Linear Regression

Goal

* Modeling the relationship between:
. continuous input X € R?

e continuous output Y € R"
* Commonly denoted by “regression”

* Looks like a very general problem
» We'll make heavy simplifying assumptions

Example: House price prediction

» Given the living area of a house, find the right estimate f(area) = price

Living area (feet?)

Price (1000%s)

2104
1600
2400
1416
3000

400
330
369
232
540

price (in $1000)

housing prices

1000

900

800

700

600 -

200

100 |-

0.—

500

1
1000

-
1500

2000

2500 3000
square feet

3500

4000

4500

5000

Model

* We use a linear model (or “affine,” to be more precise)
+ f(x) = g(x) + b, where g(-) satisfies g(cx) =c-g(x) VceR

housing prices
1 |

1000 -

price (in $1000)

] | 1 1) | 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet

Model

e Forxe R,y e R:
f(x) = wx+ b, weR,beR

. Forx e R%yeR
fx)=w'x+b, weRiLbeR

. Forx € R%y e R
fix)=Wx+b, WeR"™heR"

Model

Hypothesis space
« Forxe R,y € R:

f(x) = wx+ b, '/ weR,beR

- Forx e R4y eR |
X)) =w'x+ b, W cRYbeR

' FOI’ X E Rd,y E Rm "-.'; !
f(x)=Wx+b, |WeR™ beR"

LosS

» We will use the squared 7, loss

£F,y) =1y —yll5

e Question. Why the squared loss?
» Easy to solve — quadratic function
* Nice interpretation — Gaussian noise assumption

LosS

Note (for advanced readers).

» Recall that this loss function encourages learning 7(x) := E[y | x]

» However, as we use the linear model, we won't learn #(-) unless this
is indeed a linear function.

» Fun fact: If X, y are “jointly Gaussian,” #7(X) is a linear function
* Thus no “underfitting” in such case

p(Y)

ERM Objective

¢ SUppOSG that we are given a dataset
D — {(Xia yi)}?zl

* |nlinear regression, we solve the empirical risk minimization:
n

minl (yl- — (Wx, + b))2
Wb 71

i=1
* Question. How do we solve this optimization?
* Analytic
* Heuristic (Gradient Descent)

Training

Training

» Let us begin with a 1D, bias-free case
» That is, we consider the predictors

f(x) = wx, w,x € R

* Then, the ERM objective becomes a quadratic function of w:

1 n
J(w) = — Z (yl- — le-)2

n
=1
n

1)
)))
— W —Ex. +w(—— xil-)+i
(n l) n) Y

=

Training

| « 2 «
J(w) = wz(— Z xl.z) + w(— — Z xiyl-) + y?
s s
* This is a quadratic function with a positive leading coefficient:

e Search space is unrestricted—the minimizer is the critical point
n n

%J(w) =0< W(inz) B (inyl')

=1 =1
 Thus, we have

Training

* This was an exceptional case where we have an analytical solution

* We won't always be this lucky —

. What if our loss was (3, y) = (v — $)°?
* What is our model was much more complicated?

* That's why we have heuristic methods as well
* Welll see later today

Multivariate case

. Now consider a slightly more general case, with x € R¢, y € R
« Welll start to see why we need linear algebra & vector calculus

* Then, the ERM objective will be:
1 n

min —

weR%beR N

=1

* Things start to look a bit messy
» We'll first simplify using stacked notations

Multivariate case

* First, we stack parameters by using shorthands
x=[1]-0= [}
17 T b

* Then, our ERM objective becomes

RS PR e
J(0) = - Z:, (y; — 07%;)

Multivariate case

» Second, we stack data by using shorthands

* Then, our ERM objective becomes

1© =~ | y-xo|’

Multivariate case

| 2
10 =~ |y-x0]
* Now we examine the critical point condition:

1
VI©) =~V ((y - XO)"(y - X0))
|

_ Y (yTy +0TXTX0 — 2yTX6’)
n
1
— —(29TXTX _ 2yTX) _ ()
n

Multivariate case

* Thus, the critical point condition is:

X'X0=X"y

» Thankfully, this problem has a rather classic form of
Ax =Db
with known A and b

* Has been a studied for a long time

* Techniques introduced in basic linear algebra
» Mathematics of ML: https:/mml-book.github.io/
* Numerical Recipes (advanced)

THIRD EDITION

https://mml-book.github.io/

Multivariate case
X'X0=X"y
. 1f X' X is invertible, we can simply solve by inverting
0=X"X)"X'"y

* Unique solution guaranteed — no headaches

» Sadly, not always invertible

 If n < d+ 1,itis neverinvertible —
because X ' X is at most rank min{n,d + 1}

» Depends on data X, which is random

Multivariate case
X'X9=X"y

. 1f X' X is not invertible, we'll have infinitely many solution

o Called “underdetermined”

» Still, we know that any @ that satisfies above will be a global minima

* To get one of these solutions, we can use the QR decomposition:
* For those who don't remember, let's do a quick recap

* Quick fact: There are other methods, but QR decomposition is
known to be more numerically stable

Recap: QR Decomposition

Recap: QR Decomposition

» Suppose that we have a matrix A € R

e Further assumethatm > n
* Then, QR decomposition decomposes the matrix as

A =QR
. Q € R™"™js a unitary matrix (i.e., Q' = Q71

« R € R"™" s an upper triangular matrix

e i Tz 0 Ny
A=|e - e, 0 rp 1y,

Recap: QR Decomposition

e i Tz 0 Ny
A= ¢ e, 0y "2n
| 110 o 0
» |dea. Take a look each column of A:
e] 11 e] "2
a, = [e - e, 0 ,a,= |e - e, 22
I N e]

» That means were breaking down a; = r€;

Ay = '€ T 7€)

()

Recap: QR Decomposition

a; =711€), Ay = T17€) T+ 1€,
» Realizing this, our algorithm becomes straightforward
 Gram-Schmidt process

» Step 1. Make €, by normalizing a,
4
el — o
1ag il

ri = llagll,

Recap: QR Decomposition

a; =711€), Ay = T17€) T+ 1€,
» Realizing this, our algorithm becomes straightforward
 Gram-Schmidt process

» Step 2. Make e, by (1) subtracting the a, direction, and
(2) normalizing the remainder

T Ay T Iy
i =46, €

= ——, I = |[la, — el
la, — e,

Recap: QR Decomposition

a; =711€), Ay = T17€) T+ 1€,
» Realizing this, our algorithm becomes straightforward
 Gram-Schmidt process

* Step 3. Repeat!

Recap: Pseudoinverse

» Using QR decomposition, we can get a Moore-Penrose pseudoinverse
+ Thatis, a matrix A" € R satisfying:
. AAA = A, ATAAT = AT
. (AANH" = AA", (ATA)' = A'A

* Using the QR decomposition, you can compute the pseudoinverse as:
A}” — R—IQT

 If we have m < n or rank-deficient case —
consult your linear algebra textbook!

Multivariate case
X'X9=X"y

* To get one solution, we can use the pseudoinverse:
0=X"X)XTy
» Remarkably, this solution happens to be a minimum #, norm solution
among all @ that satisfies X' X0 = X'y.

* Fun exercise. Count the computational cost of solving pseudoinverse:
* number of FLOPs
* memory cost

Non-analytical solution:
Gradient descent

Gradient Descent

» Let's explore another way to solve the linear regression
* A heuristic method, called gradient descent

 |ntuition. To minimize some function, repeat taking steps toward the
downward direction

Gradient Descent

» A bit more formally — to minimize J(60):

« Randomly pick an initial parameter oY)
* Repeat making a small update toward negative gradient direction

O+ = 9 _p .V 5 J(OW)

* 7]. step size

] = Initial . i]
(w) ‘ | _— Gradient

Global cost minimum

L X ()

min

Gradient Descent, for Linear Regression

* For linear regression, the iterative update becomes:

>
00— —”(XTXH _ XTy)

n
 Given appropriate 7, it will approach a good-enough solution

» |f too big, will diverge
* |f too small, requires many steps

Too small step size

4\ / 41\
> 2+ \ \ - > 2
v
1 L \ /] 11
0+ | 0
1 1

Proper step size Too big step size

Il
Il

Selecting the right 7

 Like 77, some ML algorithms may contain parameters such that:
» Have nontrivial influence on the success
* Yet, not a subject of optimization during the training

* We call these hyperparameters
* (Can be tuned via trial-and-error

+ Useny,1,,1;, ... to getmodels @,,6,,0;, ...
» Test the models on some samples that are not used for training
» called validation samples

» Select the best-working 7

Selecting the right 7

* Given some labeled dataset, we typically split it into 8:1:1 ratio for
training, validation, test

« Sometimes 7:1:2 — no fixed rule!

* Tuning these hyperparameters requires much computation and labor
» AutoML algorithms have been proposed automated tuning

Remarks on Gradient Descent

Theoretical remarks
* No convergence guarantee in general
* |n simple cases, one can prove convergence

« Often requires “scheduling” of # — e.g., diminishing it
» Worse, even at convergence, no guarantee that it will be optimal

 Still handy in non-analytically-solvable cases
» Works strangely well in deep learning

Remarks on Gradient Descent

Computational remarks
» Requires some computation, in general
» Comparing with analytic solutions...
* Memory. Typically GD is cheaper
* Compute. Depends on #steps

 For linear regression, one can pre-compute and re-use — i.e., conduct

0 A—-A)Yd—-Db

for A := EXTX and b := EXTy

n n

Remarks on Gradient Descent

Computational remarks
* To reduce the computational cost, we can use part of data only

» Use arandomly drawn subset of kK samples in each iteration

» Called mini-batch GD (or stochastic GD when kK = 1)
» Saves much RAM, and sometimes generalize better

— Batch gradient descent
— Mini-batch gradient Descent
—— Stochastic gradient descent

Wrapping up

Regression
Linear model
Squared loss
Optimization
* Analytical solution
* Gradient descent

Next up. Simple classifiers
* Nalve Bayes, Nearest neighbors
* Linear model

</lecture 3>

