Linear Regression

Goal

- Modeling the relationship between:
 - continuous input $X \in \mathbb{R}^d$
 - continuous output $Y \in \mathbb{R}^m$
 - Commonly denoted by "regression"
- Looks like a very general problem
 - We'll make heavy simplifying assumptions

Example: House price prediction

• Given the living area of a house, find the right estimate f(area) = price

housing prices

square feet

		nousing prices										
		10	000			1		'	'			-
Living area (feet ²)	Price (1000\$s)	9	000									-
2104	400	8	000									-
1600	330	7	00								×	-
2400	369	(00	000					××		×		-
1416	232	price (in \$1000)	500			×	×	×			×	-
3000	540	buice 4	100		×	×	×					-
		3	000	×	××	* * * * * * * * * * * * * * * * * * *	××					-
		2	200	× × × ×	× × × × × × × ×	× ××						-
		1	00	^								
			0-									-
			500	1000	1500	2000	2500	3000	3500	4000	4500	5000

Model

- We use a linear model (or "affine," to be more precise)
 - f(x) = g(x) + b, where $g(\cdot)$ satisfies $g(cx) = c \cdot g(x) \quad \forall c \in \mathbb{R}$

Model

• For $x \in \mathbb{R}, y \in \mathbb{R}$:

$$f(x) = wx + b, \qquad w \in \mathbb{R}, b \in \mathbb{R}$$

• For $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b, \quad \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

• For $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}^m$

$$f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}, \quad \mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$$

Model

• For $x \in \mathbb{R}, y \in \mathbb{R}$:

$$f(x) = wx + b, \qquad w \in \mathbb{R}, b \in \mathbb{R}$$

• For $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b, \quad \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

• For $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}^m$

$$f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$$

Hypothesis space

$$w \in \mathbb{R}, b \in \mathbb{R}$$

$$\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

$$f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}, \quad \mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$$

Loss

• We will use the squared \mathcal{C}_2 loss

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_2^2$$

- Question. Why the squared loss?
 - Easy to solve quadratic function
 - Nice interpretation Gaussian noise assumption (discussed later)

Loss

Note (for advanced readers).

- Recall that this loss function encourages learning $\eta(\mathbf{x}) := \mathbb{E}[\mathbf{y} \,|\, \mathbf{x}]$
 - However, as we use the linear model, we won't learn $\eta(\cdot)$ unless this is indeed a linear function.
- Fun fact: If \mathbf{x} , \mathbf{y} are "jointly Gaussian," $\eta(\mathbf{x})$ is a linear function
 - Thus no "underfitting" in such case

ERM Objective

Suppose that we are given a dataset

$$D = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$$

In linear regression, we solve the empirical risk minimization:

$$\min_{\mathbf{W},\mathbf{b}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - (\mathbf{W}\mathbf{x}_i + \mathbf{b}))^2$$

- Question. How do we solve this optimization?
 - Analytic
 - Heuristic (Gradient Descent)

- Let us begin with a 1D, bias-free case
 - That is, we consider the predictors

$$f(x) = wx, \qquad w, x \in \mathbb{R}$$

• Then, the ERM objective becomes a quadratic function of w:

$$J(w) := \frac{1}{n} \sum_{i=1}^{n} (y_i - wx_i)^2$$

$$= w^2 \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2\right) + w\left(-\frac{2}{n} \sum_{i=1}^{n} x_i y_i\right) + y_i^2$$

$$J(w) = w^{2} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) + w\left(-\frac{2}{n} \sum_{i=1}^{n} x_{i} y_{i}\right) + y_{i}^{2}$$

- This is a quadratic function with a positive leading coefficient:
 - Search space is unrestricted—the minimizer is the critical point

$$\frac{\partial}{\partial w}J(w) = 0 \Leftrightarrow w\left(\sum_{i=1}^{n} x_i^2\right) = \left(\sum_{i=1}^{n} x_i y_i\right)$$

Thus, we have

$$w^* = \left(\sum_{i=1}^n x_i y_i\right) / \left(\sum_{i=1}^n x_i^2\right)$$

- This was an exceptional case where we have an analytical solution
- We won't always be this lucky
 - What if our loss was $\ell(\hat{y}, y) = (y \hat{y})^6$? (c.f. Abel-Ruffini Theorem)
 - What is our model was much more complicated?

- That's why we have heuristic methods as well
 - We'll see later today

- Now consider a slightly more general case, with $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$
 - We'll start to see why we need linear algebra & vector calculus
- Then, the ERM objective will be:

$$\min_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \left(y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i + b \right)^2$$

- Things start to look a bit messy
 - We'll first simplify using stacked notations

• First, we stack parameters by using shorthands

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}, \theta = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

Then, our ERM objective becomes

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^{\mathsf{T}} \bar{\mathbf{x}}_i)^2$$

Second, we stack data by using shorthands

$$\mathbf{X} = \begin{bmatrix} \tilde{\mathbf{x}}_1^\top \\ \cdots \\ \tilde{\mathbf{x}}_n^\top \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$$

Then, our ERM objective becomes

$$J(\theta) = \frac{1}{n} \| \mathbf{y} - \mathbf{X}\theta \|^2$$

$$J(\theta) = \frac{1}{n} \parallel \mathbf{y} - \mathbf{X}\theta \parallel^2$$

Now we examine the critical point condition:

$$\nabla J(\theta) = \frac{1}{n} \nabla \left((\mathbf{y} - \mathbf{X}\theta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\theta) \right)$$
$$= \frac{1}{n} \nabla \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} + \theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\theta - 2 \mathbf{y}^{\mathsf{T}} \mathbf{X}\theta \right)$$
$$= \frac{1}{n} \left(2\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} - 2 \mathbf{y}^{\mathsf{T}} \mathbf{X} \right) = 0$$

Thus, the critical point condition is:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Thankfully, this problem has a rather classic form of

$$Ax = b$$

with known A and b

- Has been a studied for a long time
- Techniques introduced in basic linear algebra
 - Mathematics of ML: https://mml-book.github.io/
 - Numerical Recipes (advanced)

NUMERICAL RECIPES The Art of Scientific Computing THIRD EDITION William H. Press Saul A. Teukolsky William T. Vetterling Brian P. Flannery

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

• If $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, we can simply solve by inverting

$$\theta = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Unique solution guaranteed — no headaches

- Sadly, not always invertible
 - If n < d+1, it is never invertible because $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is at most rank $\min\{n,d+1\}$
 - Depends on data X, which is random

(too few data)

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- If $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is not invertible, we'll have infinitely many solution
 - Called "underdetermined"
 - Still, we know that any heta that satisfies above will be a global minima

- To get one of these solutions, we can use the QR decomposition:
 - For those who don't remember, let's do a quick recap
 - Quick fact: There are other methods, but QR decomposition is known to be more numerically stable

- Suppose that we have a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$
 - Further assume that $m \ge n$
- Then, QR decomposition decomposes the matrix as

$$A = QR$$

- $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is a unitary matrix (i.e., $\mathbf{Q}^{\mathsf{T}} = \mathbf{Q}^{-1}$)
- $\mathbf{R} \in \mathbb{R}^{m \times n}$ is an upper triangular matrix

$$\mathbf{A} = \begin{bmatrix} | & \cdots & | \\ \mathbf{e}_1 & \cdots & \mathbf{e}_m \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ & & \cdots & 0 \end{bmatrix}$$

 $(\mathbf{e}_i \text{ are orthonormal } - \text{ orthogonal to each other, and } ||\mathbf{e}_i||_2 = 1)$

$$\mathbf{A} = \begin{bmatrix} | & \cdots & | \\ \mathbf{e}_1 & \cdots & \mathbf{e}_m \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

• Idea. Take a look each column of ${\bf A}$:

$$\mathbf{a}_1 = \begin{bmatrix} | & \cdots & | \\ \mathbf{e}_1 & \cdots & \mathbf{e}_m \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} r_{11} \\ 0 \\ 0 \\ \cdots \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} | & \cdots & | \\ \mathbf{e}_1 & \cdots & \mathbf{e}_m \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} r_{12} \\ r_{22} \\ 0 \\ \cdots \end{bmatrix}, \quad \cdots$$

• That means we're breaking down $\mathbf{a}_1 = r_{11}\mathbf{e}_1$

$$\mathbf{a}_2 = r_{12}\mathbf{e}_1 + r_{22}\mathbf{e}_2$$
(...)

$$\mathbf{a}_1 = r_{11}\mathbf{e}_1$$
, $\mathbf{a}_2 = r_{12}\mathbf{e}_1 + r_{22}\mathbf{e}_2$, ...

- Realizing this, our algorithm becomes straightforward
 - Gram-Schmidt process

• Step 1. Make e_1 by normalizing a_1

$$\mathbf{e}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|_2}, \quad r_{11} = \|\mathbf{a}_1\|_2$$

$$\mathbf{a}_1 = r_{11}\mathbf{e}_1$$
, $\mathbf{a}_2 = r_{12}\mathbf{e}_1 + r_{22}\mathbf{e}_2$, ...

- Realizing this, our algorithm becomes straightforward
 - Gram-Schmidt process

- Step 1. Make e₁ by normalizing a₁
- Step 2. Make \mathbf{e}_2 by (1) subtracting the \mathbf{a}_1 direction, and (2) normalizing the remainder

$$r_{12} = \mathbf{a}_{2}^{\mathsf{T}} \mathbf{e}_{1}, \quad \mathbf{e}_{2} = \frac{\mathbf{a}_{2} - r_{12} \mathbf{e}_{1}}{\|\mathbf{a}_{2} - r_{12} \mathbf{e}_{1}\|_{2}}, \quad r_{22} = \|\mathbf{a}_{2} - r_{12} \mathbf{e}_{1}\|_{2}$$

$$\mathbf{a}_1 = r_{11}\mathbf{e}_1$$
, $\mathbf{a}_2 = r_{12}\mathbf{e}_1 + r_{22}\mathbf{e}_2$, ...

- Realizing this, our algorithm becomes straightforward
 - Gram-Schmidt process

- Step 1. Make e₁ by normalizing a₁
- Step 2. Make e_2 by (1) subtracting the a_1 direction, and (2) normalizing the remainder
- Step 3. Repeat!

Recap: Pseudoinverse

- Using QR decomposition, we can get a Moore-Penrose pseudoinverse
 - That is, a matrix $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$ satisfying:
 - $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$
 - $(\mathbf{A}\mathbf{A}^{\dagger})^{\mathsf{T}} = \mathbf{A}\mathbf{A}^{\dagger}, \quad (\mathbf{A}^{\dagger}\mathbf{A})^{\mathsf{T}} = \mathbf{A}^{\dagger}\mathbf{A}$
- Using the QR decomposition, you can compute the pseudoinverse as:

$$\mathbf{A}^{\dagger} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}}$$

• If we have $m \le n$ or rank-deficient case — consult your linear algebra textbook!

</QR>

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

To get one solution, we can use the pseudoinverse:

$$\hat{\theta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\dagger}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

• Remarkably, this solution happens to be a minimum ℓ_2 norm solution among all θ that satisfies $\mathbf{X}^{\mathsf{T}}\mathbf{X}\theta = \mathbf{X}^{\mathsf{T}}\mathbf{y}$.

- Fun exercise. Count the computational cost of solving pseudoinverse:
 - number of FLOPs
 - memory cost

(Hint: Depends on the order of computation!)

Non-analytical solution: Gradient descent

Gradient Descent

- Let's explore another way to solve the linear regression
 - A heuristic method, called gradient descent

Intuition. To minimize some function, repeat taking steps toward the downward direction

Gradient Descent

- A bit more formally to minimize $J(\theta)$:
 - Randomly pick an initial parameter $heta^{(0)}$
 - Repeat making a small update toward negative gradient direction

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$$

• η : step size

Gradient Descent, for Linear Regression

For linear regression, the iterative update becomes:

$$\theta \leftarrow \theta - \frac{2\eta}{n} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \theta - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

- Given appropriate η , it will approach a good-enough solution
 - If too big, will diverge
 - If too small, requires many steps

Selecting the right η

- Like η , some ML algorithms may contain parameters such that:
 - Have nontrivial influence on the success
 - Yet, not a subject of optimization during the training
- We call these hyperparameters
 - Can be tuned via trial-and-error
 - Use $\eta_1, \eta_2, \eta_3, \dots$ to get models $\theta_1, \theta_2, \theta_3, \dots$
 - Test the models on some samples that are not used for training
 - called validation samples
 - Select the best-working η

Selecting the right η

- Given some labeled dataset, we typically split it into 8:1:1 ratio for training, validation, test
 - Sometimes 7:1:2 no fixed rule!

- Tuning these hyperparameters requires much computation and labor
 - AutoML algorithms have been proposed automated tuning

Remarks on Gradient Descent

Theoretical remarks

- No convergence guarantee in general
 - In simple cases, one can prove convergence
 - Often requires "scheduling" of η e.g., diminishing it
- Worse, even at convergence, no guarantee that it will be optimal
 - Still handy in non-analytically-solvable cases
 - Works strangely well in deep learning

Remarks on Gradient Descent

Computational remarks

- Requires some computation, in general
 - Comparing with analytic solutions...
 - Memory. Typically GD is cheaper
 - Compute. Depends on #steps
- For linear regression, one can pre-compute and re-use i.e., conduct

$$\theta \leftarrow (\mathbf{I} - \mathbf{A})\theta - \mathbf{b}$$
 for $\mathbf{A} := \frac{\eta}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ and $\mathbf{b} := \frac{\eta}{n} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

Remarks on Gradient Descent

Computational remarks

- To reduce the computational cost, we can use part of data only
 - Use a randomly drawn subset of k samples in each iteration ($k \ll n$)
 - Called mini-batch GD (or stochastic GD when k=1)
 - Saves much RAM, and sometimes generalize better

Wrapping up

- Regression
- Linear model
- Squared loss
- Optimization
 - Analytical solution
 - Gradient descent

- Next up. Simple classifiers
 - Naïve Bayes, Nearest neighbors
 - Linear model

</le>