
Simple Classifiers



Today
• Various classification algorithms 

• Nearest neighbors 
• Naïve Bayes 
• Linear classifiers 

• Perceptron 
• Logistic regression



Goal
• Modeling the relationship between 

• continuous input     (or discrete) 

• discrete output  
• called “class”

X ∈ ℝd

Y ∈ {1,…, K}



Binary Classification
• For simplicity, we mostly consider the case of binary classification 

• Y ∈ {0,1}



Binary Classification
• In binary classification, any classifier can be viewed as selecting a 

subset of the input space 

 

• Decision regions  are separated using some decision boundary

f(x) = {𝟢 ⋯ x ∈ ℛ0

𝟣 ⋯ x ∈ ℛ1
ℛ0, ℛ1



Classification vs. Regression
• Fun fact. Technically, we can use linear regression for classification 

• Simply view  class labels as outputs to predict0/1



Classification vs. Regression
• However. This is not a good idea… 

• Very sensitive to “outliers,” e.g., extremely large yet benign tumor 
• Thus we want better tools



Nearest neighbors



Historical bits
• Can be traced back to a book in 1021 

• by Ibn al-Haytham (”the book of optics“)  كتاب المناظر



Historical bits
• VIewed human visual recognition as a nearest neighbor 

• “Recognition is the perception of similarity between two forms—  
i.e., of the form 
  (1)  sight perceives at the moment of recognition, 
  (2)  and the form of that visible object, or its like, 
         that it has perceived one or more times before.”

measures similarity



Setup
• We have a labeled dataset 

 

• Features.                                   (continuous, discrete, mixed, …) 

• Label.       

D = {(xi, yi)}n
i=1

xi ∈ 𝒳
yi ∈ {1,…, K}



Training
• A cool aspect of KNN is that it is training-free 

• All we need to do is to store data in some database, 
in a form that we can retrieve them easily



Inference
• Suppose that we are given some test sample  

• Pick  samples with the highest similarity: 
• Equivalently, find the training samples with bottom-k distance: 

 

• Then, predict with majority vote 
(we can also do regression, via weighted averaging)

x(new)

k

min
i

dist(x(new), x(i))



Properties
• KNN predictor is nonlinear 

• Example. k = 3



Hyperparameter
• The neighbor set size  has a big impact on the predictor 

• Small : Flexibility      Larger : Smooth decision boundary

k
k k



Properties
• KNN predictor is nonparametric 

• Nonparametric. Using flexible number of (or infinite) parameters 
• e.g., k-NN, Decision trees 

• Parametric. Parameters are finite-dimensional 
• e.g., linear regression, deep learning



Properties
• Computation. K-NN is difficult to scale up to large datasets 

• Pros. No training cost 
• Cons. High inference cost 

• For testing, we need to conduct  comparisons 
• Fortunately, there are many techniques to relieve this 

• Used in modern LLMs with RAG

n



Limitation
• The success depends critically on the similarity metric 

• The similarity should represent some semantic knowledge 
• From human 
• From data 

• We’ll see later how neural nets can do this



Naïve Bayes



Setup
• Suppose that we have a labeled dataset 

 

•  

•  

• The data is assumed to have been independently drawn from 

{(x(i), y(i))}n
i=1

x(i) ∈ ℝd

y(i) ∈ {0,1}

PXY



Setup
• We assume that entries of each  are conditionally independent given  

 

• Can be true for tabular data, but not for images (thus naïve) 

• From now on, we let , without loss of generality

x y

p(x |y) =
d

∏
i=1

p(xi |y)

d = 1



Bayesian approach
• Based on some human knowledge, we manually design two things: 

• Likelihood model      

• Prior                            

• Example. We may have a good physical model of the channel output ( ) 
                  given the channel input ( )

p(x |y)
p(y)

x
y



Training
• Estimating parameters of  from data 
• Example. Gaussian likelihood has four parameters 

• Mean and variance, for each  

 

 

• Example. Bernoulli prior has one parameter 

p(x |y), p(y)

y

p(x |y) =
1

σy 2π
exp (−

(x − μy)2

2σ2
y )

θl = (μ0, μ1, σ0, σ1) ∈ ℝ4

θp = p(1) ∈ [0,1]



Training
• To fit the parameters, we maximize the joint probability of the 

training data given the parameters 

 

         

• Note. As we have seen last week, this has an ERM interpretation

max
θ

pθ(x1, …, xn, y1, …, yn)

= max
θℓ,θp

n

∏
i=1

pθℓ
(xi |yi)pθp

(yi)



Training
• We can solve two sub-problems separately 

 

 

• The solution to the upper optimization problem is what we call the 
maximum-likelihood estimate (MLE)

min
θℓ

n

∑
i=1

(− log pθℓ
(xi |yi))

min
θp

n

∑
i=1

(− log pθp
(yi))



Training
• Example. Consider the subproblem for Gaussian likelihood: 

 

 

• Solving this optimization will give class-wise sample mean and class-
wise sample variance (check!)

min
θℓ

n

∑
i=1

(− log pθℓ
(xi |yi))

⇔ min
θℓ

(
n

∑
i=1

∥xi − μ(yi)∥
2

2σ2
(yi)

+ log(σ(yi)))



Training
• Example. Consider the subproblem for Bernoulli prior 

 

 

• Solving this optimization will give the sample frequency 

min
θp

n

∑
i=1

(− log pθp
(yi))

⇔ min
θp

( ∑
i:yi=1

− log(θp) + ∑
i:yi=0

− log(1 − θp))

θp =
#1s in dataset

n



Inference
• We conduct MAP estimation 

 

        

       

f(x) = arg max
y

p(y |x)

= arg max
y

p(y)p(x |y)

= arg max
y (p(y)

d

∏
i=1

p(xi |y))



Properties
• Computation. Quite simple for popular choice of  and  

• Training. Already known, explicit formula 

• Inference. Simply compute  

• However, these can be very messy for atypical models & priors 
• or if there is any dependency structure

p(x |y) p(y)

p(y |x)



Limitation
• Requires a well-designed prior and likelihood 

• We expect very complicated  for, e.g., visual data 
• We want an automated mechanism to design these as well

p(x |y)



Perceptrons



Historical bits
• The first “neural network” designed by Rosenblatt (1958)





Linear model
• Perceptron is a method to train a linear classifier 

• Linear classifier is about drawing a linear decision boundary 

 
• This divides two regions: 

•  

•

w⊤x + b = 0

{x | w⊤x + b > 0}
{x | w⊤x + b < 0}



Inference
• For inference, we use the sign of linear models 

 

• Again, by stacking, we can write more neatly as 

fθ(x) = 1{w⊤x + b > 0}

fθ(x) = 1{θ⊤x̃ > 0}



Training
• The most standard way to find a linear classifier would be to solve: 

 

• Or more neatly, we can write as: 

min
θ

1
n

n

∑
i=1

1{fθ(xi) ≠ yi}

min
θ

1
n

n

∑
i=1

(fθ(xi)(1 − yi) + (1 − fθ(xi))yi)



Training

 

• Problem. Difficult to optimize 
• Explicit solution — not available 
• Gradient descent — difficult to evaluate gradient 

•  contains  — gradient is zero almost everywhere

min
θ

1
n

n

∑
i=1

(fθ(xi)(1 − yi) + (1 − fθ(xi))yi)

fθ( ⋅ ) 1{ ⋅ }



Training
Rosenblatt’s solution. 
• Instead of the loss 

 
use this loss instead: 

 

• When wrong, the loss is:    

• When correct, the loss is:    

• Intuition. We penalize the “confidence” of misprediction

ℓ(y, fθ(x)) = fθ(x)(1 − y) + (1 − fθ(x))y

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x̃

|θ⊤x̃ |
0



Training
 

• With this new loss, suddenly the gradient is non-zero 

 

• The loss like this — not a true loss but helps optimization — is called 
surrogate loss

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x̃

∇θℓ(y, fθ(x)) = ( fθ(x) − y)x̃



Optimization
• The original perceptron paper assumes that: 

• the data comes one-by-one 
• we cannot re-use the past data 

• Such scenario is called online learning



Optimization
• Given a sample, the gradient is: 

 

• If wrong for a sample with : 

 

• If wrong for a sample with : 

 
• If correct, no change

∇θℓ(y, fθ(x)) = ( fθ(x) − y)x̃

y = 1
θ(i+1) = θ(i) + η ⋅ x̃

y = 0
θ(i+1) = θ(i) − η ⋅ x̃



Properties
• Computation. Quite easy 

• Training. Simply add or subtract data  
• Also, provably converges whenever the data is separable 

• Inference. Simply do a dot product

x



Limitations
• Cannot achieve low training loss on not linearly separable data



Logistic Regression



Logistic Regression
• Another popular version of the linear classifier 

 

• Unlike Rosenblatt, logistic regression interprets  as a log-likelihood 
ratio of the model’s internal probability estimate 

 

• Brainteaser. Why not interpret as ?

fθ(x) = 1{θ⊤x̃ ≥ 0}

θ⊤x̃

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)



Logistic Regression

 

• In other words, we are modeling the posterior distribution as 

 

• The function  is the logistic function 
                                                                             (a.k.a. sigmoid)

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)
σ(t) = 1/1 + exp(−t)



Training
• Given the data, maximize the log-likelihood 

 

• Equivalently, minimize the NLL loss: 

max
θ

1
n

n

∑
i=1

log p(yi | xi)

min
θ

1
n

n

∑
i=1

log ( 1
p(yi | xi) )



Training
• Equivalently again, we are solving: 

 

where 

•  is the sigmoid of the prediction 

 

•  is the cross-entropy 

min
θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi))

fθ( ⋅ )
fθ(x) = σ(θ⊤x̃)

ℓ( ⋅ , ⋅ )

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1



Training
• More tediously, this can be written as 

 

• No analytic solution, but is convex and can use GD 

min
θ

1
n

n

∑
i=1

(−yi)log(σ(θ⊤x̃i)) + (yi − 1)log(1 − σ(θ⊤x̃i))

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i



Properties
• Computation. Relatively easy 

• Training. Requires GD, but is convex 
• Inference. Easy — Dot product and apply threshold



Limitation
• Again, cannot fit not-linearly-separable data



Next class
• Sophisticated versions of linear classifiers



</lecture 4>


