.e., positive-semidefinite

K( ⋅ , ⋅ )
K(x, x′￼) = K(x′￼, x)

lim
n→∞

K(x(n), x) → K( lim
n→∞

x(n), x)

∑
i,j

αiαjK(xi, xj) ≥ 0, ∀αi, αj, xi, xj



Kernels for kernel SVM
• Here are some popular kernels: 

• Gaussian RBF               

• Laplacian RBF              

• Polynomial                    
• B-Spline                         (…)

K(x, x′￼) = exp(−λ∥x − x′￼∥2
2)

K(x, x′￼) = exp(−λ∥x − x′￼∥2)
K(x, x′￼) = (⟨x, x′￼⟩ + c)d



Kernels for kernel SVM
• For Gaussian kernel ( ), large  means narrower region 

of similarity 
• Thus more fine-grained decision boundary

exp(−λ∥x − x′￼∥2
2) λ

Large λSmall λ



Wrapping up
• In large-scale ML, we usually model  using neural nets, and tune its 

parameters with data 
• Expensive, but we now have GPUs for compute 
• Conduct logistic regression, instead of SVD 

• Ease of joint training 
• When train long enough, tend to maximize margin 

• Use nice augmentations to find good similarity metrics such that 

Φ( ⋅ )

⟨Φ(x), Φ(xaug)⟩ ≫ ⟨Φ(x), Φ(x′￼)⟩



Next up
• Unsupervised learning — K-means!



</lecture 6>


