Simple Classifiers




Today

» Various classification algorithms
* Nearest neighbors
* Nalve Bayes
* Linear classifiers
* Perceptron
* Logistic regression



Goal

* Modeling the relationship between

e continuous input X & R4 (or discrete)

 discreteoutput Y € {1,..., K}

 called “class”

Inputs

Image
Classification
Model

Output

Egyptian cat

Tabby cat

Tiger cat

0.514

0.193

0.068



Binary Classification

» For simplicity, we mostly consider the case of binary classification

- Y e {0,1}




Binary Classification

* |n binary classification, any classifier can be viewed as selecting a
subset of the input space
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Classification vs. Regression

* Fun fact. Technically, we can use linear regression for classification

 Simply view 0/1 class labels as outputs to predict
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Classification vs. Regression

* However. This is not a good idea...
* Very sensitive to “outliers,” e.qg., extremely large yet benign tumor
* Thus we want better tools
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Nearest neighbors



Historical bits
 Can betraced back to a book in 1021
- Ll o< (“the book of optics”) by Ibn al-Haytham
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Historical bits

* Vlewed human visual recognition as a nearest neighbor

“Recognition is the perception of similarity between two forms—
l.e., of the form
(1) sight perceives at the moment of recognition,
(2) and the form of that visible object, or its like,
that it has perceived one or more times before.”

measures similarity




Setup
* We have a labeled dataset
D = {(x,, yi)}?zl
+ Features.x. € X
+ Label. y. € {1,...,K}



Training

* A cool aspect of KNN is that it is training-free

* All we need to do is to store data in some database,
in a form that we can retrieve them easily




Inference

. Suppose that we are given some test sample x"*W)

 Pick kK samples with the highest similarity:
* Equivalently, find the training samples with bottom-k distance:

min dist(x"V), X))
j

* Then, predict with majority vote



Properties

* KNN predictor is nonlinear

« Example. kK = 3




Hyperparameter

The neighbor set size k has a big impact on the predictor

» Small k: Flexibility  Larger k: Smooth decision boundary




Properties

* KNN predictor is nonparametric
* Nonparametric. Using flexible number of (or infinite) parameters
* e.g.,, k-NN, Decision trees
» Parametric. Parameters are finite-dimensional
* e.g., linear regression, deep learning



Properties

* Computation. K-NN is difficult to scale up to large datasets
* Pros. No training cost
* Cons. High inference cost

e For testing, we need to conduct . comparisons

* Fortunately, there are many techniques to relieve this
» Used in modern LLMs with RAG



Limitation
* The success depends critically on the similarity metric
* The similarity should represent some semantic knowledge
* From human

* From data
o We'll see later how neural nets can do this




Naive Bayes



Setup
» Suppose that we have a labeled dataset
((x, y)L,
. xV e R
o y(i) e {0,1)

 The data is assumed to have been independently drawn from Py



Setup

» We assume that entries of each X are conditionally independent given y

d
px|y) = | |p&1y)
=1

 Can be true for tabular data, but not for images (thus naive)

» From now on, we let d = 1, without loss of generality



Bayesian approach

» Based on some human knowledge, we manually design two things:

» Likelihood model p(x]|y)
e Prior p(y)

« Example. We may have a good physical model of the channel output (x)
given the channel input (y)

fulxlm=0) fulxlm=1)

N(O 54 N(1 o2)

0 1 -
m = bit transmited ¥ = value received



Training

» Estimating parameters of p(x|y), p(v) from data

» Example. Gaussian likelihood has four parameters

* Mean and variance, for each y

1 (x = )7
plx|y) = eXp\ ———=5 —
o, 2T 2‘7y

0, = (g, 41, 0y, 01) E R*

» Example. Bernoulli prior has one parameter

0,=p(l) €]0,1]



Training

» To fit the parameters, we maximize the joint probability of the
training data given the parameters

Max Py(Xy, - Xy Vs - Vo)

=  max H ng(Xi | yi)Pep(yi)
0efp i

* Note. As we have seen last week, this has an ERM interpretation




Training

* We can solve two sub-problems separately
n

Z (_ log py (X, | )’i))

=1
n

néin Z (_ log Pep()’i))

Pi=1

min
Hf

* The solution to the upper optimization problem is what we call the
maximum-likelihood estimate (MLE)



Training

» Example. Consider the subproblem for Gaussian likelihood:
n

Z (_ log py (X, | )’i))

=1

L |1X; — py I
< min (2 07 + log(o(yi)))

O =1 26(2%')

min
Hf

» Solving this optimization will give class-wise sample mean and class-
wise sample variance (check!)



Training

» Example. Consider the subproblem for Bernoulli prior
n

min )’ (—1og g, ()

Pi=1

& min ( Y, —log(®,) + Y, —log(l - 9p>)

P iy=1 i:y;=0

» Solving this optimization will give the sample frequency
#1s 1n dataset

£ n



Inference

« We conduct MAP estimation

J(x) = argmax p(y|x)
Y

= argmax p(y)p(x|y)
Y

d
= arg max (P(Y)HP(JQ | Y))
i=1

Y



Properties

 Computation. Quite simple for popular choice of p(x|y) and p(y)
» Training. Already known, explicit formula

» Inference. Simply compute p(y | X)

* However, these can be very messy for atypical models & priors
» orif there is any dependency structure



Limitation

* Requires a well-designed prior and likelihood

+ We expect very complicated p(x | y) for, e.g., visual data
* We want an automated mechanism to design these as well



Perceptrons



Historical bits
* The first “neural network” designed by Rosenblatt (1958)
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Linear model

* Perceptron is a method to train a linear classifier
* Linear classifier is about drawing a linear decision boundary

wx+b=0
* This divides two regions:
. {x | wW'x+b>0)
. (x| wW'x+b<0)}




Inference

* Forinference, we use the sign of linear models

f,(x) =1{w'x + b > 0}

» Again, by stacking, we can write more neatly as

f,(x) =1{0'x > 0}




Training

» The most standard way to find a linear classifier would be to solve:

1Y
min — Z} 1{fy(x,) # ¥;)

* Or more neatly, we can write as:

mgin%i:i1 (fg(Xi)(l —-y) + _fH(Xi))yi)



Training

1
min — (fg(xl)(l — yl) + (1 _fH(Xi))yi)

0 n
=1

* Problem. Difficult to optimize
» EXxplicit solution — not available
» Gradient descent — difficult to evaluate gradient

* fo(-)contains 1{ - } — gradient is zero almost everywhere



Training

Rosenblatt's solution.
* Instead of the loss

(Y, J9(X)) = fo(X)(1 —y) + (1 = fo(X))y

use this loss instead:

E(n, fy(X) = (fy(x) —y) - 0'X

. When wrong, the loss is: |60 'X|

e When correct, the lossis: 0

* Intuition. We penalize the “confidence” of misprediction



Training
£, fy(X) = (fy(x) —y) - 0'X

» With this new loss, suddenly the gradient is non-zero

Vol (3, fo(X)) = (fo(X) — y)X

* The loss like this — not a true loss but helps optimization — is called
surrogate loss



Optimization

* The original perceptron paper assumes that:
* the data comes one-by-one
* we cannot re-use the past data

» Such scenario is called online learning



Optimization
* Given a sample, the gradient is:

Vol (3, fo(X)) = (Jo(X) — ¥)X

» |f wrong for a sample withy = 1:

9D = 90 4 p .
» |f wrong for a sample with y = 0:

gD = 9 _ .
* |f correct, no change



Properties

* Computation. Quite easy

e Training. Simply add or subtract data X

» Also, provably converges whenever the data is separable
» |Inference. Simply do a dot product




Limitations

» (Cannot achieve low training loss on not linearly separable data




Logistic Regression



Logistic Regression

* Another popular version of the linear classifier

fo(x) =1{0'x > 0}

e Unlike Rosenblatt, logistic regression interprets 0'xX as a log-likelihood
ratio of the model’s internal probability estimate

log (p(y=_1\x)) ~ 0'x
p(y = 0]x)

» Brainteaser. Why not interpret as p(y = 1 | Xx)?



Logistic Regression

=1
log (—p(y ‘X)) ~ 0'x

p(y = 0[x)
* |n other words, we are modeling the posterior distribution as

ply =1|x) =

1 + exp(—60'X)
 The function 6(f) = 1/1 4+ exp(—1) is the logistic function

1
0.8
0.6
0.4




Training

* Given the data, maximize the Iog -likelihood

max — 2 log p(y; | X;)

0 n

» Equivalently, minimize the NLL loss:



Training

Equivalently again, we are solving:
1

min— Y £(y,fy(X,)
oD

where

* fo( - ) is the sigmoid of the prediction
Jo(X) = U(HTX)

e £(-,-)isthecross-entropy

Lﬂ(y, t) — CE(ly, [t,l — t]) — IOg(t)_Y + lOg(l _ t)y—l



Training

* More tediously, this can be written as

min— ' (~3)log(c(07%)) + (y; — Dlog(1 - o(07%,)
0 n =1

* No analytic solution, but is convex and can use GD

1 n
0" = 0+1-— ), (= o0TR)%
& =1



Properties

* Computation. Relatively easy
* Training. Requires GD, but is convex
» |nference. Easy — Dot product and apply threshold




Limitation

» Again, cannot fit not-linearly-separable data




Next class

* Sophisticated versions of linear classifiers




</lecture 4>



