
Linear Regression



Goal
• Modeling the relationship between: 

• continuous input  

• continuous output  
• Commonly denoted by “regression” 

• Looks like a very general problem 
• We’ll make heavy simplifying assumptions

X ∈ ℝd

Y ∈ ℝm



Example: House price prediction
• Given the living area of a house, find the right estimate f(area) = price



Model
• We use a linear model (or “affine,” to be more precise) 

• , where  satisfies f(x) = g(x) + b g( ⋅ ) g(cx) = c ⋅ g(x) ∀c ∈ ℝ



Model
• For : 

 

• For  

  

• For  

          

x ∈ ℝ, y ∈ ℝ
f(x) = wx + b, w ∈ ℝ, b ∈ ℝ

x ∈ ℝd, y ∈ ℝ
f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd, y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm
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• For : 

 

• For  

  

• For  

          

x ∈ ℝ, y ∈ ℝ
f(x) = wx + b, w ∈ ℝ, b ∈ ℝ

x ∈ ℝd, y ∈ ℝ
f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd, y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Hypothesis space



Loss
• We will use the squared  loss 

 

• Question. Why the squared loss? 
• Easy to solve — quadratic function 
• Nice interpretation — Gaussian noise assumption (discussed later)

ℓ2
ℓ(ŷ, y) = ∥ŷ − y∥2

2



Loss
Note (for advanced readers). 

• Recall that this loss function encourages learning  

• However, as we use the linear model, we won’t learn  unless this 
is indeed a linear function. 

• Fun fact: If  are “jointly Gaussian,”  is a linear function 
• Thus no “underfitting” in such case

η(x) := 𝔼[y |x]
η( ⋅ )

x, y η(x)



ERM Objective
• Suppose that we are given a dataset 

 

• In linear regression, we solve the empirical risk minimization: 

 

• Question. How do we solve this optimization? 
• Analytic 
• Heuristic (Gradient Descent)

D = {(xi, yi)}n
i=1

min
W,b

1
n

n

∑
i=1

(yi − (Wxi + b))2



Training



Training
• Let us begin with a 1D, bias-free case 

• That is, we consider the predictors 

 

• Then, the ERM objective becomes a quadratic function of : 

 

         

f(x) = wx, w, x ∈ ℝ

w

J(w) :=
1
n

n

∑
i=1

(yi − wxi)2

= w2( 1
n

n

∑
i=1

x2
i ) + w( −

2
n

n

∑
i=1

xiyi) + y2
i



Training

 

• This is a quadratic function with a positive leading coefficient: 
• Search space is unrestricted—the minimizer is the critical point 

 

• Thus, we have 

J(w) = w2( 1
n

n

∑
i=1

x2
i ) + w( −

2
n

n

∑
i=1

xiyi) + y2
i

∂
∂w

J(w) = 0 ⇔ w(
n

∑
i=1

x2
i ) = (

n

∑
i=1

xiyi)

w* = (
n

∑
i=1

xiyi)/(
n

∑
i=1

x2
i )



Training
• This was an exceptional case where we have an analytical solution 

• We won’t always be this lucky — 

• What if our loss was ?   (c.f. Abel-Ruffini Theorem) 
• What is our model was much more complicated? 

• That’s why we have heuristic methods as well 
• We’ll see later today

ℓ( ̂y, y) = (y − ̂y)6



Multivariate case
• Now consider a slightly more general case, with  

• We’ll start to see why we need linear algebra & vector calculus 

• Then, the ERM objective will be: 

 

• Things start to look a bit messy 
• We’ll first simplify using stacked notations

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ

1
n

n

∑
i=1

(yi − w⊤xi + b)2



Multivariate case
• First, we stack parameters by using shorthands 

 

• Then, our ERM objective becomes 

x̃ = [x
1], θ = [w

b]

J(θ) =
1
n

n

∑
i=1

(yi − θ⊤x̄i)2



Multivariate case
• Second, we stack data by using shorthands 

 

• Then, our ERM objective becomes 

X =
x̃⊤

1
⋯
x̃⊤

n

, y = [
y1
⋯
yn]

J(θ) =
1
n

y − Xθ
2



Multivariate case

 

• Now we examine the critical point condition: 

 

                         

            

J(θ) =
1
n

y − Xθ
2

∇J(θ) =
1
n

∇((y − Xθ)⊤(y − Xθ))
=

1
n

∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)
=

1
n (2θ⊤X⊤X − 2y⊤X) = 0



Multivariate case
• Thus, the critical point condition is: 

 

• Thankfully, this problem has a rather classic form of 

 

with known  and  
• Has been a studied for a long time 
• Techniques introduced in basic linear algebra 

• Mathematics of ML: https://mml-book.github.io/ 
• Numerical Recipes (advanced)

X⊤Xθ = X⊤y

Ax = b
A b

https://mml-book.github.io/


Multivariate case
 

• If  is invertible, we can simply solve by inverting 

 
• Unique solution guaranteed — no headaches 

• Sadly, not always invertible 

• If , it is never invertible —                            (too few data) 
because  is at most rank  

• Depends on data , which is random

X⊤Xθ = X⊤y
X⊤X

θ = (X⊤X)−1X⊤y

n < d + 1
X⊤X min{n, d + 1}

X



Multivariate case
 

• If  is not invertible, we’ll have infinitely many solution 
• Called “underdetermined” 

• Still, we know that any  that satisfies above will be a global minima 

• To get one of these solutions, we can use the QR decomposition: 
• For those who don’t remember, let’s do a quick recap 
• Quick fact: There are other methods, but QR decomposition is 

                     known to be more numerically stable

X⊤Xθ = X⊤y
X⊤X

θ



Recap: QR Decomposition



Recap: QR Decomposition
• Suppose that we have a matrix  

• Further assume that  
• Then, QR decomposition decomposes the matrix as 

 

•  is a unitary matrix (i.e., ) 

•  is an upper triangular matrix 

 

(  are orthonormal — orthogonal to each other, and )

A ∈ ℝm×n

m ≥ n

A = QR
Q ∈ ℝm×m Q⊤ = Q−1

R ∈ ℝm×n

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0
ei ∥ei∥2 = 1



Recap: QR Decomposition

 

• Idea. Take a look each column of : 

 

• That means we’re breaking down    

                                                               
                                                              (…)

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0
A

a1 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11

0
0
⋯

, a2 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r12
r22

0
⋯

, ⋯

a1 = r11e1
a2 = r12e1 + r22e2



Recap: QR Decomposition
,     ,      

• Realizing this, our algorithm becomes straightforward 
• Gram-Schmidt process 

• Step 1. Make  by normalizing  

 

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1

e1 =
a1

∥a1∥2
, r11 = ∥a1∥2



Recap: QR Decomposition
,     ,      

• Realizing this, our algorithm becomes straightforward 
• Gram-Schmidt process 

• Step 1. Make  by normalizing  

• Step 2. Make  by (1) subtracting the  direction, and 
                                   (2) normalizing the remainder 

 

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1
e2 a1

r12 = a⊤
2 e1, e2 =

a2 − r12e1

∥a2 − r12e1∥2
, r22 = ∥a2 − r12e1∥2



Recap: QR Decomposition
,     ,      

• Realizing this, our algorithm becomes straightforward 
• Gram-Schmidt process 

• Step 1. Make  by normalizing  

• Step 2. Make  by (1) subtracting the  direction, and 
                                   (2) normalizing the remainder 

• Step 3. Repeat!

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1
e2 a1



Recap: Pseudoinverse
• Using QR decomposition, we can get a Moore-Penrose pseudoinverse 

• That is, a matrix  satisfying: 

•  

•  

• Using the QR decomposition, you can compute the pseudoinverse as: 

 

• If we have  or rank-deficient case —  
consult your linear algebra textbook!

A† ∈ ℝn×m

AA†A = A, A†AA† = A†

(AA†)⊤ = AA†, (A†A)⊤ = A†A

A† = R−1Q⊤

m ≤ n



</QR>



Multivariate case
 

• To get one solution, we can use the pseudoinverse: 

 

• Remarkably, this solution happens to be a minimum  norm solution 
among all  that satisfies . 

• Fun exercise. Count the computational cost of solving pseudoinverse: 
• number of FLOPs 
• memory cost 

(Hint: Depends on the order of computation!)

X⊤Xθ = X⊤y

̂θ = (X⊤X)†X⊤y
ℓ2

θ X⊤Xθ = X⊤y



Non-analytical solution: 
Gradient descent



Gradient Descent
• Let’s explore another way to solve the linear regression 

• A heuristic method, called gradient descent 

• Intuition. To minimize some function, repeat taking steps toward the 
                 downward direction



Gradient Descent
• A bit more formally — to minimize : 

• Randomly pick an initial parameter  
• Repeat making a small update toward negative gradient direction 

 

• : step size

J(θ)
θ(0)

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))
η



Gradient Descent, for Linear Regression
• For linear regression, the iterative update becomes: 

 

• Given appropriate , it will approach a good-enough solution 
• If too big, will diverge 
• If too small, requires many steps

θ ← θ −
2η
n (X⊤Xθ − X⊤y)

η



Selecting the right η
• Like , some ML algorithms may contain parameters such that: 

• Have nontrivial influence on the success 
• Yet, not a subject of optimization during the training 

• We call these hyperparameters 
• Can be tuned via trial-and-error 

• Use  to get models  
• Test the models on some samples that are not used for training 

• called validation samples 

• Select the best-working 

η

η1, η2, η3, … θ1, θ2, θ3, …

η



Selecting the right η
• Given some labeled dataset, we typically split it into 8:1:1 ratio for 

training, validation, test 
• Sometimes 7:1:2 — no fixed rule! 

• Tuning these hyperparameters requires much computation and labor 
• AutoML algorithms have been proposed automated tuning



Remarks on Gradient Descent
Theoretical remarks  
• No convergence guarantee in general 

• In simple cases, one can prove convergence 

• Often requires “scheduling” of  — e.g., diminishing it 
• Worse, even at convergence, no guarantee that it will be optimal 

• Still handy in non-analytically-solvable cases 
• Works strangely well in deep learning

η



Remarks on Gradient Descent
Computational remarks 
• Requires some computation, in general 

• Comparing with analytic solutions… 
• Memory. Typically GD is cheaper 
• Compute. Depends on #steps 

• For linear regression, one can pre-compute and re-use — i.e., conduct 

 

for  and 

θ ← (I − A)θ − b
A :=

η
n

X⊤X b :=
η
n

X⊤y



Remarks on Gradient Descent
Computational remarks 
• To reduce the computational cost, we can use part of data only 

• Use a randomly drawn subset of  samples in each iteration ( ) 

• Called mini-batch GD (or stochastic GD when ) 
• Saves much RAM, and sometimes generalize better

k k ≪ n
k = 1



Wrapping up
• Regression 
• Linear model 
• Squared loss 
• Optimization 

• Analytical solution 
• Gradient descent 

• Next up. Simple classifiers 
• Naïve Bayes, Nearest neighbors 
• Linear model



</lecture 3>


