Logistic Regression &
Support Vector Machines

Game Plan

» Basic classification algorithms
* Nearest neighbor
* Nalve Bayes
* Perceptrons
* Qur first linear classifier

» Today. Advanced linear classifiers
* Logistic Regression
» Support Vector Machine

Recap

* Linear classifiers can be parameterized as:

fo(x) = 1{0'x > 0}

* Question. Which loss?
* (0-1 loss is difficult to optimize

C(fo(X),y) = 1{fy(X) # ¥}

* Perceptron uses the surrogate loss

C(fy(%),y) = (fo(x) —y) - 0'%

. 0'X interpreted as “confidence”

» Works, but somewhat arbitrary

Recap

» Limitations. Perceptron works, but...

C(fy(X),y) = (fo(x) —y) - 0'%

« (Calling 0 ' confidence is somewhat arbitrary
» Any real probabilitic interpretation?

* The iterative optimization algorithm may not converge
» XOR example — we want imperfect but good solution

Logistic Regression

Logistic Regression

» Another popular method to train the linear classifier

fo(x) =1{0'x > 0}

* Logistic regression interprets 0'xX as a log-likelihood ratio of the model's
internal probability estimate

log (p(y=_1\x)) ~ 0'x
p(y = 0]x)

» Brainteaser. Why not interpret as p(y = 1 | Xx)?

Logistic Regression

=1
log (—p(y ‘X)) ~ 0'x

p(y = 0[x)
* |n other words, we are modeling the posterior distribution as

ply =1|x) =

1 + exp(—60'X)
 The function 6(f) = 1/1 4+ exp(—1) is the logistic function

1
0.8
0.6
0.4

Training

* Given the data, maximize the Iog -likelihood

max — 2 log p(y; | X;)

0 n

» Equivalently, minimize the NLL loss:

Training

Equivalently again, we are solving:
1

min— Y £(y,fy(X,)
oD

where

* fo(-) is the sigmoid of the prediction
Jo(X) = U(HTX)

e £(-,-)isthecross-entropy

Lﬂ(y, t) — CE(ly, [t,l — t]) — IOg(t)_Y + lOg(l _ t)y—l

Training

* More tediously, this can be written as

min— ' (~3)log(c(07%)) + (y; — Dlog(1 - o(07%,)
0 n =1

* Thankfully, this is convex!

» Definition. A function g(0) is called convex when it satisfies:

g(A0, + (1 —1)0,) < 1g(0,)) + (1 —A)g(6,), VA€ [0,1]

* Convex, regardless of the data

Training

* Facts. For convex functions:
* |If strictly convex, the solution is unique
» Gradient descent provably converges to this unigue solution

* The gradient descent iteration can be written as:

1 n
0" =0 +1-—) ;= o(0"%)X
& =1

Properties

* Computation. Relatively easy
* Training. Requires GD, but is convex
» |nference. Easy — Dot product and apply threshold

Limitation
* [t converges to the solution that minimizes training loss
» But this minimum training loss is still high, for non-separable data

Limitation
» Does not admit an analytic solution
» Even for linear models, requires running long GD

» Particularly weak against “far outliers”

1 n
0" =0 +n-—), ;= 00X,
& =1

» Lacks much consideration on the generalizability

Support Vector Machines

Disclaimers

y Peyman Milanfar &

\'g @docmilanfar

Of all the machine learning ideas I've been
exposed to over the years, | think SVMs were
by far the most boring; followed closely by
PAC learning.

Disclaimers

© Doc Xardoc @andrewb10687674 - 1h
@ | will always have a soft spot in my heart for
SVM’s because one of the first data science
problems | worked on | struggled with for
months and then ran it through an SVM and
solved it within a half hour.

O Tl QO il 222 T,

Disclaimers

ad I'X],V > ¢s > arXiv:2308.16898

Computer Science > Machine Learning

[Submitted on 31 Aug 2023 (v1), last revised 22 Feb 2024 (this version, v3)]

Transformers as Support Vector Machines

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, Samet Oymak

Since its inception in "Attention Is All You Need", transformer architecture has led to revolutionary advancements in NLP. The attention layer within the transformer
admits a sequence of input tokens X and makes them interact through pairwise similarities computed as softmax(XQK "X "), where (K, Q) are the trainable key-
query parameters. In this work, we establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem that
separates optimal input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. This formalism allows us to characterize the
implicit bias of 1-layer transformers optimized with gradient descent: (1) Optimizing the attention layer with vanishing regularization, parameterized by (K, Q),
converges in direction to an SVM solution minimizing the nuclear norm of the combined parameter W = KQ". Instead, directly parameterizing by W minimizes a
Frobenius norm objective. We characterize this convergence, highlighting that it can occur toward locally-optimal directions rather than global ones. (2)
Complementing this, we prove the local/global directional convergence of gradient descent under suitable geometric conditions. Importantly, we show that over-
parameterization catalyzes global convergence by ensuring the feasibility of the SVM problem and by guaranteeing a benign optimization landscape devoid of
stationary points. (3) While our theory applies primarily to linear prediction heads, we propose a more general SVM equivalence that predicts the implicit bias with
nonlinear heads. Our findings are applicable to arbitrary datasets and their validity is verified via experiments. We also introduce several open problems and research
directions. We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.

Comments: The proof of global convergence for gradient descent in the equal score setting has been fixed, referring to Theorem 2 of [TLZO23], and the experimental results have been extended
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.Al); Computation and Language (cs.CL); Optimization and Control (math.OC)
Cite as: arXiv:2308.16898 [cs.LG]

(or arXiv:2308.16898v3 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2308.16898 @

Submission history

From: Yingcong Li [view email]

[vl] Thu, 31 Aug 2023 17:57:50 UTC (1,671 KB)
[v2] Thu, 7 Sep 2023 17:50:52 UTC (1,835 KB)
[v3] Thu, 22 Feb 2024 18:38:14 UTC (1,081 KB)

Philosophy

* Motivation comes from “what function generalizes better”

e Suppose that we have a linearly separable data
* j.e, exists a linear classifier that perfectly classifies the training data

t A
e © & -
o0
® - ®@ @
» -

Philosophy

* Then, there can be infinitely many classifiers with perfect accuracy on
the training data...

 Question. What is the best one?

Philosophy

* |dea. We should choose the maximum-margin classifier
* Reason. Robust to noise in the test data

Margin

* Question. How do we formalize and quantify margin?

Margin

* Answer. Margin = Maximum shift the classifier can withstand

» Take the midpoint

Margin

e Normalize the size of w — Otherwise ¢ can be arbitrarily large

Margin

e Normalize the size of w — Otherwise ¢ can be arbitrarily large

» We canjust fix c = 1, and look at the size of 1/||w/||,

Margin

 Cleaner(?) Intuition. Project it along the direction

Maximum Margin Classifier

* SVM is designed to find a maximum-margin classifier
* Thatis, we solve the constrained optimization problem:

1

Iwll>

maximize subjectto y(w'x; + b) > 1

w.b

» Maximize margin, subject to training accuracy = 100%

Maximum Margin Classifier

* Rephrasing it slightly, we can make it a minimization problem

w3 . T
subjectto y(w'x.+b) > 1

*F = min
W.D 2

* Question. How do we solve this constrained optimization problem?

Solving the optimization: Dual

2
Iwll3

£* = min 5 subjectto y(w'x, + b) > 1
W.D
* Answer. Consider the Lagrangian dual of the problem
* Above is called the “primal” problem

 Below is called the “dual”

HWH2 n i a-(l _y.(WTX. + b))
2 &

How much you violated

L(W,b,a) =

Solving the optimization: Dual

w3
2% — mi 2 b; T
W,D
o WP
(W,b,a) = + z'a l —y(w'x; + b))

2
* Then, interestingly, the foIIowmg duallty holds — Why?

£* = min maxZ(w, b, o)
w,b oa>(0

Solving the optimization: Dual

9)
, %%
* = min Wl

subjectto y(w'x.+b)>1 (primal)
W.D 2

2
W] \ T
1 Z al-(l — V(W'X; + b)) (dual)
i=1
e Intuition. In dual, the adversary will choose o to maximize your loss

£* = min max
w.b oa>0)

» He/she will carefully look at the sign of 1 — yl-(WTXi + b)

Solving the optimization: Dual

g)
, %%
£* = min Il
W.D 2

subjectto y(w'x.+b)>1 (primal)

Iwll® | < T
+ Z al-(l — V(W'X; + b)) (dual)

=1

£* = min max
w.b oa>0)

» If positive: Seta; — oo P: Infeasible, D: oo

Solving the optimization: Dual

2
. IW .
£* = min H 2” subjectto y(w'X;+b) > 1 (primal)
W.D
. Iwll® | < T
£* = min max + Z al-(l — V(W X; + b)) (dual)
w,b a=0 2 1
» If positive: Seta; — oo P: Infeasible, D: oo

+ If negative: Seta;, =0 P=D

Solving the optimization: Dual

2
. IW .
£* = min H 2” subjectto y(w'X;+b) > 1 (primal)
W.D
o Iwl> & ;

w,b a>0 2 1

» If positive: Seta; — oo P: Infeasible, D: oo

+ If negative: Seta; =0 P=D

» |f zero: Set a;to be anyvalue P =D (data on margin)

Solving the optimization: Dual

» As primal = dual, we can solve dual instead:

. Iwll* <
w.b a>0 2 z=zl (y())

* Properties
* Constraint-free
* Minimax problem
» Saddle point finding

Solving the Dual

* To find the saddle point, find the critical point
* The gradient can be written as:

VoL =W — i a;yiX; V2 = — i a;y;
i=1 i=1

e Setting them equal to zero, we get

n n
S — —
we = Z a;YiX; 0= Z a;Yi

Solving the Dual

 Plugging w* back to Lagrangian we get:

L = —— Z ala]ylijl X: + Z a,
L]
e Summing up, the dual problem becomes:

max | —— 2 ala]ylij X; T Z a;

a
L]

subject to 2 ay, =0, a, >0

Solving the Dual

» Slightly rephrasing, this becomes a quadratic program
* The search space is a convex polytope

1
max (—EaTZa + lTa) subjectto a'y =0,

* The solution is at either
 Critical point
* Extreme points

» Exists many automated solvers to get the optimal a™*

'Y

Solving the Bias

» Having computed a*, our optimal weights become Nonzero only for margin
data (support vectors)

n
K — *K
W=) @y
=1

e Question. How about b*?

Solving the Bias

Nonzero only for margin
data (support vectors)

» Answer. Plug in any support vector:
wix—b¥==1

Wrapping up

« Maximum margin principle leads to an analytical solution
» We can put some extra condition to generalize better to the test data

* Next class.
» Making this robust to outliers (soft SVM)
» Handling non-linear data (kernel SVM)

</lecture 5>

