Soft & Kernel SVMs

Recap

* Logistic Regression
* Bayesian interpretation
» Gradient descent on convex function

» Support Vector Machine
* Margin maximization
» Analytic solution via Lagrangian dual
* Required. Linearly separable data

Today

» SVMs for handling non-separable data
e Soft-margin SVM
» Kernel SVM

Soft(-Margin) SVM

Data with outliers

e Suppose that there exists some outliers in data
* Then, there exists no linear separator

* Finding a minimume-error separating hyperplane becomes NP-hard
(Minsky & Papert, 1969)

wx+b<-1

Data with outliers

» |dea. Handle this by introducing a “slack” &

* j.e., error allowed for each sample

* We want to (1) maximize the margin, while
(2) minimizing the slack

WX+I9S—1+§ ’

Formulation

* More formally, we solve the optimization problem

£* = min HWH2+ C - Zfz
wbé 2 i
subjectto y(w'x;+b)>1-¢&, £>0

+ £: Slack we allow for sample i
» C: Hyperparameter
» like k in nearest neighbor, or # in gradient descent

» sending C — oo recovers the vanilla SVM

Formulation

£* = min HWHZ+ C - 25
wbe o 2 l

» We know that this problem is always feasible
+ i.e., the[search spaceis nonempty, regardless of the data drawn

* Any idea?

Formulation

wbheé 2
subjectto y(w'x;+b)>1-&, £>0

+ Let(w,b) =(0,0)andé; = 1

Optimization

Again, to solve this constrained optimization, we invoke its dual form

min max (HWHZ + CZ 51- — Z ai(yi(X,-TW + b) + 51‘ — 1) — Z 771'51')

w,b,& a,n>0 2

» This time, we have additional dual variables # to handle the
nonnegativity constraints on the slack

» The optimal (W, b, &) is at the saddle point with (&, 1)

Optimization

minmax(HWHZ + CZ 5,' — Z OIi()’i(X,TW + b) + fi — 1) — Z 771'51')

w.b,.E a.n 2
» Analyzing the derivatives with respect to (w, b, &):

V, &L = Z a.y, =2

Optimization

VoL =W -— Zaiyixi = ()

(same as in SVM)

V, &L = Z a.y, = ()

Vf,-gzc_ai_ni :O C:ai_l_r]i

l.e., given a;, ;IS unique

Optimization

* Via similar steps as in vanilla SVM, we get the Lagrangian

——Zala]ylij +Za Zaf +CZ§ an
iJ

» Plugging in the Condition C = a; + 1, we get

—— Z ala]ylij + Z a;
,]

» Surprisingly, the optimand did not change at all!

Optimization

» Softness only matters in terms of the search space:

o 2

1 < ,
max | —— Z aiajyiijiTXj + Z Qa; subject to Z a;y; = 0 O<a <C
ij i=1 i

 |n vanilla SVM, we could have very large

» In soft SVM, the maximum size of a is constrained by C

. Recalling that w* = Z a;y.X,
this means that each datapoint has limited impact on w*

Impact of C

» With larger C, the soft-SVM looks for a smaller slack solution

C = 1000 ' C =50 ' C=5
1 0.11 1

Limitations

» Still, “allowing some errors” cannot be a fundamental solution for
nonlinear data

Kernel SVM

Nonlinear data

e Suppose that we have an XOR-like data

* Not linearly separable

* Yet highly structured — we can think of nice predictors
 How do we handle this data?

Nonlinear data

* |dea. Map it to a high-dimensional space
* |n the lifted space, there exists a clean linear classifier

(1,222

Formalization
* Formally, we consider mapping data to nonlinear feature using
D(-):RY > RK
where, typically d < k (but not necessarily)

* Then, we can consider predictors of the form

J(x) = sign Z a; - (P(x;), D(x)) + b
i=1

* This form comes from the SVMs, where

f(x) = sign (Z a - (X, X) + b)

Selecting the feature

* Question. How should we choose ®(-)?
» Handcrafting (classical & compute-light)
* Design “good” kernels
* Testthem on data
» Select the one that works best

» Data-driven (modern & compute-heavy)
» Build a parameterized set of kernels
* Optimize the kernel parameters, jointly with SVM params

Handcrafting the feature

 (Question. How do we handcraft the feature?

Handcrafting the feature

* Answer (naive). Simply throw in many features,
and let SVM choose the useful dimension

_ 100
(I)(X) — (xl, .“"xd’xl‘XZ’ “."Xd—l‘xd’ ...,xk)

* Overfitting to a weird feature
* Computational cost

» Both computing ®@(-) and computing { -, -) is expensive

fx) = sign() a;- (D(x)), D(x)) + b)

Handcrafting the feature

* |nterestingly, some features admit computational shortcut

» Example. Recall the XOR, and consider two features
(I)a((x19 Xz)) — (’xla x29 x1x2)
2 2
Dy((x1. %)) = (x}, 3,1/ 2x,x))

* Looks similar...
* However, one is computationally much better than the other
» Which one is better?

Handcrafting the feature

D ((x1,X%)) = (X1, X, X1 X,)
D((x1, X)) = (7, 53,1/ 2x,%)
» Answer. Surprisingly, @, is better!

+ Feature ®_

(P,(X), D(Y)) = XY + X)) + X1 X%V

+ Compute 3D features ¢, = @ (X), P, = D(y)
« Compute 3D inner prod (¢, ¢y>

Handcrafting the feature

D ((x1, 1)) = (X1, Xp, X1X,)
D, ((x1, %)) = (xlz , x22 » \ﬁxlxz)
» Answer. Surprisingly, @, is better!
+ Feature @,

(D,(x), Dy(y)) = X12)’12 T Xzz)’zz + 2x1%1y, = ((X, y))’
+ Compute 2D innerprod (X,y)
 Take a square (-)?

* Reason. Can compute dot products of features, <- called “kernels”
without actually computing features

Kernel SVM
* |nspired by this, the Kernel SVM does the following:

» Choose some similarity metric K(-, -)
» Build predictors of form

f(x) = sign (Z a; - K(x;,X) + b)

» Optimize a;, b to fit the training data
* Asinvanilla SVM, will resort to solving

1 n
mjx (_ 5 Z O‘iajyiyjK(Xia Xj) T Z O‘i)

i.j i=1
» Simply a quadratic program — use solvers

Kernel SVM

e Butcanweuseany K(:,-)?

» What if there is no corresponding ®(-)?

Mercer's Theorem

If K(-, -)is aMercer kernel, then there always exists ®(-) such that
K(x,x") = (D(x), D(x))

* Thus, as long as K is well-behaved, it is a valid SVM

Kernel SVM

Definition (Mercer Kernel)

A real-valued function K(- , -) is a Mercer kernel, if

e K(X,X') = K(X',X) i.e., symmetric
. lim Kx™,x) — K(lim x", X) i.e., continuous
n— Qo0 n— o0
Z oKX, X)) 20, Vo, a;,X;, X; i.e., positive-semidefinite

,]

Kernels for kernel SVM

* Here are some popular kernels:

« (Gaussian RBF K(x,X’) = exp(—4||x — X/H%)
» Laplacian RBF K(x,x") = exp(—4||x — x||,)
» Polynomial K(x,x') = ({x,X’) + ¢)

» B-Spline (...)

Region of Dissimilarity Region of Similarity Region of Dissimilarity

Kernels for kernel SVM

» For Gaussian kernel (exp(—A||x — X’H%)), large A means narrower region
of similarity

* Thus more fine-grained decision boundary

- |
2 ~— - 2 yd / o - T— \]
- F~— F " — g S) \ ¥ % 7
—— --. - \ - — ~
— & \) - . R
_ -~ f *
1+ : - 1+ -/ . -\ — s
- J] \
- T — e + X i - -~ ~ r |II } / 1{ y g \\’l._
—_— _ . -2 ~ \ l... ",.' / LN
—_— S \ / / "’ \
= . booA S N S } / \
0r ! ~. - 0r A E - —
. - s 2 / m—
- ~. _ L 7 —_— .
¥ - g i -~ - / -~
_1 — T - b — —1 = = — rd -
" } . " } , B
— / -
* ~ ."" s A N
-2 . - - 2+ e R -"__,__- — ' -
—~ I — I|l /
~ _-\ |'

Wrapping up

» In large-scale ML, we usually model ®(-) using neural nets, and tune its
parameters with data

* Expensive, but we now have GPUs for compute
* Conduct logistic regression, instead of SVD
» Ease of joint training
* When train long enough, tend to maximize margin
* Use nice augmentations to find good similarity metrics such that

(D(X), P(X,ye)) > (P(X), D(X))

aug

Next up

» Unsupervised learning — K-means!

</lecture 6>

