Simple Classifiers

Today

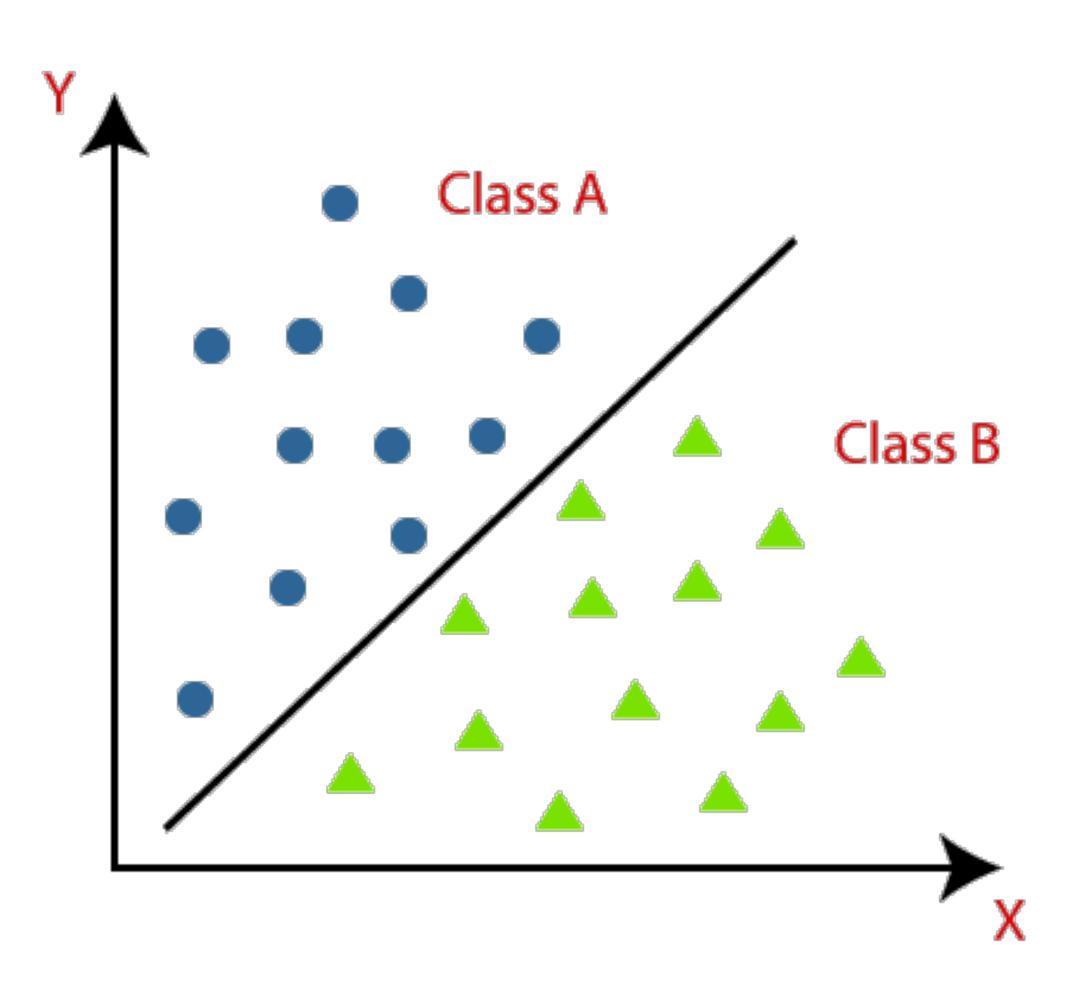
- Various classification algorithms
 - Nearest neighbors
 - Naïve Bayes
 - Linear classifiers
 - Perceptron
 - Logistic regression

Goal

- Modeling the relationship between
 - continuous input $X \in \mathbb{R}^d$ (or discrete)
 - discrete output $Y \in \{1, ..., K\}$
 - called "class"

Binary Classification

- For simplicity, we mostly consider the case of binary classification
 - $Y \in \{0,1\}$

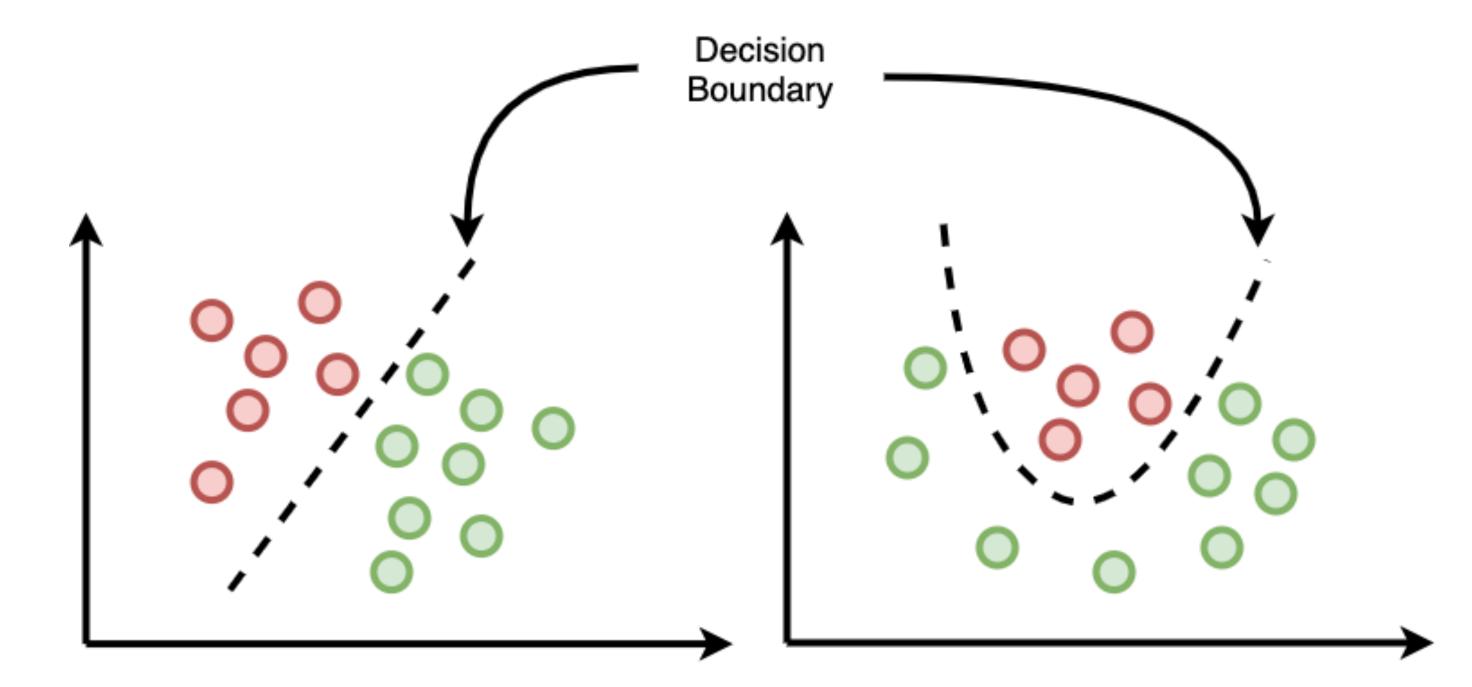


Binary Classification

 In binary classification, any classifier can be viewed as selecting a subset of the input space

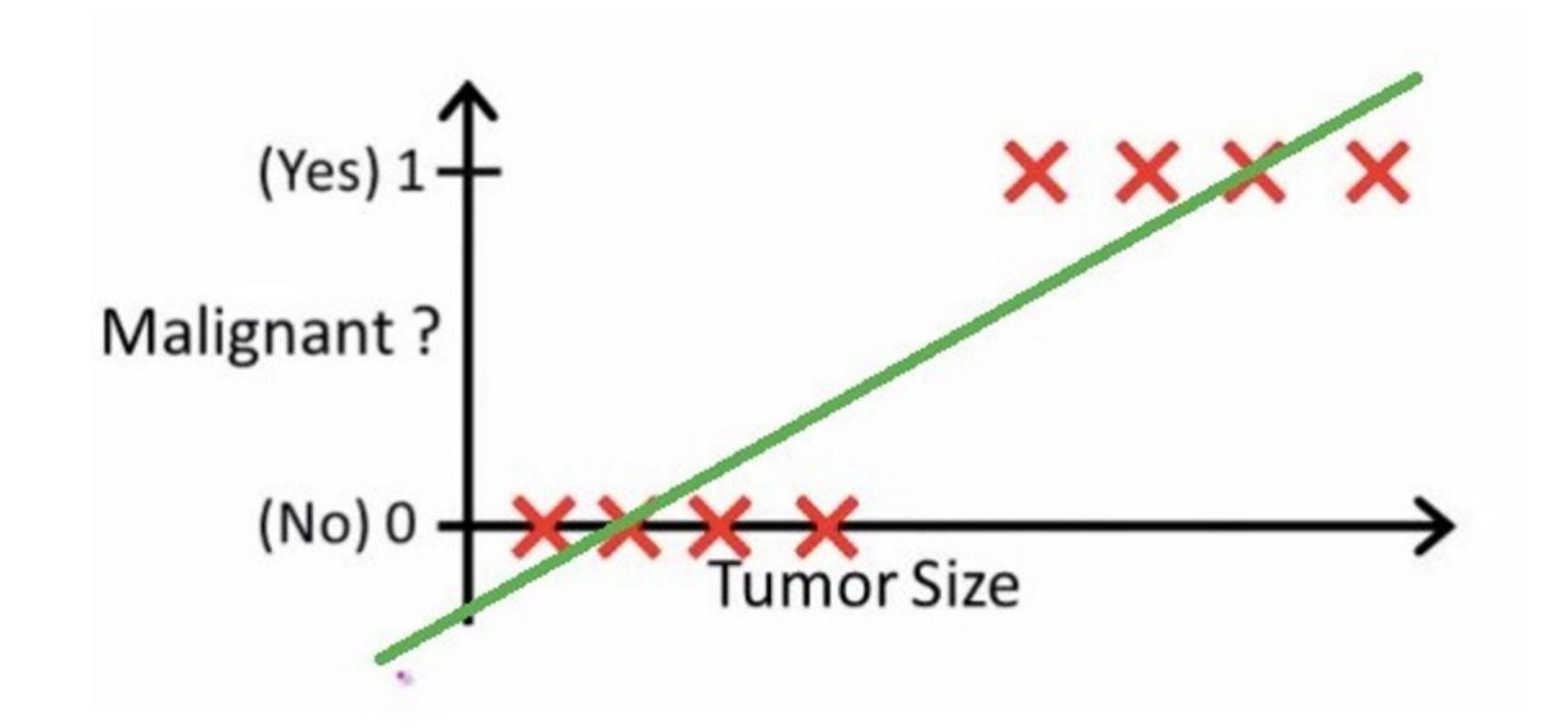
$$f(x) = \begin{cases} 0 & \cdots & x \in \mathcal{R}_0 \\ 1 & \cdots & x \in \mathcal{R}_1 \end{cases}$$

• Decision regions $\mathcal{R}_0, \mathcal{R}_1$ are separated using some decision boundary



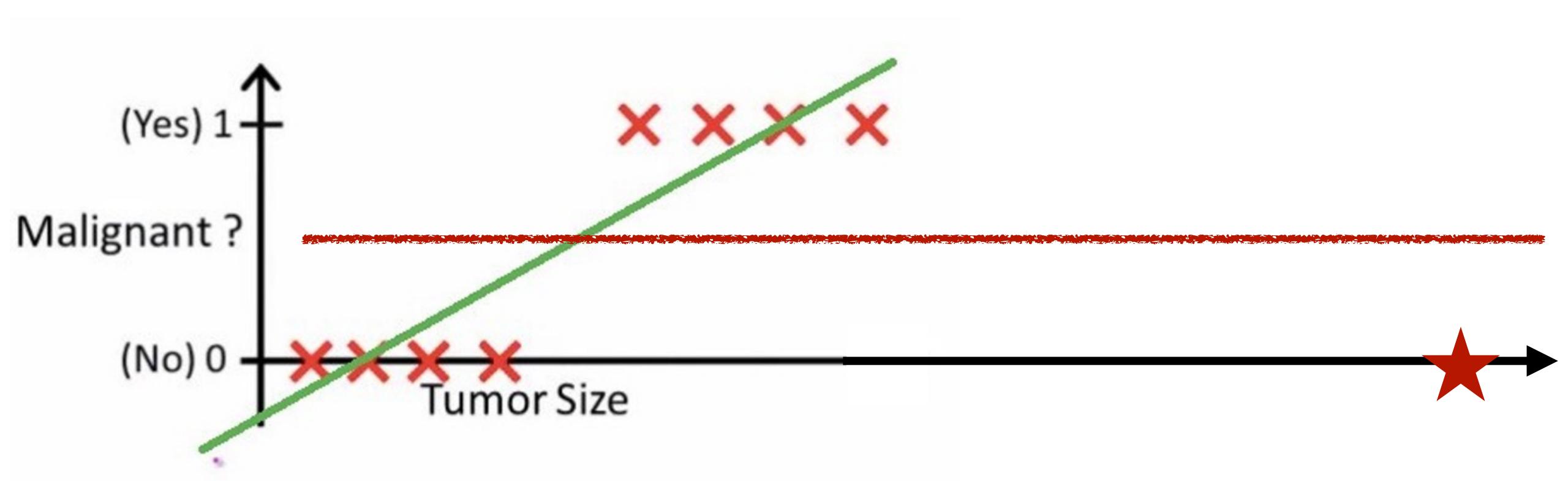
Classification vs. Regression

- Fun fact. Technically, we can use linear regression for classification
 - Simply view 0/1 class labels as outputs to predict



Classification vs. Regression

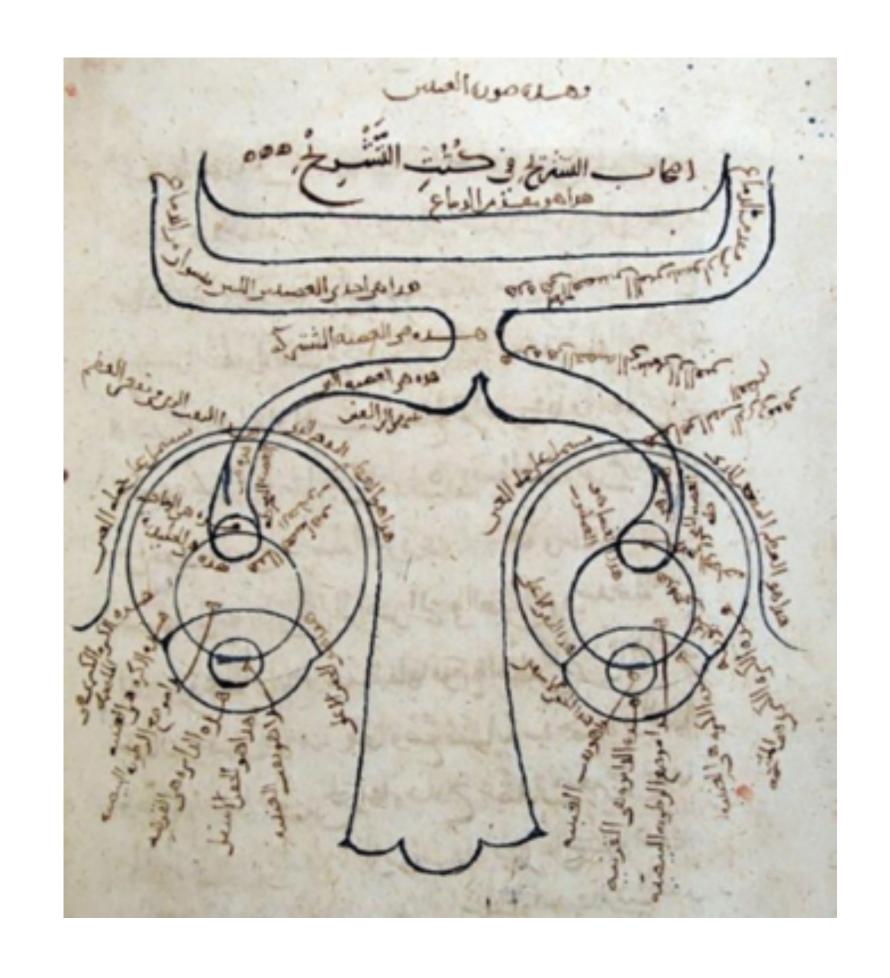
- However. This is not a good idea...
 - Very sensitive to "outliers," e.g., extremely large yet benign tumor
 - Thus we want better tools

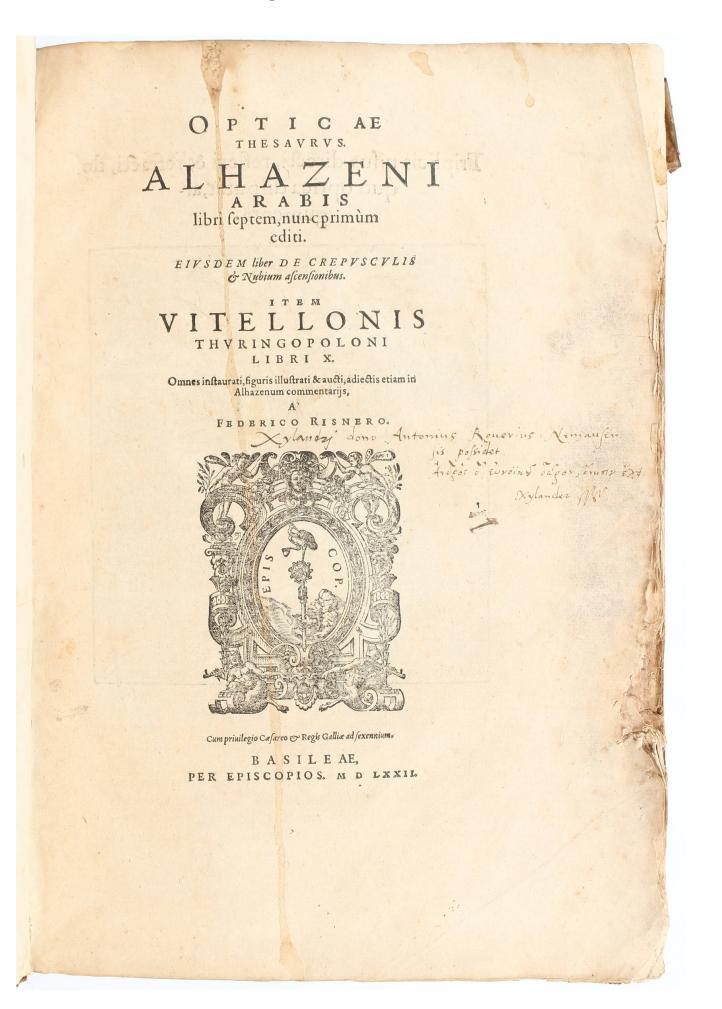


Nearest neighbors

Historical bits

- Can be traced back to a book in 1021
 - کتاب المناظر ("the book of optics") by Ibn al-Haytham

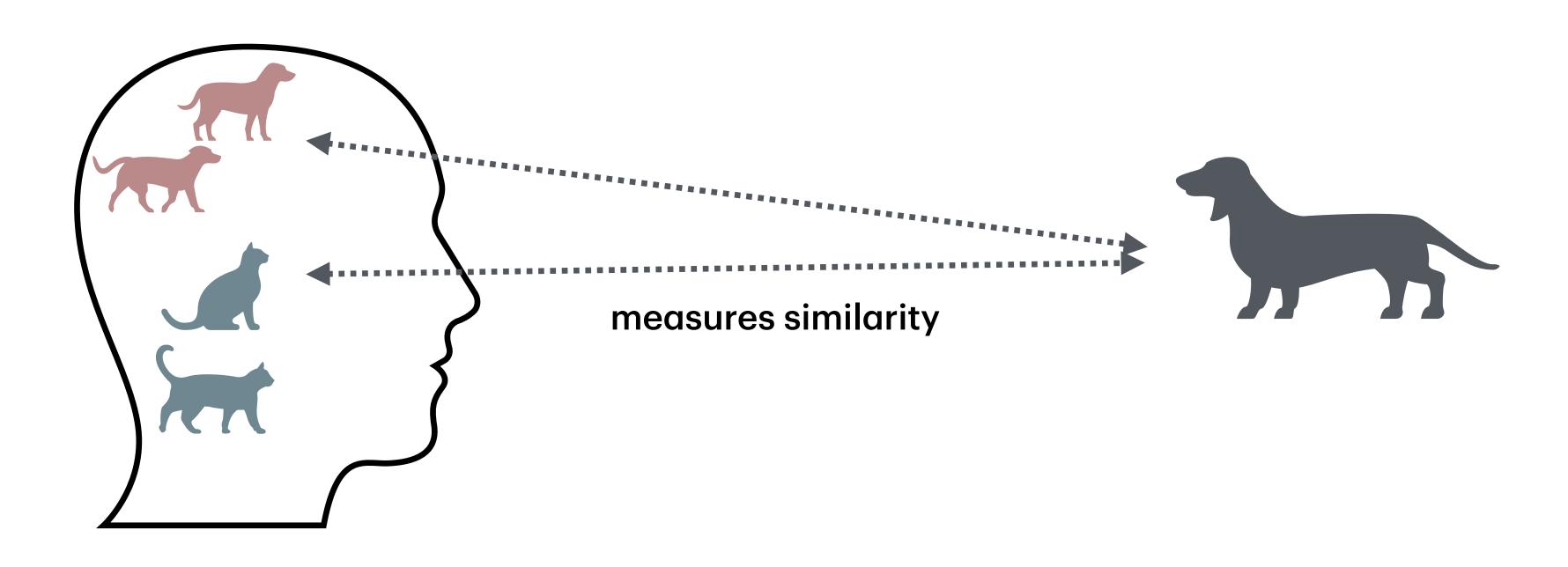




Historical bits

- Vlewed human visual recognition as a nearest neighbor
 - "Recognition is the perception of similarity between two forms i.e., of the form

 - (1) sight perceives at the <u>moment of recognition</u>, (2) and the form of that visible object, or its like, that it has perceived one or more times before."



Setup

We have a labeled dataset

$$D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$

(continuous, discrete, mixed, ...)

- Features. $\mathbf{x}_i \in \mathcal{X}$
- Label. $y_i \in \{1, ..., K\}$

- A cool aspect of KNN is that it is training-free
 - All we need to do is to store data in some database, in a form that we can retrieve them easily

Inference

• Suppose that we are given some test sample $\mathbf{x}^{(\text{new})}$

- Pick k samples with the highest similarity:
 - Equivalently, find the training samples with bottom-k distance:

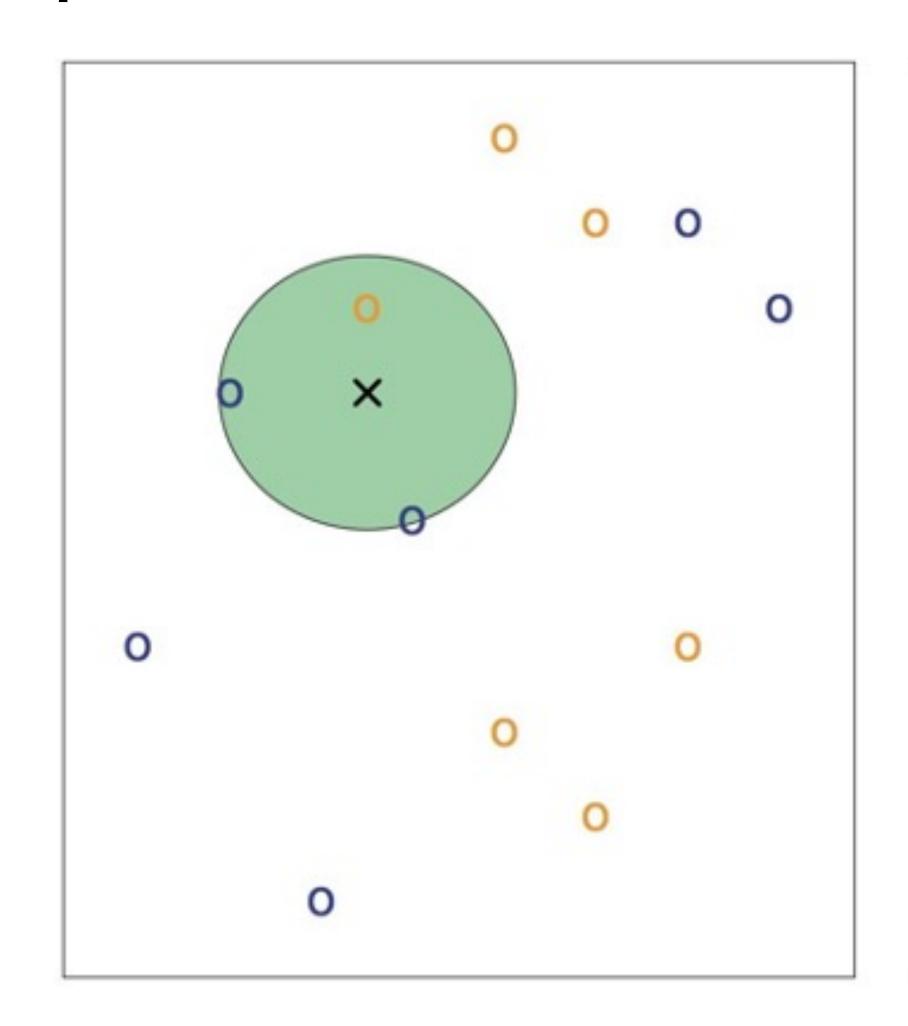
$$\min_{i} \operatorname{dist}(\mathbf{x}^{(\text{new})}, \mathbf{x}_{(i)})$$

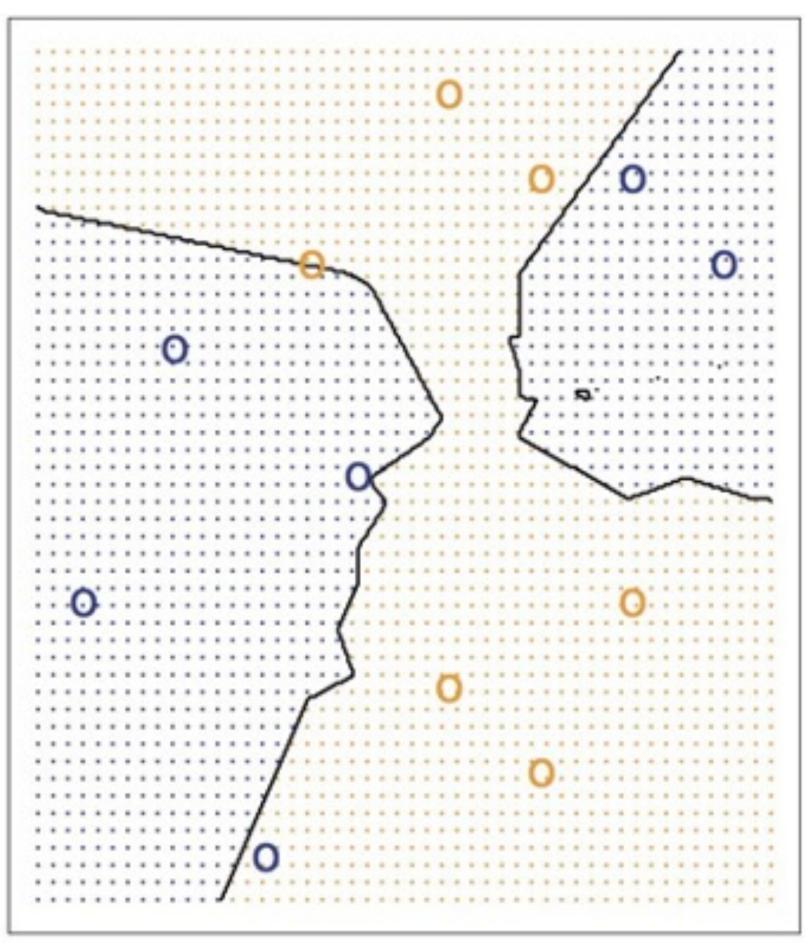
Then, predict with majority vote

(we can also do regression, via weighted averaging)

Properties

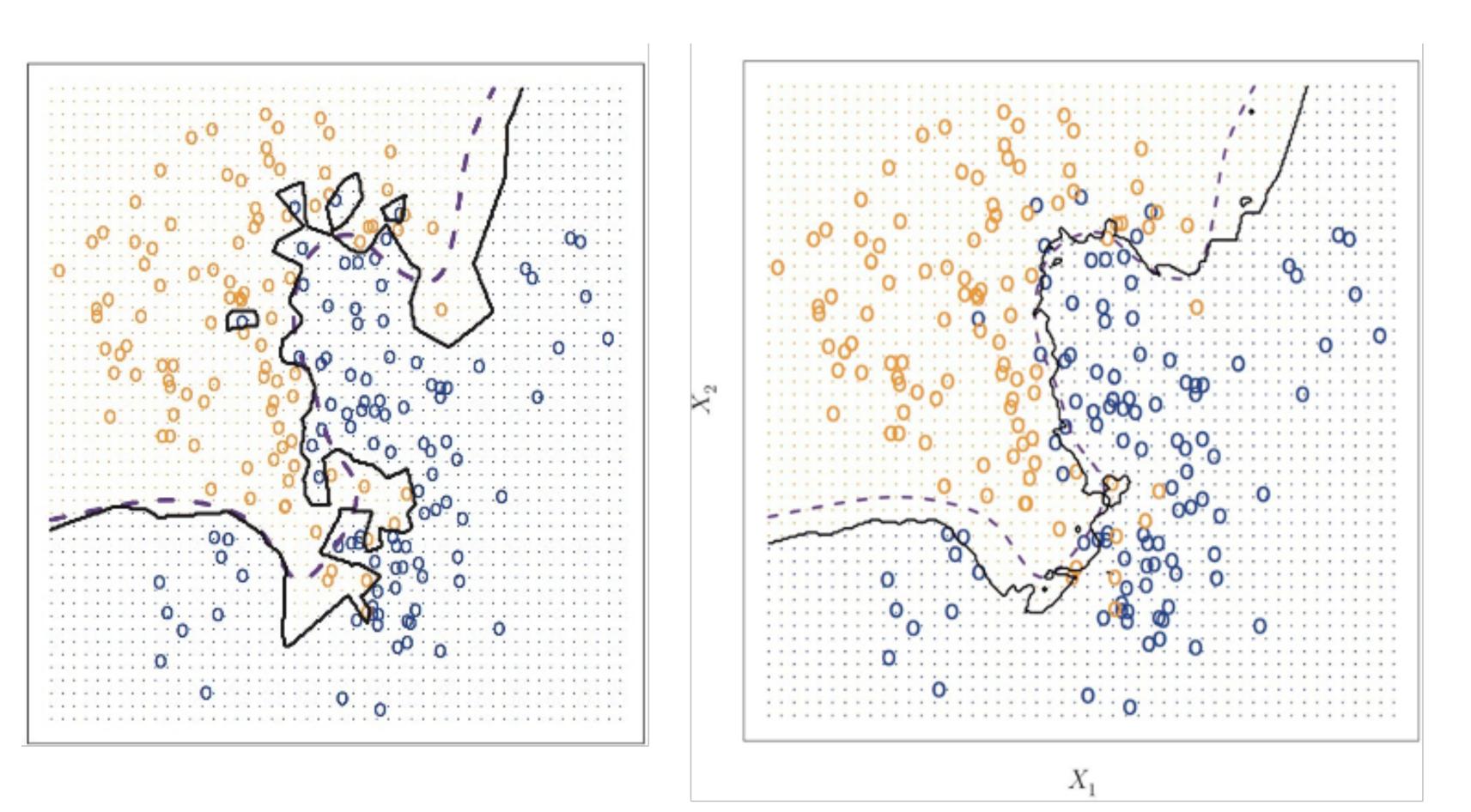
- KNN predictor is nonlinear
 - Example. k = 3

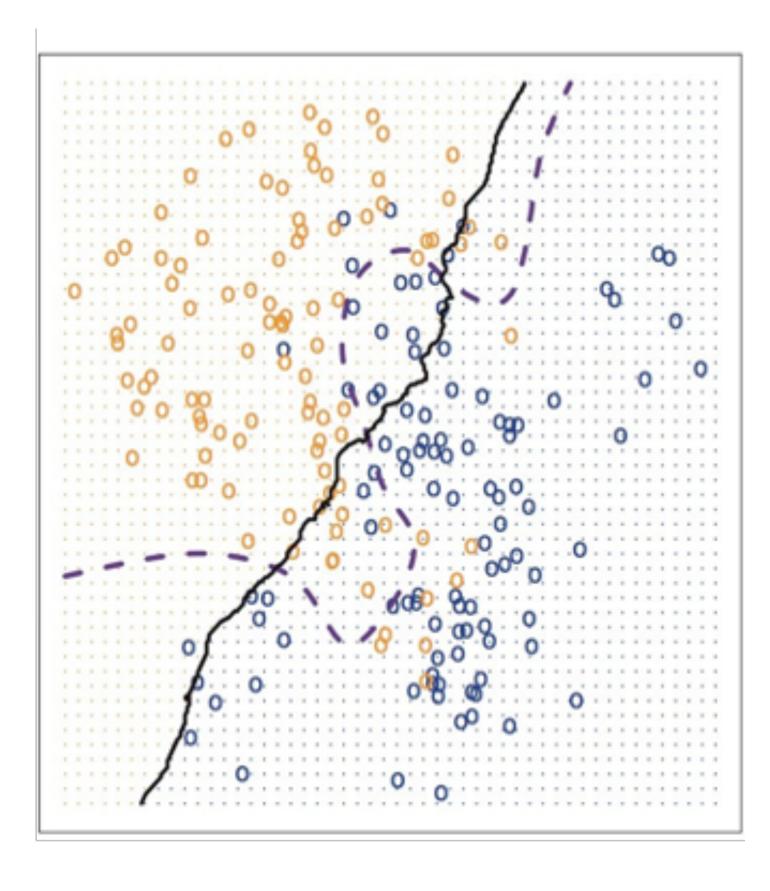




Hyperparameter

- The neighbor set size k has a big impact on the predictor
 - Small k: Flexibility Larger k: Smooth decision boundary





Properties

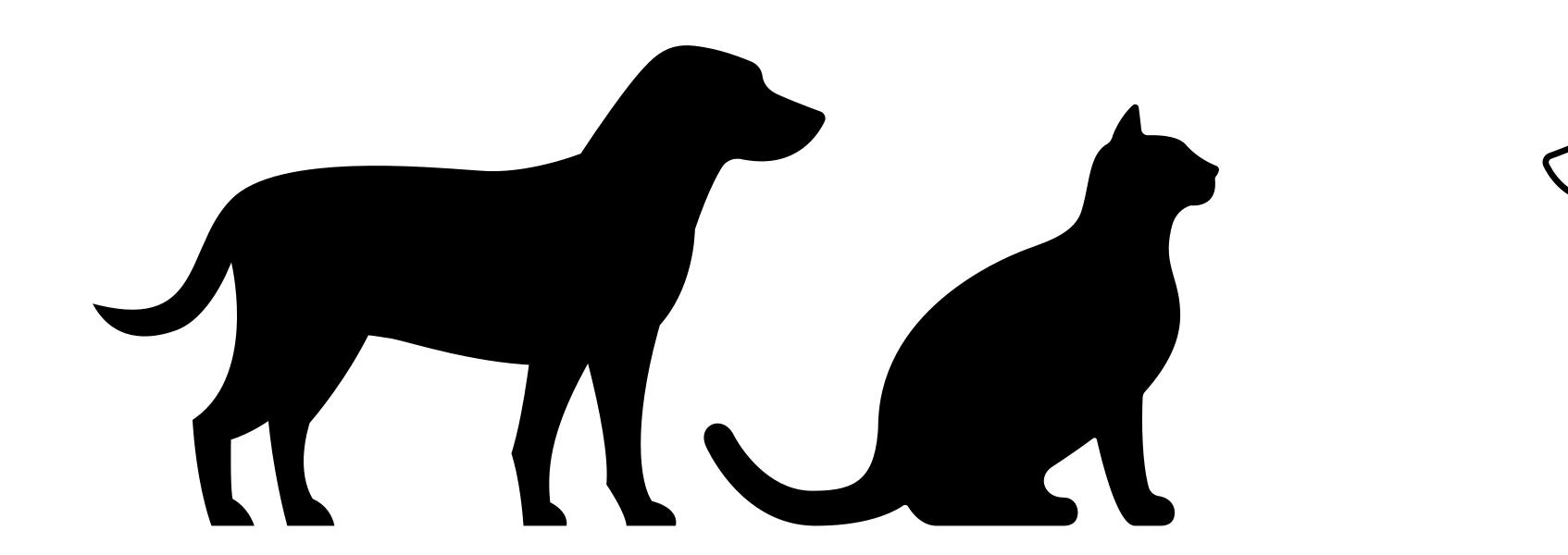
- KNN predictor is nonparametric
 - Nonparametric. Using flexible number of (or infinite) parameters
 - e.g., k-NN, Decision trees
 - Parametric. Parameters are finite-dimensional
 - e.g., linear regression, deep learning

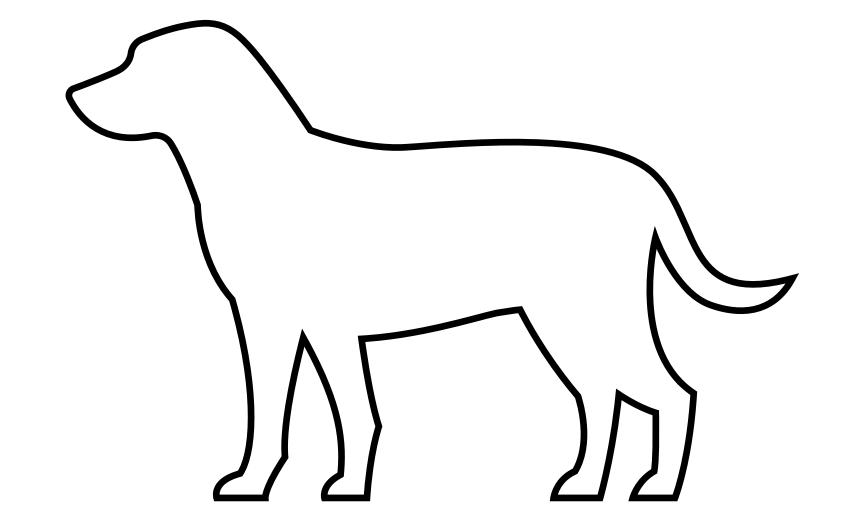
Properties

- Computation. K-NN is difficult to scale up to large datasets
 - Pros. No training cost
 - Cons. High inference cost
 - For testing, we need to conduct n comparisons
 - Fortunately, there are many techniques to relieve this
 - Used in modern LLMs with RAG

Limitation

- The success depends critically on the similarity metric
 - The similarity should represent some semantic knowledge
 - From human
 - From data
 - We'll see later how neural nets can do this





Naive Bayes

Setup

Suppose that we have a labeled dataset

$$\{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$$

- $\mathbf{x}^{(i)} \in \mathbb{R}^d$
- $y^{(i)} \in \{0,1\}$

- The data is assumed to have been independently drawn from ${\cal P}_{XY}$

Setup

• We assume that entries of each ${\bf x}$ are conditionally independent given y

$$p(\mathbf{x} \mid y) = \prod_{i=1}^{d} p(x_i \mid y)$$

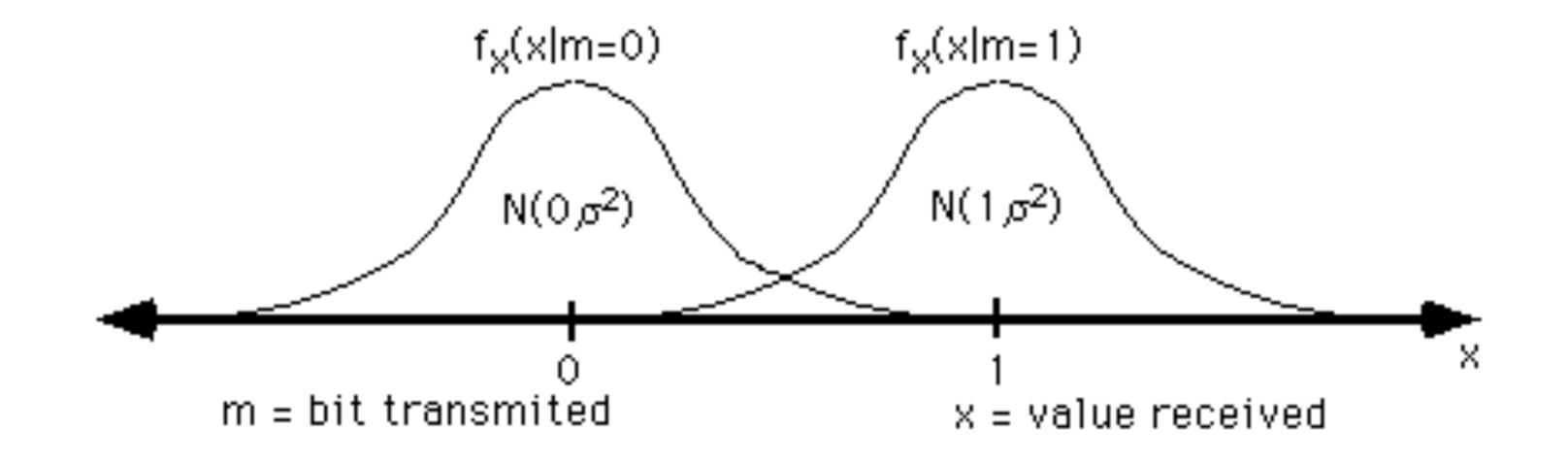
• Can be true for tabular data, but not for images (thus naïve)

• From now on, we let d=1, without loss of generality

Bayesian approach

- Based on some human knowledge, we manually design two things:
 - Likelihood model p(x|y)
 - Prior p(y)

• Example. We may have a good physical model of the channel output (x) given the channel input (y)



- Estimating parameters of p(x | y), p(y) from data
- Example. Gaussian likelihood has four parameters
 - Mean and variance, for each y

$$p(x|y) = \frac{1}{\sigma_y \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma_y^2}\right)$$
$$\theta_l = (\mu_0, \mu_1, \sigma_0, \sigma_1) \in \mathbb{R}^4$$

<u>Example</u>. Bernoulli prior has one parameter

$$\theta_p = p(1) \in [0,1]$$

 To fit the parameters, we maximize the joint probability of the training data given the parameters

$$\max_{\theta} p_{\theta}(\mathbf{x}_1, ..., \mathbf{x}_n, y_1, ..., y_n)$$

$$= \max_{\theta_{\ell}, \theta_p} \prod_{i=1}^{n} p_{\theta_{\ell}}(\mathbf{x}_i | y_i) p_{\theta_p}(y_i)$$

Note. As we have seen last week, this has an ERM interpretation

We can solve two sub-problems separately

$$\min_{\theta_{\ell}} \sum_{i=1}^{n} \left(-\log p_{\theta_{\ell}}(\mathbf{x}_{i}|y_{i}) \right)$$

$$\min_{\theta_{p}} \sum_{i=1}^{n} \left(-\log p_{\theta_{p}}(y_{i}) \right)$$

 The solution to the upper optimization problem is what we call the maximum-likelihood estimate (MLE)

Example. Consider the subproblem for Gaussian likelihood:

$$\min_{\theta_{\ell}} \sum_{i=1}^{n} \left(-\log p_{\theta_{\ell}}(\mathbf{x}_{i} | y_{i}) \right)$$

$$\Leftrightarrow \min_{\theta_{\ell}} \left(\sum_{i=1}^{n} \frac{\|\mathbf{x}_{i} - \mu_{(y_{i})}\|^{2}}{2\sigma_{(y_{i})}^{2}} + \log(\sigma_{(y_{i})}) \right)$$

 Solving this optimization will give class-wise sample mean and classwise sample variance (check!)

<u>Example</u>. Consider the subproblem for Bernoulli prior

$$\min_{\theta_p} \sum_{i=1}^{n} \left(-\log p_{\theta_p}(y_i) \right)$$

$$\Leftrightarrow \min_{\theta_p} \left(\sum_{i:y_i=1} -\log(\theta_p) + \sum_{i:y_i=0} -\log(1-\theta_p) \right)$$

Solving this optimization will give the sample frequency

$$\theta_p = \frac{\#1\text{s in dataset}}{n}$$

Inference

We conduct MAP estimation

$$f(\mathbf{x}) = \arg \max_{y} p(y|\mathbf{x})$$

$$= \arg \max_{y} p(y)p(\mathbf{x}|y)$$

$$= \arg \max_{y} \left(p(y) \prod_{i=1}^{d} p(x_i|y) \right)$$

Properties

- Computation. Quite simple for popular choice of $p(\mathbf{x} \mid y)$ and p(y)
 - Training. Already known, explicit formula
 - Inference. Simply compute $p(y | \mathbf{x})$

- However, these can be very messy for atypical models & priors
 - or if there is any dependency structure

Limitation

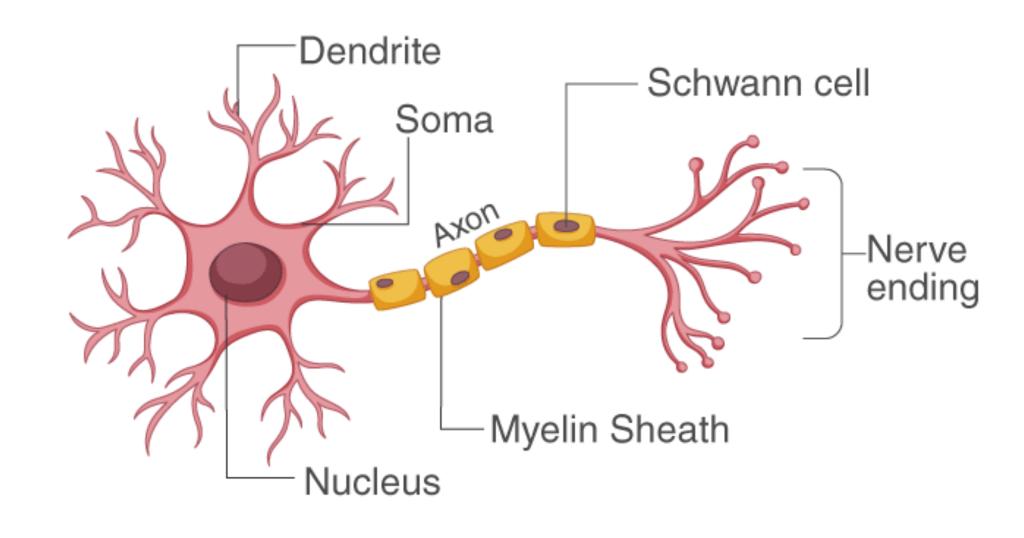
- Requires a well-designed prior and likelihood
 - We expect very complicated $p(\mathbf{x} \mid y)$ for, e.g., visual data
 - We want an automated mechanism to design these as well

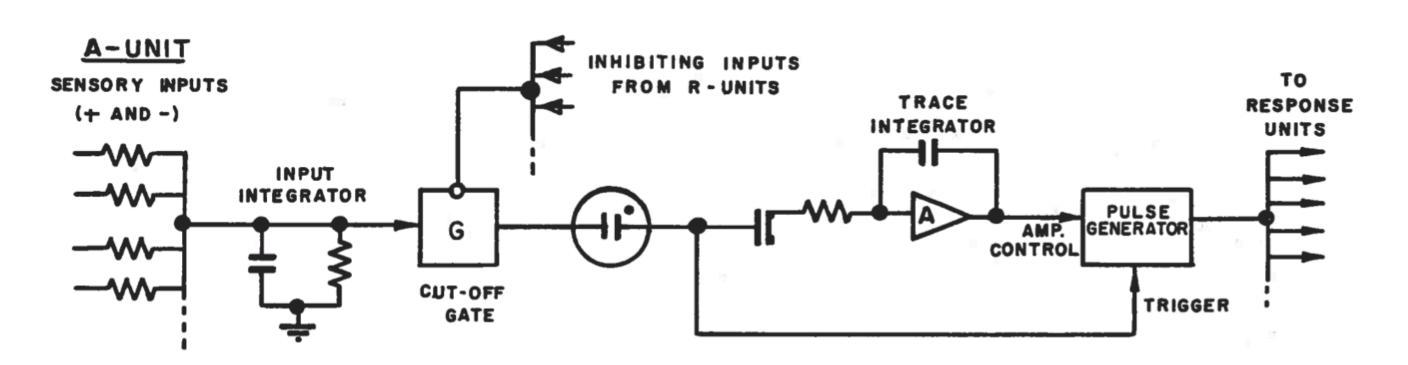
Perceptrons

Historical bits

The first "neural network" designed by Rosenblatt (1958)

STRUCTURE OF NEURON





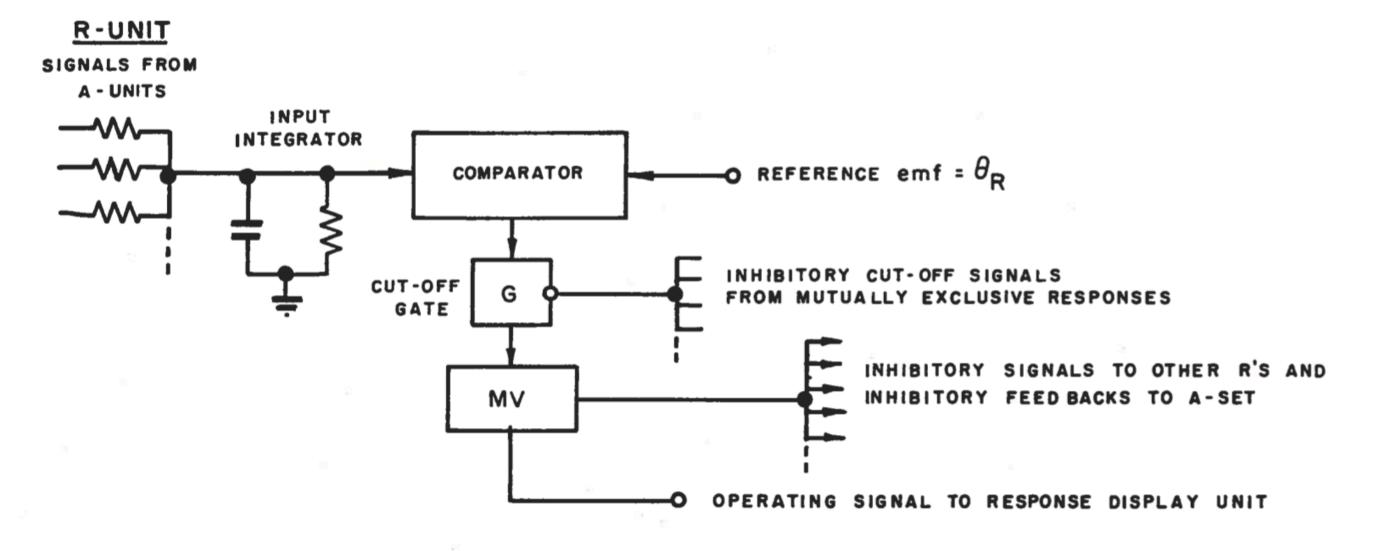
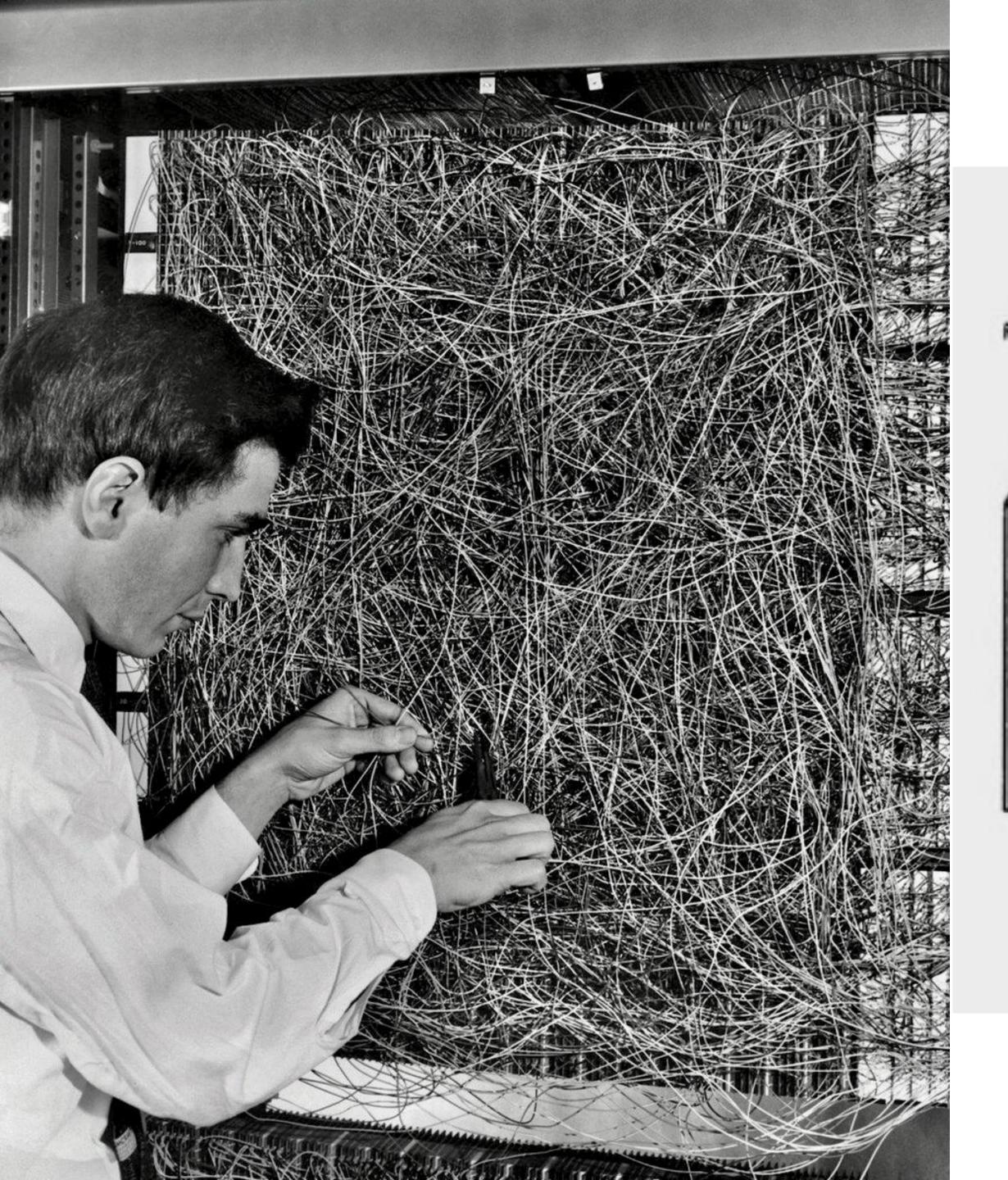
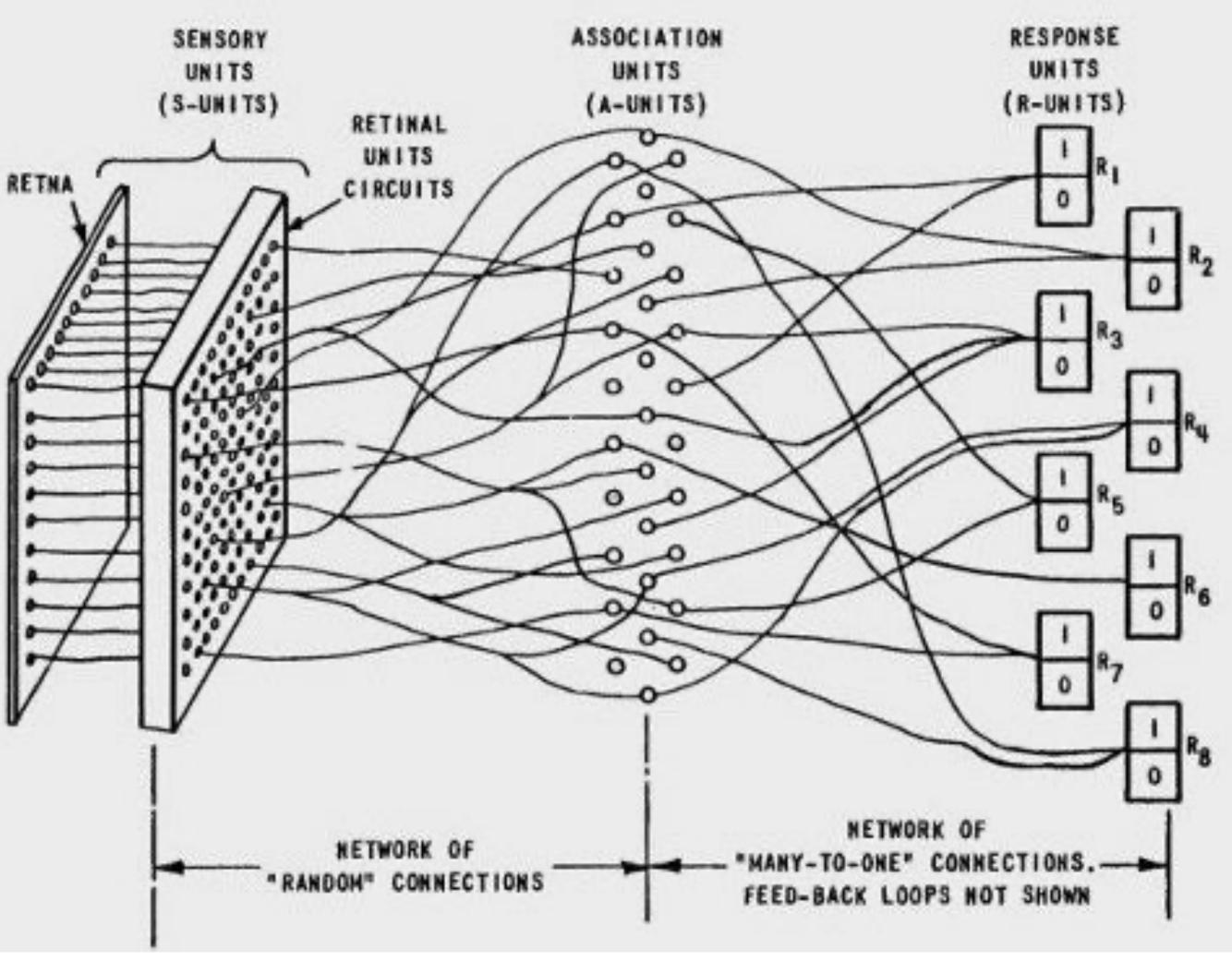


FIGURE 5
DESIGN OF TYPICAL UNITS



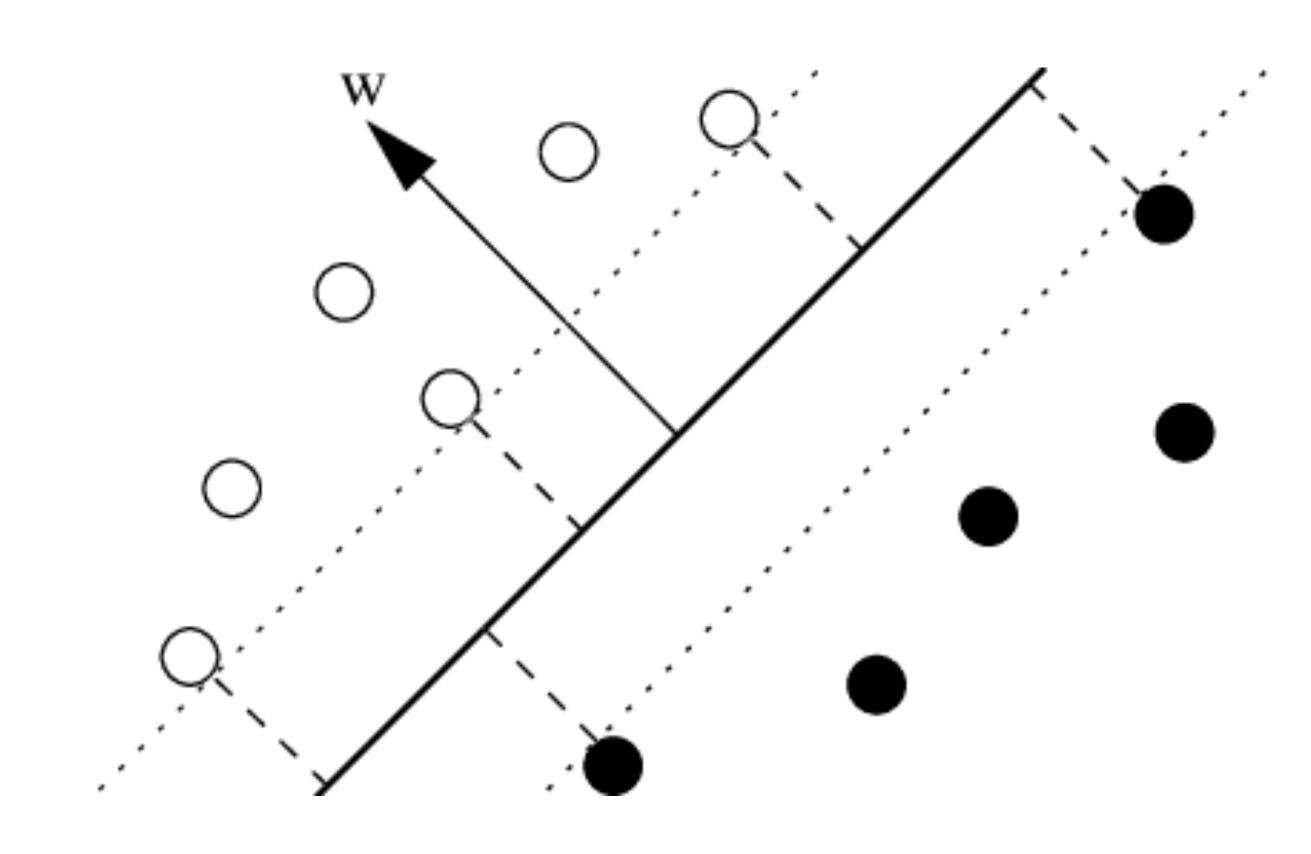


Linear model

- Perceptron is a method to train a linear classifier
 - Linear classifier is about drawing a linear decision boundary

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$$

- This divides two regions:
 - $\bullet \{\mathbf{x} \mid \mathbf{w}^\mathsf{T} \mathbf{x} + b > 0\}$
 - $\bullet \{\mathbf{x} \mid \mathbf{w}^\mathsf{T} \mathbf{x} + b < 0\}$



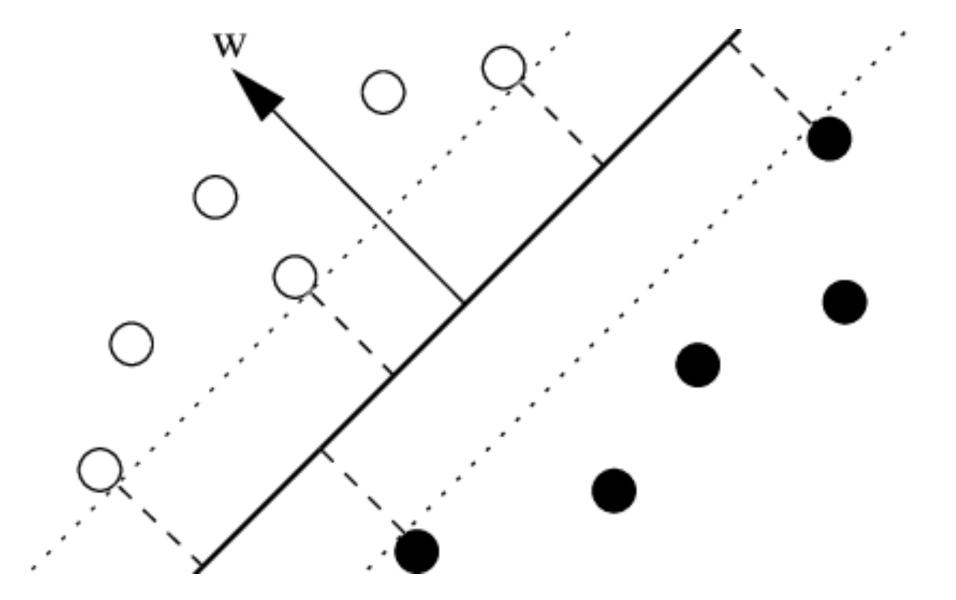
Inference

For inference, we use the sign of linear models

$$f_{\theta}(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^{\mathsf{T}}\mathbf{x} + b > 0\}$$

Again, by stacking, we can write more neatly as

$$f_{\theta}(\mathbf{x}) = \mathbf{1}\{\theta^{\mathsf{T}}\tilde{\mathbf{x}} > 0\}$$



The most standard way to find a linear classifier would be to solve:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ f_{\theta}(\mathbf{x}_i) \neq y_i \}$$

Or more neatly, we can write as:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(f_{\theta}(\mathbf{x}_i) (1 - y_i) + (1 - f_{\theta}(\mathbf{x}_i)) y_i \right)$$

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(f_{\theta}(\mathbf{x}_i) (1 - y_i) + (1 - f_{\theta}(\mathbf{x}_i)) y_i \right)$$

- Problem. Difficult to optimize
 - Explicit solution not available
 - Gradient descent difficult to evaluate gradient
 - $f_{ heta}(\,\cdot\,)$ contains $\mathbf{1}\{\,\cdot\,\}$ gradient is zero almost everywhere

Rosenblatt's solution.

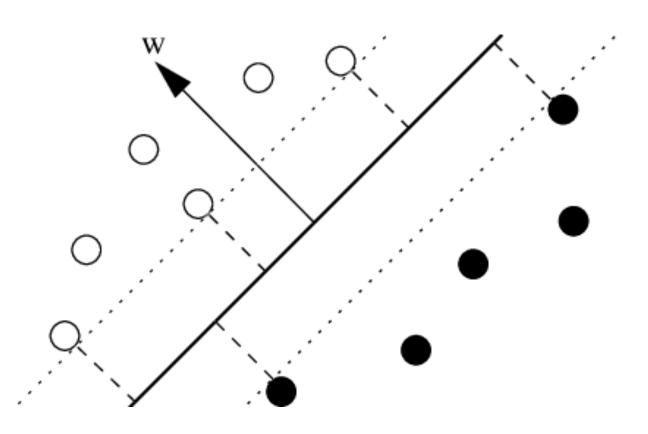
Instead of the loss

$$\mathcal{E}(y, f_{\theta}(\mathbf{x})) = f_{\theta}(\mathbf{x})(1 - y) + (1 - f_{\theta}(\mathbf{x}))y$$

use this loss instead:

$$\mathcal{E}(\mathbf{y}, f_{\theta}(\mathbf{x})) = (f_{\theta}(\mathbf{x}) - \mathbf{y}) \cdot \theta^{\mathsf{T}} \tilde{\mathbf{x}}$$

- When wrong, the loss is: $|\theta^{\mathsf{T}}\tilde{\mathbf{x}}|$
- When correct, the loss is: 0



• Intuition. We penalize the "confidence" of misprediction

$$\mathcal{E}(\mathbf{y}, f_{\theta}(\mathbf{x})) = (f_{\theta}(\mathbf{x}) - \mathbf{y}) \cdot \theta^{\mathsf{T}} \tilde{\mathbf{x}}$$

With this new loss, suddenly the gradient is non-zero

$$\nabla_{\theta} \mathcal{E}(\mathbf{y}, f_{\theta}(\mathbf{x})) = (f_{\theta}(\mathbf{x}) - \mathbf{y})\tilde{\mathbf{x}}$$

 The loss like this — not a true loss but helps optimization — is called surrogate loss

Optimization

- The original perceptron paper assumes that:
 - the data comes one-by-one
 - we cannot re-use the past data

Such scenario is called online learning

Optimization

Given a sample, the gradient is:

$$\nabla_{\theta} \mathcal{E}(y, f_{\theta}(\mathbf{x})) = (f_{\theta}(\mathbf{x}) - y)\tilde{\mathbf{x}}$$

• If wrong for a sample with y = 1:

$$\theta^{(i+1)} = \theta^{(i)} + \eta \cdot \tilde{\mathbf{x}}$$

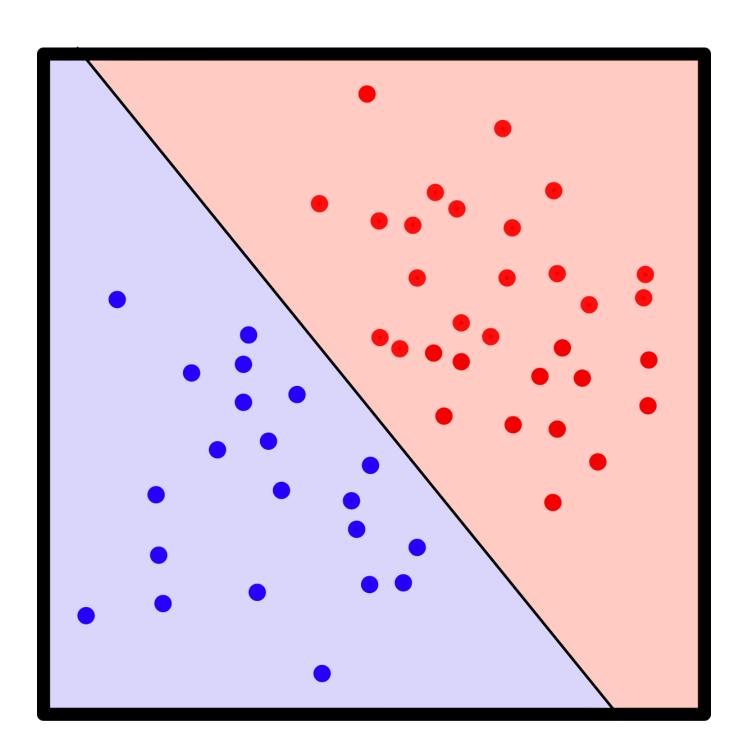
• If wrong for a sample with y = 0:

$$\theta^{(i+1)} = \theta^{(i)} - \eta \cdot \tilde{\mathbf{x}}$$

• If correct, no change

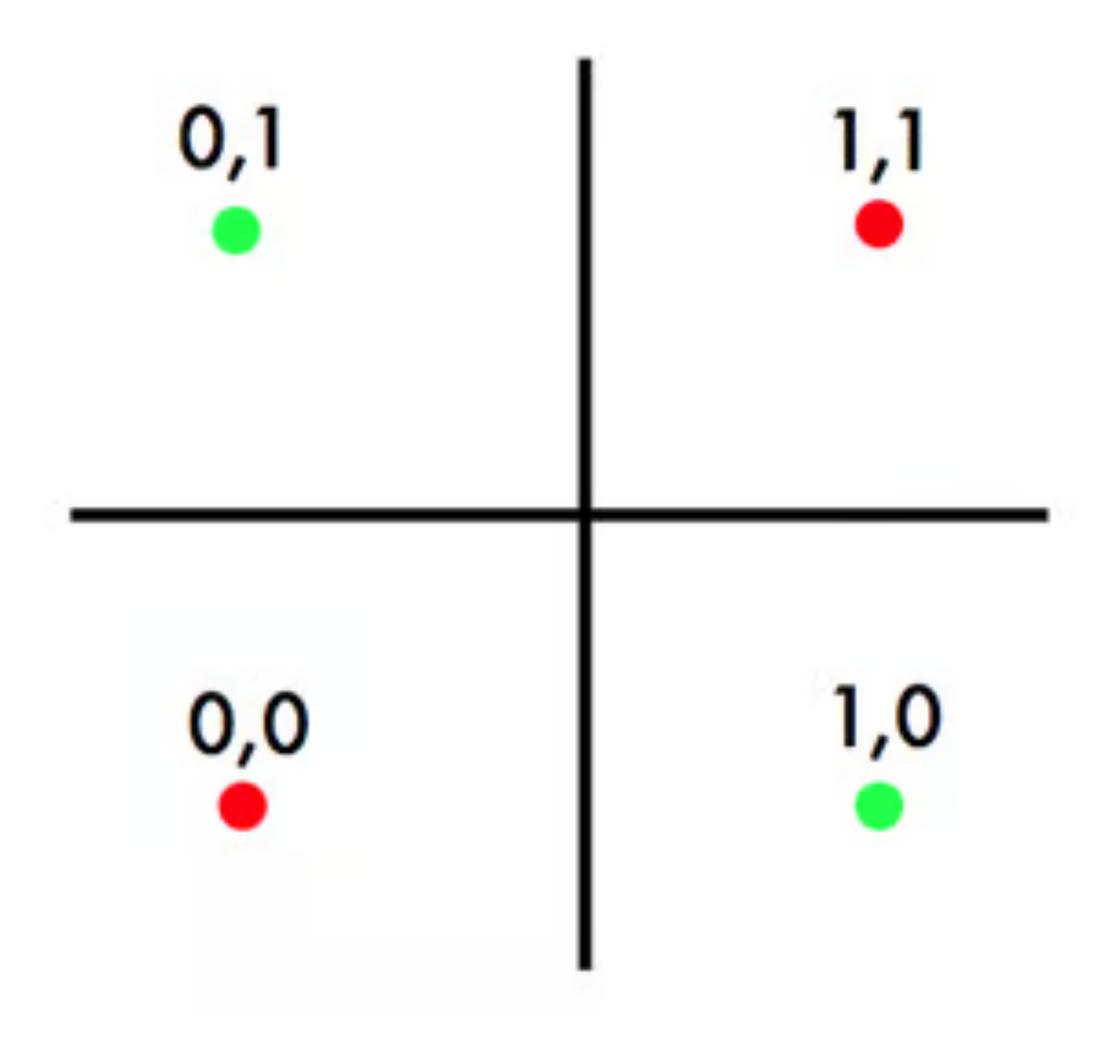
Properties

- Computation. Quite easy
 - Training. Simply add or subtract data X
 - Also, provably converges whenever the data is separable
 - Inference. Simply do a dot product



Limitations

Cannot achieve low training loss on not linearly separable data



Logistic Regression

Logistic Regression

Another popular version of the linear classifier

$$f_{\theta}(\mathbf{x}) = \mathbf{1}\{\theta^{\mathsf{T}}\tilde{\mathbf{x}} \geq 0\}$$

• Unlike Rosenblatt, logistic regression interprets $heta^{ op} ilde{\mathbf{x}}$ as a log-likelihood ratio of the model's internal probability estimate

$$\log \left(\frac{p(y = 1 \mid \mathbf{x})}{p(y = 0 \mid \mathbf{x})} \right) \approx \theta^{\mathsf{T}} \tilde{\mathbf{x}}$$

• Brainteaser. Why not interpret as $p(y = 1 \mid \mathbf{x})$?

Logistic Regression

$$\log \left(\frac{p(y = 1 | \mathbf{x})}{p(y = 0 | \mathbf{x})} \right) \approx \theta^{\mathsf{T}} \tilde{\mathbf{x}}$$

In other words, we are modeling the posterior distribution as

$$p(y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-\theta^{\mathsf{T}} \tilde{\mathbf{x}})}$$

• The function $\sigma(t) = 1/1 + \exp(-t)$ is the logistic function (a.k.a. sigmoid)

0.8 0.6 0.4 0.2

Given the data, maximize the log-likelihood

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p(y_i \mid \mathbf{x}_i)$$

Equivalently, minimize the NLL loss:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{1}{p(y_i \mid \mathbf{x}_i)} \right)$$

Equivalently again, we are solving:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i))$$

where

• $f_{\theta}(\cdot)$ is the sigmoid of the prediction

$$f_{\theta}(\mathbf{x}) = \sigma(\theta^{\mathsf{T}}\tilde{\mathbf{x}})$$

• $\ell(\cdot, \cdot)$ is the cross-entropy

$$\mathcal{E}(y,t) = \text{CE}(\mathbf{1}_y, [t,1-t]) = \log(t)^{-y} + \log(1-t)^{y-1}$$

More tediously, this can be written as

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (-y_i) \log(\sigma(\theta^{\mathsf{T}} \tilde{\mathbf{x}}_i)) + (y_i - 1) \log(1 - \sigma(\theta^{\mathsf{T}} \tilde{\mathbf{x}}_i))$$

No analytic solution, but is convex and can use GD

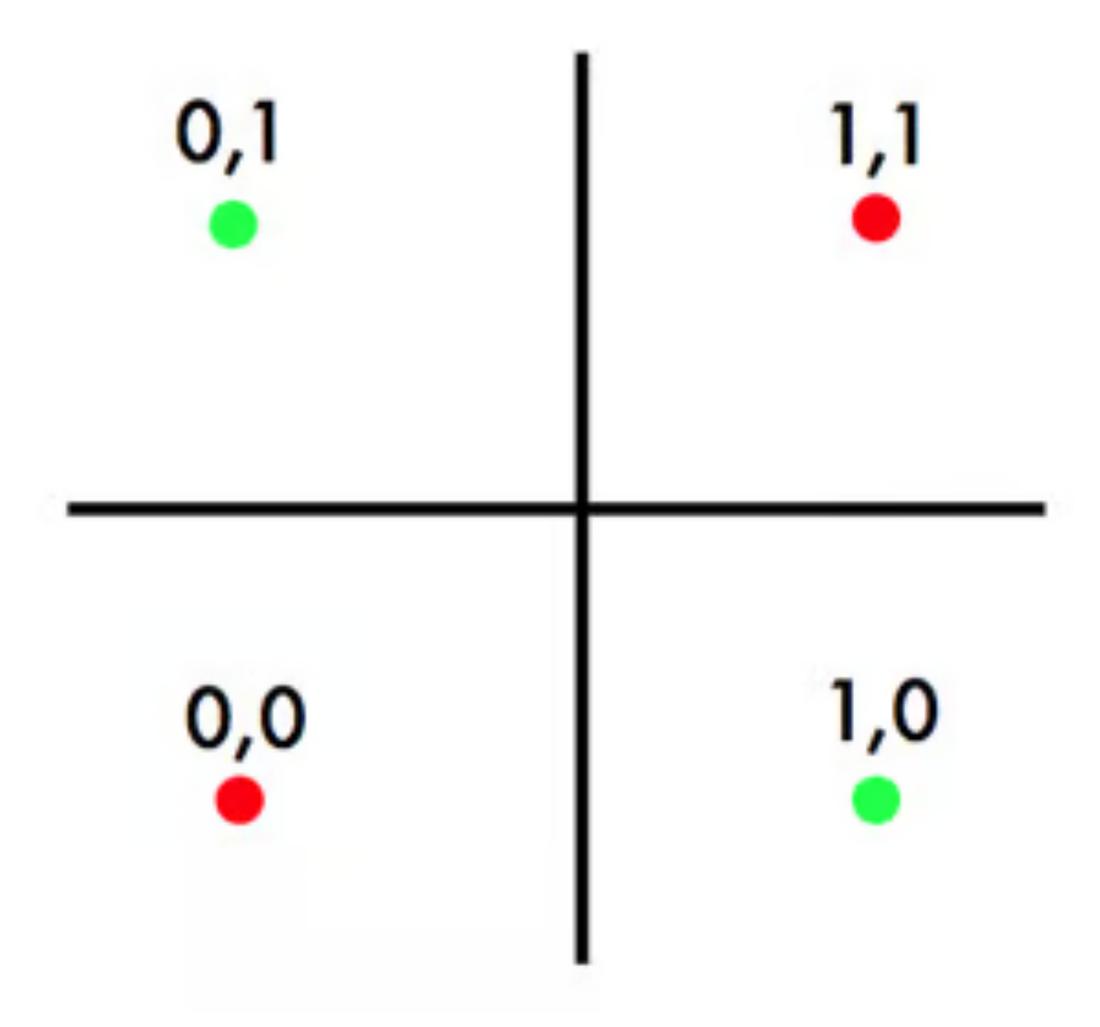
$$\theta^{\text{(new)}} = \theta + \eta \cdot \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\theta^{\mathsf{T}} \tilde{\mathbf{x}}_i)) \tilde{\mathbf{x}}_i$$

Properties

- Computation. Relatively easy
 - Training. Requires GD, but is convex
 - Inference. Easy Dot product and apply threshold

Limitation

Again, cannot fit not-linearly-separable data



Next class

Sophisticated versions of linear classifiers

</le>