Simple Classifiers

Today

» Various classification algorithms
* Nearest neighbors
* Nalve Bayes
* Linear classifiers
* Perceptron
* Logistic regression

Goal

* Modeling the relationship between

e continuous input X & R4 (or discrete)

 discreteoutput Y € {1,..., K}

 called “class”

Inputs

Image
Classification
Model

Output

Egyptian cat

Tabby cat

Tiger cat

0.514

0.193

0.068

Binary Classification

» For simplicity, we mostly consider the case of binary classification

- Y e {0,1}

Binary Classification

* |n binary classification, any classifier can be viewed as selecting a
subset of the input space

(0 - xeR
=y e

» Decision regions £, £ are separated using some decision boundary

Decision

r Boundary j
l .

/

O y
OO K

O /

/

Classification vs. Regression

* Fun fact. Technically, we can use linear regression for classification

 Simply view 0/1 class labels as outputs to predict

(Yes) 1

..'
v
A
s
<
‘I
R S
e
l’:-.
e
’.-
..y
g
. N
&
A
'
»
S
-
~)
s
-
=5
)
v
-
.
v
o

Malignant ?

(No)O
Tumor Size

Classification vs. Regression

* However. This is not a good idea...
* Very sensitive to “outliers,” e.qg., extremely large yet benign tumor
* Thus we want better tools

(Yes) 1 X 3¢

Malignant ?

(No)O

Tumor Size

Nearest neighbors

Historical bits
 Can betraced back to a book in 1021
- Ll o< (“the book of optics”) by Ibn al-Haytham

.
e

@ PIEE 1 € AE
THESAVRYVS

s Fe e DN |

ARABIS
libr (cptem,nuncprimﬁm
editl.

EIVSDEM liber DE CREPVSCVLIS
& Nubinm afcenfionibus.

ITEBEM

vldnpE Ll ONILS
THVRINGOPOLONI

Omnesinftaurati figuris illuftrati & audti;adietis etiam in
Alhazenum commentarijs,

: A
FEDERICO RISNERO:

]

Cum priuilegio Cafareo ¢ Regis Gallie ad fexenniums

BUAS T IC LS EVAE,
PER EPISCOPIOS. m D LXXIK

B WM*QO

“a

Historical bits

* Vlewed human visual recognition as a nearest neighbor

“Recognition is the perception of similarity between two forms—
l.e., of the form
(1) sight perceives at the moment of recognition,
(2) and the form of that visible object, or its like,
that it has perceived one or more times before.”

measures similarity

Setup
* We have a labeled dataset
D = {(x,, yi)}?zl
+ Features.x. € X
+ Label. y. € {1,...,K}

Training

* A cool aspect of KNN is that it is training-free

* All we need to do is to store data in some database,
in a form that we can retrieve them easily

Inference

. Suppose that we are given some test sample x"*W)

 Pick kK samples with the highest similarity:
* Equivalently, find the training samples with bottom-k distance:

min dist(x"V), X))
j

* Then, predict with majority vote

Properties

* KNN predictor is nonlinear

« Example. kK = 3

Hyperparameter

The neighbor set size k has a big impact on the predictor

» Small k: Flexibility Larger k: Smooth decision boundary

Properties

* KNN predictor is nonparametric
* Nonparametric. Using flexible number of (or infinite) parameters
* e.g.,, k-NN, Decision trees
» Parametric. Parameters are finite-dimensional
* e.g., linear regression, deep learning

Properties

* Computation. K-NN is difficult to scale up to large datasets
* Pros. No training cost
* Cons. High inference cost

e For testing, we need to conduct . comparisons

* Fortunately, there are many techniques to relieve this
» Used in modern LLMs with RAG

Limitation
* The success depends critically on the similarity metric
* The similarity should represent some semantic knowledge
* From human

* From data
o We'll see later how neural nets can do this

Naive Bayes

Setup
» Suppose that we have a labeled dataset
((x, y)L,
. xV e R
o y(i) e {0,1)

 The data is assumed to have been independently drawn from Py

Setup

» We assume that entries of each X are conditionally independent given y

d
px|y) = | |p&1y)
=1

 Can be true for tabular data, but not for images (thus naive)

» From now on, we let d = 1, without loss of generality

Bayesian approach

» Based on some human knowledge, we manually design two things:

» Likelihood model p(x]|y)
e Prior p(y)

« Example. We may have a good physical model of the channel output (x)
given the channel input (y)

fulxlm=0) fulxlm=1)

N(O 54 N(1 o2)

0 1 -
m = bit transmited ¥ = value received

Training

» Estimating parameters of p(x|y), p(v) from data

» Example. Gaussian likelihood has four parameters

* Mean and variance, for each y

1 (x =)7
plx|y) = eXp\ ———=5 —
o, 2T 2‘7y

0, = (g, 41, 0y, 01) E R*

» Example. Bernoulli prior has one parameter

0,=p(l) €]0,1]

Training

» To fit the parameters, we maximize the joint probability of the
training data given the parameters

Max Py(Xy, - Xy Vs - Vo)

= max H ng(Xi | yi)Pep(yi)
0efp i

* Note. As we have seen last week, this has an ERM interpretation

Training

* We can solve two sub-problems separately
n

Z (_ log py (X, |)’i))

=1
n

néin Z (_ log Pep()’i))

Pi=1

min
Hf

* The solution to the upper optimization problem is what we call the
maximum-likelihood estimate (MLE)

Training

» Example. Consider the subproblem for Gaussian likelihood:
n

Z (_ log py (X, |)’i))

=1

L |1X; — py I
< min (2 07 + log(o(yi)))

O =1 26(2%')

min
Hf

» Solving this optimization will give class-wise sample mean and class-
wise sample variance (check!)

Training

» Example. Consider the subproblem for Bernoulli prior
n

min)’ (—1og g, ()

Pi=1

& min (Y, —log(®,) + Y, —log(l - 9p>)

P iy=1 i:y;=0

» Solving this optimization will give the sample frequency
#1s 1n dataset

£ n

Inference

« We conduct MAP estimation

J(x) = argmax p(y|x)
Y

= argmax p(y)p(x|y)
Y

d
= arg max (P(Y)HP(JQ | Y))
i=1

Y

Properties

 Computation. Quite simple for popular choice of p(x|y) and p(y)
» Training. Already known, explicit formula

» Inference. Simply compute p(y | X)

* However, these can be very messy for atypical models & priors
» orif there is any dependency structure

Limitation

* Requires a well-designed prior and likelihood

+ We expect very complicated p(x | y) for, e.g., visual data
* We want an automated mechanism to design these as well

Perceptrons

Historical bits
* The first “neural network” designed by Rosenblatt (1958)

A-UNIT " INMIBITING INPUTS
SENSORY INPUTS " FROM R -UNITS TRACE TO
(+ AND -) : RESPONSE

INTEGRATOR UNITS

PULSE
GENERATOR

TRIGGER

STRUCTURE OF NEURON NPUT i
INTEGRATOR H % '
Dendrite l

AMP.

CUT-OFF
Schwann cell . GATE

—Nerve R-UNIT
" SIGNALS FROM
endlng A - UNITS

INPUT

INTEGRATOR |
COMPARATOR I——-g REFERENCE emf = BR

CUT-OFF INHIBITORY CUT-OFF SIGNALS
FROM MUTUALLY EXCLUSIVE RESPONSES
!
t

- GATE
| INHIBITORY SIGNALS TO OTHER R'S AND
MV INHIBITORY FEED BACKS TO A-SET

— Mpyelin Sheath

— Nucleus

1
O OPERATING SIGNAL TO RESPONSE DISPLAY UNIT

FIGURE S
DESIGN OF TYPICAL UNITS

11
y

d

.V
‘AN,

L33)

SENSORY
UNITS
(3-UNITS)
RETINAL
PSS CETRm R (11
CIRCUITS

RETWORK OF
"RANDOM®™ CONNECTIONS

ASSOCIATION
UNITS
(A-UNITS)

RESPONSE
UNITS
(R-UNITS)

—.i-‘-

x
~

E s
o

NETWORK OF
*MANY-TO-ONE" CONMECTIONS.
FEED-BACK LOOPS NOT SHOWN

$ =

N

£

o

Linear model

* Perceptron is a method to train a linear classifier
* Linear classifier is about drawing a linear decision boundary

wx+b=0
* This divides two regions:
. {x | wW'x+b>0)
. (x| wW'x+b<0)}

Inference

* Forinference, we use the sign of linear models

f,(x) =1{w'x + b > 0}

» Again, by stacking, we can write more neatly as

f,(x) =1{0'x > 0}

Training

» The most standard way to find a linear classifier would be to solve:

1Y
min — Z} 1{fy(x,) # ¥;)

* Or more neatly, we can write as:

mgin%i:i1 (fg(Xi)(l —-y) + _fH(Xi))yi)

Training

1
min — (fg(xl)(l — yl) + (1 _fH(Xi))yi)

0 n
=1

* Problem. Difficult to optimize
» EXxplicit solution — not available
» Gradient descent — difficult to evaluate gradient

* fo(-)contains 1{ - } — gradient is zero almost everywhere

Training

Rosenblatt's solution.
* Instead of the loss

(Y, J9(X)) = fo(X)(1 —y) + (1 = fo(X))y

use this loss instead:

E(n, fy(X) = (fy(x) —y) - 0'X

. When wrong, the loss is: |60 'X|

e When correct, the lossis: 0

* Intuition. We penalize the “confidence” of misprediction

Training
£, fy(X) = (fy(x) —y) - 0'X

» With this new loss, suddenly the gradient is non-zero

Vol (3, fo(X)) = (fo(X) — y)X

* The loss like this — not a true loss but helps optimization — is called
surrogate loss

Optimization

* The original perceptron paper assumes that:
* the data comes one-by-one
* we cannot re-use the past data

» Such scenario is called online learning

Optimization
* Given a sample, the gradient is:

Vol (3, fo(X)) = (Jo(X) — ¥)X

» |f wrong for a sample withy = 1:

9D = 90 4 p .
» |f wrong for a sample with y = 0:

gD = 9 _ .
* |f correct, no change

Properties

* Computation. Quite easy

e Training. Simply add or subtract data X

» Also, provably converges whenever the data is separable
» |Inference. Simply do a dot product

Limitations

» (Cannot achieve low training loss on not linearly separable data

Logistic Regression

Logistic Regression

* Another popular version of the linear classifier

fo(x) =1{0'x > 0}

e Unlike Rosenblatt, logistic regression interprets 0'xX as a log-likelihood
ratio of the model’s internal probability estimate

log (p(y=_1\x)) ~ 0'x
p(y = 0]x)

» Brainteaser. Why not interpret as p(y = 1 | Xx)?

Logistic Regression

=1
log (—p(y ‘X)) ~ 0'x

p(y = 0[x)
* |n other words, we are modeling the posterior distribution as

ply =1|x) =

1 + exp(—60'X)
 The function 6(f) = 1/1 4+ exp(—1) is the logistic function

1
0.8
0.6
0.4

Training

* Given the data, maximize the Iog -likelihood

max — 2 log p(y; | X;)

0 n

» Equivalently, minimize the NLL loss:

Training

Equivalently again, we are solving:
1

min— Y £(y,fy(X,)
oD

where

* fo(-) is the sigmoid of the prediction
Jo(X) = U(HTX)

e £(-,-)isthecross-entropy

Lﬂ(y, t) — CE(ly, [t,l — t]) — IOg(t)_Y + lOg(l _ t)y—l

Training

* More tediously, this can be written as

min— ' (~3)log(c(07%)) + (y; — Dlog(1 - o(07%,)
0 n =1

* No analytic solution, but is convex and can use GD

1 n
0" = 0+1-—), (= o0TR)%
& =1

Properties

* Computation. Relatively easy
* Training. Requires GD, but is convex
» |nference. Easy — Dot product and apply threshold

Limitation

» Again, cannot fit not-linearly-separable data

Next class

* Sophisticated versions of linear classifiers

</lecture 4>

