
Soft & Kernel SVMs

Recap
• Logistic Regression

• Bayesian interpretation
• Gradient descent on convex function

• Support Vector Machine
• Margin maximization
• Analytic solution via Lagrangian dual
• Required. Linearly separable data

Today
• SVMs for handling non-separable data

• Soft-margin SVM
• Kernel SVM

Soft(-Margin) SVM

Data with outliers
• Suppose that there exists some outliers in data

• Then, there exists no linear separator
• Finding a minimum-error separating hyperplane becomes NP-hard

(Minsky & Papert, 1969)

w⊤x + b ≥ 1w⊤x + b ≤ − 1

w⊤x + b = 0

Data with outliers
• Idea. Handle this by introducing a “slack”

• i.e., error allowed for each sample
• We want to (1) maximize the margin, while

 (2) minimizing the slack

ξ

w⊤x + b ≥ 1−ξ
w⊤x + b ≤ − 1+ξ

w⊤x + b = 0

Formulation
• More formally, we solve the optimization problem

• : Slack we allow for sample

• : Hyperparameter

• like in nearest neighbor, or in gradient descent

• sending recovers the vanilla SVM

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

ξi i
C

k η
C → ∞

Formulation

• We know that this problem is always feasible
• i.e., the search space is nonempty, regardless of the data drawn

• Any idea?

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

Formulation

• We know that this problem is always feasible
• i.e., the search space is nonempty, regardless of the data drawn

• Any idea?

• Let and

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

(w, b) = (0,0) ξi = 1

Optimization
• Again, to solve this constrained optimization, we invoke its dual form

• This time, we have additional dual variables to handle the
nonnegativity constraints on the slack

• The optimal is at the saddle point with

min
w,b,ξ

max
α,η⪰0 (∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)

η

(w, b, ξ) (α, η)

Optimization

• Analyzing the derivatives with respect to :

min
w,b,ξ

max
α,η (∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ)

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0

Optimization

• Analyzing the derivatives with respect to :

min
w,b,ξ

max
α,η (∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ)

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0 C = αi + ηi

(same as in SVM)

i.e., given , is uniqueαi ηi

Optimization
• Via similar steps as in vanilla SVM, we get the Lagrangian

• Plugging in the condition , we get

• Surprisingly, the optimand did not change at all!

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi−∑
i

αiξi + C∑
i

ξi − ∑
i

ηiξi

C = αi + ηi

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi

Optimization
• Softness only matters in terms of the search space:

• In vanilla SVM, we could have very large

• In soft SVM, the maximum size of is constrained by

• Recalling that ,
this means that each datapoint has limited impact on

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C

α

α C
w* = ∑ αiyixi

w*

Impact of C
• With larger , the soft-SVM looks for a smaller slack solutionC

Limitations
• Still, “allowing some errors” cannot be a fundamental solution for

nonlinear data

Kernel SVM

Nonlinear data
• Suppose that we have an XOR-like data

• Not linearly separable
• Yet highly structured — we can think of nice predictors

• How do we handle this data?

Nonlinear data
• Idea. Map it to a high-dimensional space

• In the lifted space, there exists a clean linear classifier

f(x) = sign [0 0 1]
x1
x2
x3

Formalization
• Formally, we consider mapping data to nonlinear feature using

where, typically (but not necessarily)

• Then, we can consider predictors of the form

• This form comes from the SVMs, where

Φ(⋅) : ℝd → ℝk

d < k

f(x) = sign (
n

∑
i=1

ai ⋅ ⟨Φ(xi), Φ(x)⟩ + b)
f(x) = sign (∑ ai ⋅ ⟨xi, x⟩ + b)

Selecting the feature
• Question. How should we choose ?

• Handcrafting (classical & compute-light)
• Design “good” kernels
• Test them on data
• Select the one that works best

• Data-driven (modern & compute-heavy)
• Build a parameterized set of kernels
• Optimize the kernel parameters, jointly with SVM params

Φ(⋅)

Handcrafting the feature
• Question. How do we handcraft the feature?

Handcrafting the feature
• Answer (naïve). Simply throw in many features,

 and let SVM choose the useful dimension

• Overfitting to a weird feature
• Computational cost

• Both computing and computing is expensive

Φ(x) = (x1, ⋯, xd, x1x2, ⋯, xd−1xd, ⋯, x100
k)

Φ(⋅) ⟨ ⋅ , ⋅ ⟩
f(x) = sign(∑ ai ⋅ ⟨Φ(xi), Φ(x)⟩ + b)

Handcrafting the feature
• Interestingly, some features admit computational shortcut

• Example. Recall the XOR, and consider two features

• Looks similar…
• However, one is computationally much better than the other
• Which one is better?

Φa((x1, x2)) = (x1, x2, x1x2)
Φb((x1, x2)) = (x2

1 , x2
2 , 2x1x2)

Handcrafting the feature

• Answer. Surprisingly, is better!

• Feature

• Compute 3D features ,

• Compute 3D inner prod

Φa((x1, x2)) = (x1, x2, x1x2)
Φb((x1, x2)) = (x2

1 , x2
2 , 2x1x2)

Φb

Φa

⟨Φa(x), Φa(y)⟩ = x1y1 + x2y2 + x1x2y1y2

ϕx = Φa(x) ϕy = Φa(y)
⟨ϕx, ϕy⟩

Handcrafting the feature

• Answer. Surprisingly, is better!

• Feature

• Compute 2D inner prod

• Take a square
• Reason. Can compute dot products of features, <- called “kernels”

 without actually computing features

Φa((x1, x2)) = (x1, x2, x1x2)
Φb((x1, x2)) = (x2

1 , x2
2 , 2x1x2)

Φb

Φb

⟨Φb(x), Φb(y)⟩ = x2
1 y2

1 + x2
2 y2

2 + 2x1x2y1y2 = (⟨x, y⟩)2

⟨x, y⟩
(⋅)2

Kernel SVM
• Inspired by this, the Kernel SVM does the following:

• Choose some similarity metric
• Build predictors of form

• Optimize to fit the training data
• As in vanilla SVM, will resort to solving

• Simply a quadratic program — use solvers

K(⋅ , ⋅)

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

max
α (−

1
2 ∑

i,j

αiαjyiyjK(xi, xj) +
n

∑
i=1

αi)

Kernel SVM
• But can we use any

• What if there is no corresponding ?

Mercer’s Theorem

If is a Mercer kernel, then there always exists such that

• Thus, as long as K is well-behaved, it is a valid SVM

K(⋅ , ⋅)?
Φ(⋅)

K(⋅ , ⋅) Φ(⋅)
K(x, x′￼) = ⟨Φ(x), Φ(x′￼)⟩

Kernel SVM
Definition (Mercer Kernel)

A real-valued function is a Mercer kernel, if

• i.e., symmetric

• i.e., continuous

• i.e., positive-semidefinite

K(⋅ , ⋅)
K(x, x′￼) = K(x′￼, x)

lim
n→∞

K(x(n), x) → K(lim
n→∞

x(n), x)

∑
i,j

αiαjK(xi, xj) ≥ 0, ∀αi, αj, xi, xj

Kernels for kernel SVM
• Here are some popular kernels:

• Gaussian RBF

• Laplacian RBF

• Polynomial
• B-Spline (…)

K(x, x′￼) = exp(−λ∥x − x′￼∥2
2)

K(x, x′￼) = exp(−λ∥x − x′￼∥2)
K(x, x′￼) = (⟨x, x′￼⟩ + c)d

Kernels for kernel SVM
• For Gaussian kernel (), large means narrower region

of similarity
• Thus more fine-grained decision boundary

exp(−λ∥x − x′￼∥2
2) λ

Large λSmall λ

Wrapping up
• In large-scale ML, we usually model using neural nets, and tune its

parameters with data
• Expensive, but we now have GPUs for compute
• Conduct logistic regression, instead of SVD

• Ease of joint training
• When train long enough, tend to maximize margin

• Use nice augmentations to find good similarity metrics such that

Φ(⋅)

⟨Φ(x), Φ(xaug)⟩ ≫ ⟨Φ(x), Φ(x′￼)⟩

Next up
• Unsupervised learning — K-means!

</lecture 6>

