Logistic Regression &
Support Vector Machines




Game Plan

» Basic classification algorithms
* Nearest neighbor
* Nalve Bayes
* Perceptrons
* Qur first linear classifier

» Today. Advanced linear classifiers
* Logistic Regression
» Support Vector Machine



Recap

* Linear classifiers can be parameterized as:

fo(x) = 1{0'x > 0}

* Question. Which loss?
* (0-1 loss is difficult to optimize

C(fo(X),y) = 1{fy(X) # ¥}

* Perceptron uses the surrogate loss

C(fy(%),y) = (fo(x) —y) - 0'%

. 0'X interpreted as “confidence”

» Works, but somewhat arbitrary



Recap

» Limitations. Perceptron works, but...

C(fy(X),y) = (fo(x) —y) - 0'%

« (Calling 0 ' confidence is somewhat arbitrary
» Any real probabilitic interpretation?

* The iterative optimization algorithm may not converge
» XOR example — we want imperfect but good solution




Logistic Regression



Logistic Regression

» Another popular method to train the linear classifier

fo(x) =1{0'x > 0}

* Logistic regression interprets 0'xX as a log-likelihood ratio of the model's
internal probability estimate

log (p(y=_1\x)) ~ 0'x
p(y = 0]x)

» Brainteaser. Why not interpret as p(y = 1 | Xx)?



Logistic Regression

=1
log (—p(y ‘X)) ~ 0'x

p(y = 0[x)
* |n other words, we are modeling the posterior distribution as

ply =1|x) =

1 + exp(—60'X)
 The function 6(f) = 1/1 4+ exp(—1) is the logistic function
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Training

* Given the data, maximize the Iog -likelihood

max — 2 log p(y; | X;)

0 n

» Equivalently, minimize the NLL loss:



Training

Equivalently again, we are solving:
1

min— Y £(y,fy(X,)
oD

where

* fo( - ) is the sigmoid of the prediction
Jo(X) = U(HTX)

e £(-,-)isthecross-entropy

Lﬂ(y, t) — CE(ly, [t,l — t]) — IOg(t)_Y + lOg(l _ t)y—l



Training

* More tediously, this can be written as

min— ' (~3)log(c(07%)) + (y; — Dlog(1 - o(07%,)
0 n =1

* Thankfully, this is convex!

» Definition. A function g(0) is called convex when it satisfies:

g(A0, + (1 —1)0,) < 1g(0,)) + (1 —A)g(6,), VA€ [0,1]

* Convex, regardless of the data



Training

* Facts. For convex functions:
* |If strictly convex, the solution is unique
» Gradient descent provably converges to this unigue solution

* The gradient descent iteration can be written as:

1 n
0" =0 +1-— ) ;= o(0"%)X
& =1



Properties

* Computation. Relatively easy
* Training. Requires GD, but is convex
» |nference. Easy — Dot product and apply threshold




Limitation
* [t converges to the solution that minimizes training loss
» But this minimum training loss is still high, for non-separable data




Limitation
» Does not admit an analytic solution
» Even for linear models, requires running long GD

» Particularly weak against “far outliers”

1 n
0" =0 +n-— ), ;= 00X,
& =1

» Lacks much consideration on the generalizability



Support Vector Machines



Disclaimers

y Peyman Milanfar &

\'g @docmilanfar

Of all the machine learning ideas I've been
exposed to over the years, | think SVMs were
by far the most boring; followed closely by
PAC learning.



Disclaimers

©  Doc Xardoc @andrewb10687674 - 1h
@ | will always have a soft spot in my heart for
SVM’s because one of the first data science
problems | worked on | struggled with for
months and then ran it through an SVM and
solved it within a half hour.
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Philosophy

* Motivation comes from “what function generalizes better”

e Suppose that we have a linearly separable data
* j.e, exists a linear classifier that perfectly classifies the training data
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Philosophy

* Then, there can be infinitely many classifiers with perfect accuracy on
the training data...

 Question. What is the best one?




Philosophy

* |dea. We should choose the maximum-margin classifier
* Reason. Robust to noise in the test data




Margin

* Question. How do we formalize and quantify margin?




Margin

* Answer. Margin = Maximum shift the classifier can withstand




» Take the midpoint




Margin

e Normalize the size of w — Otherwise ¢ can be arbitrarily large




Margin

e Normalize the size of w — Otherwise ¢ can be arbitrarily large

» We canjust fix c = 1, and look at the size of 1/||w/||,




Margin

 Cleaner(?) Intuition. Project it along the direction




Maximum Margin Classifier

* SVM is designed to find a maximum-margin classifier
* Thatis, we solve the constrained optimization problem:

1

Iwll>

maximize subjectto  y(w'x; + b) > 1

w.b

» Maximize margin, subject to training accuracy = 100%



Maximum Margin Classifier

* Rephrasing it slightly, we can make it a minimization problem

w3 . T
subjectto  y(w'x.+b) > 1

*F = min
W.D 2

* Question. How do we solve this constrained optimization problem?



Solving the optimization: Dual

2
Iwll3

£* = min 5 subjectto  y(w'x, + b) > 1
W.D
* Answer. Consider the Lagrangian dual of the problem
* Above is called the “primal” problem

 Below is called the “dual”

HWH2 n i a-(l _y.(WTX. + b))
2 &

How much you violated

L(W,b,a) =



Solving the optimization: Dual

w3
2% — mi 2 b; T
W,D
o WP
(W,b,a) = + z'a l —y(w'x; + b))

2
* Then, interestingly, the foIIowmg duallty holds — Why?

£* = min maxZ(w, b, o)
w,b oa>(0



Solving the optimization: Dual

9)
, %%
* = min Wl

subjectto  y(w'x.+b)>1  (primal)
W.D 2

2
W] \ T
1 Z al-(l — V(W'X; + b)) (dual)
i=1
e Intuition. In dual, the adversary will choose o to maximize your loss

£* = min max
w.b oa>0 )

» He/she will carefully look at the sign of 1 — yl-(WTXi + b)



Solving the optimization: Dual

g)
, %%
£* = min Il
W.D 2

subjectto  y(w'x.+b)>1  (primal)

Iwll® | < T
+ Z al-(l — V(W'X; + b)) (dual)

=1

£* = min max
w.b oa>0 )

» If positive: Seta; — oo P: Infeasible, D: oo



Solving the optimization: Dual

2
. IW .
£* = min H 2” subjectto  y(w'X;+b) > 1  (primal)
W.D
. Iwll® | < T
£* = min max + Z al-(l — V(W X; + b)) (dual)
w,b  a=0 2 1
» If positive: Seta; — oo P: Infeasible, D: oo

+ If negative: Seta;, =0 P=D



Solving the optimization: Dual

2
. IW .
£* = min H 2” subjectto  y(w'X;+b) > 1  (primal)
W.D
o Iwl> & ;

w,b a>0 2 1

» If positive: Seta; — oo P: Infeasible, D: oo

+ If negative: Seta; =0 P=D

» |f zero: Set a;to be anyvalue P =D (data on margin)



Solving the optimization: Dual

» As primal = dual, we can solve dual instead:

. Iwll* <
w.b a>0 2 z=zl ( y( ))

* Properties
* Constraint-free
* Minimax problem
» Saddle point finding




Solving the Dual

* To find the saddle point, find the critical point
* The gradient can be written as:

VoL =W — i a;yiX; V2 = — i a;y;
i=1 i=1

e Setting them equal to zero, we get

n n
S — —
we = Z a;YiX; 0= Z a;Yi



Solving the Dual

 Plugging w* back to Lagrangian we get:

L = —— Z ala]ylijl X: + Z a,
L]
e Summing up, the dual problem becomes:

max | —— 2 ala]ylij X; T Z a;

a
L]

subject to 2 ay, =0, a, >0



Solving the Dual

» Slightly rephrasing, this becomes a quadratic program
* The search space is a convex polytope

1
max (—EaTZa + lTa) subjectto a'y =0,

* The solution is at either
 Critical point
* Extreme points

» Exists many automated solvers to get the optimal a™*

'Y



Solving the Bias

» Having computed a*, our optimal weights become Nonzero only for margin
data (support vectors)

n
K — *K
W= ) @y
=1

e Question. How about b*?




Solving the Bias

Nonzero only for margin
data (support vectors)

» Answer. Plug in any support vector:
wix—b¥==1




Wrapping up

« Maximum margin principle leads to an analytical solution
» We can put some extra condition to generalize better to the test data

* Next class.
» Making this robust to outliers (soft SVM)
» Handling non-linear data (kernel SVM)



</lecture 5>



