
Linear Regression

Goal
• Modeling the relationship between:

• continuous input

• continuous output
• Commonly denoted by “regression”

• Looks like a very general problem
• We’ll make heavy simplifying assumptions

X ∈ ℝd

Y ∈ ℝm

Example: House price prediction
• Given the living area of a house, find the right estimate f(area) = price

Model
• We use a linear model (or “affine,” to be more precise)

• , where satisfies f(x) = g(x) + b g(⋅) g(cx) = c ⋅ g(x) ∀c ∈ ℝ

Model
• For :

• For

• For

x ∈ ℝ, y ∈ ℝ
f(x) = wx + b, w ∈ ℝ, b ∈ ℝ

x ∈ ℝd, y ∈ ℝ
f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd, y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Model
• For :

• For

• For

x ∈ ℝ, y ∈ ℝ
f(x) = wx + b, w ∈ ℝ, b ∈ ℝ

x ∈ ℝd, y ∈ ℝ
f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd, y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Hypothesis space

Loss
• We will use the squared loss

• Question. Why the squared loss?
• Easy to solve — quadratic function
• Nice interpretation — Gaussian noise assumption (discussed later)

ℓ2
ℓ(ŷ, y) = ∥ŷ − y∥2

2

Loss
Note (for advanced readers).

• Recall that this loss function encourages learning

• However, as we use the linear model, we won’t learn unless this
is indeed a linear function.

• Fun fact: If are “jointly Gaussian,” is a linear function
• Thus no “underfitting” in such case

η(x) := 𝔼[y |x]
η(⋅)

x, y η(x)

ERM Objective
• Suppose that we are given a dataset

• In linear regression, we solve the empirical risk minimization:

• Question. How do we solve this optimization?
• Analytic
• Heuristic (Gradient Descent)

D = {(xi, yi)}n
i=1

min
W,b

1
n

n

∑
i=1

(yi − (Wxi + b))2

Training

Training
• Let us begin with a 1D, bias-free case

• That is, we consider the predictors

• Then, the ERM objective becomes a quadratic function of :

f(x) = wx, w, x ∈ ℝ

w

J(w) :=
1
n

n

∑
i=1

(yi − wxi)2

= w2(1
n

n

∑
i=1

x2
i) + w(−

2
n

n

∑
i=1

xiyi) + y2
i

Training

• This is a quadratic function with a positive leading coefficient:
• Search space is unrestricted—the minimizer is the critical point

• Thus, we have

J(w) = w2(1
n

n

∑
i=1

x2
i) + w(−

2
n

n

∑
i=1

xiyi) + y2
i

∂
∂w

J(w) = 0 ⇔ w(
n

∑
i=1

x2
i) = (

n

∑
i=1

xiyi)

w* = (
n

∑
i=1

xiyi)/(
n

∑
i=1

x2
i)

Training
• This was an exceptional case where we have an analytical solution

• We won’t always be this lucky —

• What if our loss was ? (c.f. Abel-Ruffini Theorem)
• What is our model was much more complicated?

• That’s why we have heuristic methods as well
• We’ll see later today

ℓ(̂y, y) = (y − ̂y)6

Multivariate case
• Now consider a slightly more general case, with

• We’ll start to see why we need linear algebra & vector calculus

• Then, the ERM objective will be:

• Things start to look a bit messy
• We’ll first simplify using stacked notations

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ

1
n

n

∑
i=1

(yi − w⊤xi + b)2

Multivariate case
• First, we stack parameters by using shorthands

• Then, our ERM objective becomes

x̃ = [x
1], θ = [w

b]

J(θ) =
1
n

n

∑
i=1

(yi − θ⊤x̄i)2

Multivariate case
• Second, we stack data by using shorthands

• Then, our ERM objective becomes

X =
x̃⊤

1
⋯
x̃⊤

n

, y = [
y1
⋯
yn]

J(θ) =
1
n

y − Xθ
2

Multivariate case

• Now we examine the critical point condition:

J(θ) =
1
n

y − Xθ
2

∇J(θ) =
1
n

∇((y − Xθ)⊤(y − Xθ))
=

1
n

∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)
=

1
n (2θ⊤X⊤X − 2y⊤X) = 0

Multivariate case
• Thus, the critical point condition is:

• Thankfully, this problem has a rather classic form of

with known and
• Has been a studied for a long time
• Techniques introduced in basic linear algebra

• Mathematics of ML: https://mml-book.github.io/
• Numerical Recipes (advanced)

X⊤Xθ = X⊤y

Ax = b
A b

https://mml-book.github.io/

Multivariate case

• If is invertible, we can simply solve by inverting

• Unique solution guaranteed — no headaches

• Sadly, not always invertible

• If , it is never invertible — (too few data)
because is at most rank

• Depends on data , which is random

X⊤Xθ = X⊤y
X⊤X

θ = (X⊤X)−1X⊤y

n < d + 1
X⊤X min{n, d + 1}

X

Multivariate case

• If is not invertible, we’ll have infinitely many solution
• Called “underdetermined”

• Still, we know that any that satisfies above will be a global minima

• To get one of these solutions, we can use the QR decomposition:
• For those who don’t remember, let’s do a quick recap
• Quick fact: There are other methods, but QR decomposition is

 known to be more numerically stable

X⊤Xθ = X⊤y
X⊤X

θ

Recap: QR Decomposition

Recap: QR Decomposition
• Suppose that we have a matrix

• Further assume that
• Then, QR decomposition decomposes the matrix as

• is a unitary matrix (i.e.,)

• is an upper triangular matrix

(are orthonormal — orthogonal to each other, and)

A ∈ ℝm×n

m ≥ n

A = QR
Q ∈ ℝm×m Q⊤ = Q−1

R ∈ ℝm×n

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0
ei ∥ei∥2 = 1

Recap: QR Decomposition

• Idea. Take a look each column of :

• That means we’re breaking down

 (…)

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0
A

a1 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11

0
0
⋯

, a2 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r12
r22

0
⋯

, ⋯

a1 = r11e1
a2 = r12e1 + r22e2

Recap: QR Decomposition
, ,

• Realizing this, our algorithm becomes straightforward
• Gram-Schmidt process

• Step 1. Make by normalizing

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1

e1 =
a1

∥a1∥2
, r11 = ∥a1∥2

Recap: QR Decomposition
, ,

• Realizing this, our algorithm becomes straightforward
• Gram-Schmidt process

• Step 1. Make by normalizing

• Step 2. Make by (1) subtracting the direction, and
 (2) normalizing the remainder

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1
e2 a1

r12 = a⊤
2 e1, e2 =

a2 − r12e1

∥a2 − r12e1∥2
, r22 = ∥a2 − r12e1∥2

Recap: QR Decomposition
, ,

• Realizing this, our algorithm becomes straightforward
• Gram-Schmidt process

• Step 1. Make by normalizing

• Step 2. Make by (1) subtracting the direction, and
 (2) normalizing the remainder

• Step 3. Repeat!

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1
e2 a1

Recap: Pseudoinverse
• Using QR decomposition, we can get a Moore-Penrose pseudoinverse

• That is, a matrix satisfying:

•

•

• Using the QR decomposition, you can compute the pseudoinverse as:

• If we have or rank-deficient case —
consult your linear algebra textbook!

A† ∈ ℝn×m

AA†A = A, A†AA† = A†

(AA†)⊤ = AA†, (A†A)⊤ = A†A

A† = R−1Q⊤

m ≤ n

</QR>

Multivariate case

• To get one solution, we can use the pseudoinverse:

• Remarkably, this solution happens to be a minimum norm solution
among all that satisfies .

• Fun exercise. Count the computational cost of solving pseudoinverse:
• number of FLOPs
• memory cost

(Hint: Depends on the order of computation!)

X⊤Xθ = X⊤y

̂θ = (X⊤X)†X⊤y
ℓ2

θ X⊤Xθ = X⊤y

Non-analytical solution:
Gradient descent

Gradient Descent
• Let’s explore another way to solve the linear regression

• A heuristic method, called gradient descent

• Intuition. To minimize some function, repeat taking steps toward the
 downward direction

Gradient Descent
• A bit more formally — to minimize :

• Randomly pick an initial parameter
• Repeat making a small update toward negative gradient direction

• : step size

J(θ)
θ(0)

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))
η

Gradient Descent, for Linear Regression
• For linear regression, the iterative update becomes:

• Given appropriate , it will approach a good-enough solution
• If too big, will diverge
• If too small, requires many steps

θ ← θ −
2η
n (X⊤Xθ − X⊤y)

η

Selecting the right η
• Like , some ML algorithms may contain parameters such that:

• Have nontrivial influence on the success
• Yet, not a subject of optimization during the training

• We call these hyperparameters
• Can be tuned via trial-and-error

• Use to get models
• Test the models on some samples that are not used for training

• called validation samples

• Select the best-working

η

η1, η2, η3, … θ1, θ2, θ3, …

η

Selecting the right η
• Given some labeled dataset, we typically split it into 8:1:1 ratio for

training, validation, test
• Sometimes 7:1:2 — no fixed rule!

• Tuning these hyperparameters requires much computation and labor
• AutoML algorithms have been proposed automated tuning

Remarks on Gradient Descent
Theoretical remarks
• No convergence guarantee in general

• In simple cases, one can prove convergence

• Often requires “scheduling” of — e.g., diminishing it
• Worse, even at convergence, no guarantee that it will be optimal

• Still handy in non-analytically-solvable cases
• Works strangely well in deep learning

η

Remarks on Gradient Descent
Computational remarks
• Requires some computation, in general

• Comparing with analytic solutions…
• Memory. Typically GD is cheaper
• Compute. Depends on #steps

• For linear regression, one can pre-compute and re-use — i.e., conduct

for and

θ ← (I − A)θ − b
A :=

η
n

X⊤X b :=
η
n

X⊤y

Remarks on Gradient Descent
Computational remarks
• To reduce the computational cost, we can use part of data only

• Use a randomly drawn subset of samples in each iteration ()

• Called mini-batch GD (or stochastic GD when)
• Saves much RAM, and sometimes generalize better

k k ≪ n
k = 1

Wrapping up
• Regression
• Linear model
• Squared loss
• Optimization

• Analytical solution
• Gradient descent

• Next up. Simple classifiers
• Naïve Bayes, Nearest neighbors
• Linear model

</lecture 3>

