
Logistic Regression & 
Support Vector Machines



Game Plan
• Basic classification algorithms 

• Nearest neighbor 
• Naïve Bayes 
• Perceptrons 

• Our first linear classifier 

• Today. Advanced linear classifiers 
• Logistic Regression 
• Support Vector Machine



Recap
• Linear classifiers can be parameterized as: 

 

• Question. Which loss? 
• 0-1 loss is difficult to optimize 

 
• Perceptron uses the surrogate loss 

 

•  interpreted as “confidence” 
• Works, but somewhat arbitrary

fθ(x) = 1{θ⊤x̃ > 0}

ℓ( fθ(x), y) = 1{fθ(x) ≠ y}

ℓ( fθ(x), y) = ( fθ(x) − y) ⋅ θ⊤x̃
θ⊤x̃



Recap
• Limitations. Perceptron works, but… 

 

• Calling  confidence is somewhat arbitrary 
• Any real probabilitic interpretation? 

• The iterative optimization algorithm may not converge 
• XOR example — we want imperfect but good solution

ℓ( fθ(x), y) = ( fθ(x) − y) ⋅ θ⊤x̃
θ⊤x̃



Logistic Regression



Logistic Regression
• Another popular method to train the linear classifier 

 

• Logistic regression interprets  as a log-likelihood ratio of the model’s 
internal probability estimate 

 

• Brainteaser. Why not interpret as ?

fθ(x) = 1{θ⊤x̃ ≥ 0}

θ⊤x̃

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)



Logistic Regression

 

• In other words, we are modeling the posterior distribution as 

 

• The function  is the logistic function 
                                                                             (a.k.a. sigmoid)

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)
σ(t) = 1/1 + exp(−t)



Training
• Given the data, maximize the log-likelihood 

 

• Equivalently, minimize the NLL loss: 

max
θ

1
n

n

∑
i=1

log p(yi | xi)

min
θ

1
n

n

∑
i=1

log ( 1
p(yi | xi) )



Training
• Equivalently again, we are solving: 

 

where 

•  is the sigmoid of the prediction 

 

•  is the cross-entropy 

min
θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi))

fθ( ⋅ )
fθ(x) = σ(θ⊤x̃)

ℓ( ⋅ , ⋅ )

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1



Training
• More tediously, this can be written as 

 

• Thankfully, this is convex! 

• Definition. A function  is called convex when it satisfies: 

 
(strictly convex, if holds with <) 

• Convex, regardless of the data

min
θ

1
n

n

∑
i=1

(−yi)log(σ(θ⊤x̃i)) + (yi − 1)log(1 − σ(θ⊤x̃i))

g(θ)
g(λθ1 + (1 − λ)θ2) ≤ λg(θ1) + (1 − λ)g(θ2), ∀λ ∈ [0,1]



Training
• Facts. For convex functions: 

• If strictly convex, the solution is unique 
• Gradient descent provably converges to this unique solution 

• The gradient descent iteration can be written as: 

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i



Properties
• Computation. Relatively easy 

• Training. Requires GD, but is convex 
• Inference. Easy — Dot product and apply threshold



Limitation
• It converges to the solution that minimizes training loss 

• But this minimum training loss is still high, for non-separable data



Limitation
• Does not admit an analytic solution 

• Even for linear models, requires running long GD 

• Particularly weak against “far outliers” 

 

• Lacks much consideration on the generalizability

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i



Support Vector Machines



Disclaimers



Disclaimers



Disclaimers



Philosophy
• Motivation comes from “what function generalizes better” 

• Suppose that we have a linearly separable data 
• i.e., exists a linear classifier that perfectly classifies the training data



Philosophy
• Then, there can be infinitely many classifiers with perfect accuracy on 

the training data… 
• Question. What is the best one?



Philosophy
• Idea. We should choose the maximum-margin classifier 

• Reason. Robust to noise in the test data



Margin
• Question. How do we formalize and quantify margin?

w⊤x = b



Margin
• Answer. Margin = Maximum shift the classifier can withstand

w⊤x = b + c1w⊤x = b − c0

w⊤x = b



Margin
• Answer. Margin = Maximum shift the classifier can withstand 

• Take the midpoint

w⊤x = b
w⊤x = b−c w⊤x = b+c



Margin
• Answer. Margin = Maximum shift the classifier can withstand 

• Take the midpoint 

• Normalize the size of  — Otherwise  can be arbitrarily largew c

w⊤x = b
w⊤x = b − c w⊤x = b + c



Margin
• Answer. Margin = Maximum shift the classifier can withstand 

• Take the midpoint 

• Normalize the size of  — Otherwise  can be arbitrarily large 

• We can just fix , and look at the size of 

w c
c = 1 1/∥w∥2

w⊤x = b
w⊤x = b−1 w⊤x = b+1



Margin
• Cleaner(?) Intuition. Project it along the direction

w⊤x + b = 1w⊤x + b = − 1

w

( x+ − x−

2 )
⊤

( w
∥w∥2 ) =

1
∥w∥

 “Margin”⇐



Maximum Margin Classifier
• SVM is designed to find a maximum-margin classifier 

• That is, we solve the constrained optimization problem: 

 

• Maximize margin, subject to training accuracy = 100% 

(We use , instead of the usual )

maximizew,b
1

∥w∥2
subject to yi(w⊤xi + b) ≥ 1

yi ∈ {−1, + 1} {0,1}



Maximum Margin Classifier
• Rephrasing it slightly, we can make it a minimization problem 

 

• Question. How do we solve this constrained optimization problem?

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1



Solving the optimization: Dual

 

• Answer. Consider the Lagrangian dual of the problem 
• Above is called the “primal” problem 
• Below is called the “dual”                                                  (constraint-free) 

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))
How much you violated



Solving the optimization: Dual

 

• Answer. Consider the Lagrangian dual of the problem 
• Above is called the “primal” problem 
• Below is called the “dual” 

 

• Then, interestingly, the following duality holds — Why? 

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

ℓ* = min
w,b

max
α⪰0

ℒ(w, b, α)



Solving the optimization: Dual

       (primal) 

      (dual) 

• Intuition. In dual, the adversary will choose  to maximize your loss 

• He/she will carefully look at the sign of  

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))
α
1 − yi(w⊤xi + b)



Solving the optimization: Dual

       (primal) 

      (dual) 

• Intuition. In dual, the adversary will choose  to maximize your loss 

• He/she will carefully look at the sign of   

• If positive:    Set                        P: Infeasible, D: 

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))
α
1 − yi(w⊤xi + b)

αi → ∞ ∞



Solving the optimization: Dual

       (primal) 

      (dual) 

• Intuition. In dual, the adversary will choose  to maximize your loss 

• He/she will carefully look at the sign of   

• If positive:    Set                        P: Infeasible, D:  

• If negative:   Set                           P = D

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))
α
1 − yi(w⊤xi + b)

αi → ∞ ∞
αi = 0



Solving the optimization: Dual

       (primal) 

      (dual) 

• Intuition. In dual, the adversary will choose  to maximize your loss 

• He/she will carefully look at the sign of   

• If positive:    Set                        P: Infeasible, D:  

• If negative:   Set                           P = D 

• If zero:           Set  to be any value      P = D         (data on margin)

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))
α
1 − yi(w⊤xi + b)

αi → ∞ ∞
αi = 0
αi



Solving the optimization: Dual
• As primal = dual, we can solve dual instead: 

 

• Properties 
• Constraint-free 
• Minimax problem 

• Saddle point finding

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))



Solving the Dual
• To find the saddle point, find the critical point 

• The gradient can be written as: 

           

• Setting them equal to zero, we get 

             

∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

w* =
n

∑
i=1

αiyixi 0 =
n

∑
i=1

αiyi



Solving the Dual
• Plugging  back to Lagrangian, we get: 

 

• Summing up, the dual problem becomes: 

 

,   

w*

ℒ = −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

subject to ∑
i

αiyi = 0 αi ≥ 0



Solving the Dual
• Slightly rephrasing, this becomes a quadratic program  

• The search space is a convex polytope 

        ,      

• The solution is at either 
• Critical point 
• Extreme points 

• Exists many automated solvers to get the optimal 

max
α (−

1
2

α⊤Zα + 1⊤α) subject to α⊤y = 0 α ⪰ 0

α*



Solving the Bias
• Having computed , our optimal weights become 

 

• Question. How about ?

α*

w* =
n

∑
i=1

α*i yixi

b*

Nonzero only for margin 
data (support vectors)



Solving the Bias
• Having computed , our optimal weights become 

 

• Question. How about ? 
• Answer. Plug in any support vector: 

α*

w* =
n

∑
i=1

α*i yixi

b*

w*⊤x − b* = ± 1

Nonzero only for margin 
data (support vectors)



Wrapping up
• Maximum margin principle leads to an analytical solution 

• We can put some extra condition to generalize better to the test data 

• Next class. 
• Making this robust to outliers    (soft SVM) 
• Handling non-linear data             (kernel SVM)



</lecture 5>


