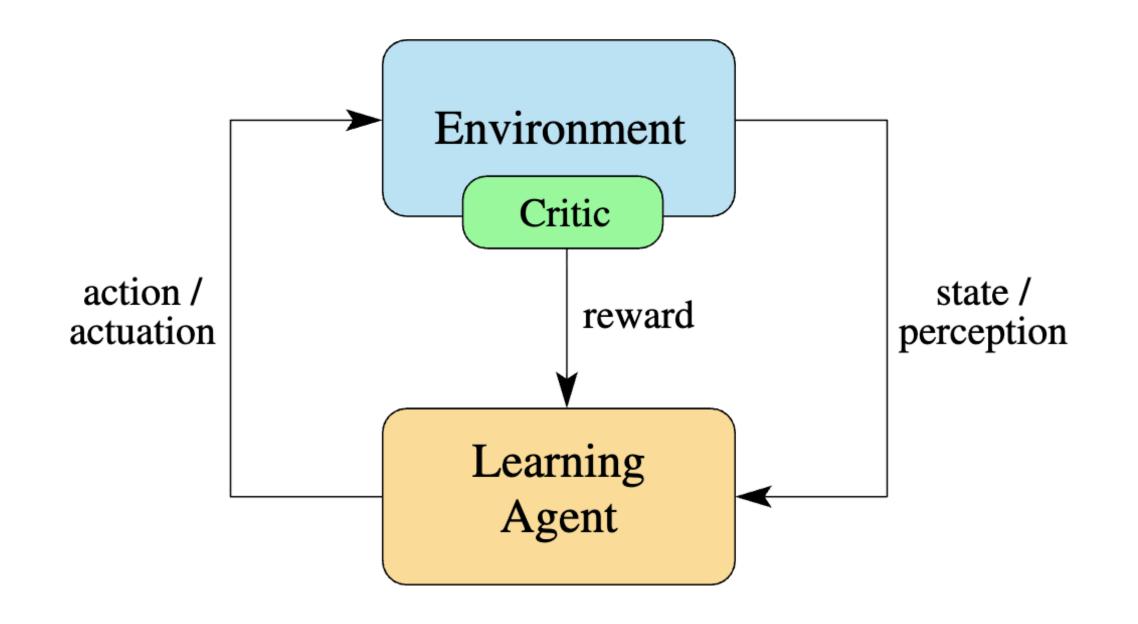
Reinforcement Learning - 3

Recap

- Last class.
 - Markov Process + Reward + Decision
 - Evaluating the policy
 - Value function & Q-function
 - <u>Assumption</u>. Full knowledge of MDP:
 - the state transition p(s'|s,a)
 - the reward r(s, a)
- Today.
 - Evaluating the policy without full knowledge

Recap: Reinforcement learning

- We were interested in a sequential decision-making scenario
 - State transitions as some Markov process $s_{t+1} \sim p(\cdot \mid s_t, a_t)$
 - Agent makes actions according to some policy $a_t \sim \pi(\cdot \mid s_t)$
 - Agent collects the reward $r_t \sim r(\cdot \mid s_t, a_t)$



for $t=1,\ldots,n$ do

The agent perceives state s_t The agent performs action a_t The environment evolves to s_{t+1} The agent receives reward r_t end for

Recap: Evaluation of policy

We were interested in the return — i.e., accumulated discounted reward

$$G_t = r_t + \gamma r_{t+1} + \cdots + \gamma^{H-1} r_{t+H-1}$$

- We discussed how we can evaluate the policy π by computing:
 - Value function. Expected return, beginning at some state

$$V^{\pi}(s) = \mathbb{E}[r_t + \gamma r_{t+1} + \dots + \gamma^{H-1} r_{t+H-1} \mid s_t = s]$$

• **Q-function.** Expected return from making an action at some state, assuming that we'll continue using the policy π afterwards

$$Q^{\pi}(s, a) = \mathbb{E}[G_t | r_t + \gamma r_{t+1} + \dots + \gamma^{H-1} r_{t+H-1} | s_t = s, a_t = a]$$

Recap: Evaluation of policy

- We can use Bellman equation to simplify this for infinite horizon
 - Value function

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \left(R(a, s) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{\pi}(s) \right)$$

Q-function

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{\pi}(s')$$

- Can be computed by iterative method
 - Requires knowing R(s, a) and p(s'|s, a)

Evaluation through experience

- Today, we assume that we don't know R(s,a) or p(s'|s,a)
- Instead, we assume that we can collect data from environment
 - Deploy an agent that uses $\pi(a \mid s)$, and collect

$$e = (s_1, a_1, r_1, s_2, a_2, r_2...)$$

• Collect multiple episodes e_1, e_2, \ldots, e_n

• Goal. Estimate $V^{\pi}(s)$ from e_1, \ldots, e_n

Monte Carlo policy evaluation

- Idea. Simply measure the mean return, starting from each state
 - Look at each sub-trajectory
 - At each starting state s_t , compute the G_t
 - Average over all sub-trajectories with the same starting state
- There are two well-known variants
 - First-visit
 - Every-visit

First-visit Monte Carlo

- Initialize N(s) = 0, G(s) = 0 $\forall s \in S$
- Loop:
 - Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \ldots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
 - Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1} r_{i,T_i}$ as the return from time step t onwards in i-th episode
 - For each time step t until T_i If this is the first time t that state s is visited in episode i
 - Increment the counter $N(s) \leftarrow N(s) + 1$
 - Increment the total return $G(s) \leftarrow G(s) + G_{i,t}$
 - Update the estimate $\hat{V}^{\pi}(s) = G(s)/N(s)$

Every-visit Monte Carlo

- Initialize N(s) = 0, G(s) = 0 $\forall s \in S$
- Loop:
 - Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \ldots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
 - Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1} r_{i,T_i}$ as the return from time step t onwards in i-th episode
 - For each time step t until T_i :
 - Increment the counter $N(s) \leftarrow N(s) + 1$
 - Increment the total return $G(s) \leftarrow G(s) + G_{i,t}$
 - Update the estimate $\hat{V}^{\pi}(s) = G(s)/N(s)$

Every-visit Monte Carlo

- Note that we can think of an equivalent, sequential-update version
 - Natural, as we usually collect data in sequence rather than in batch

- For state s visited at time step t in episode i,
 - Increment the counter $N(s) \leftarrow N(s) + 1$
 - Update the estimate:

$$\hat{V}^{\pi}(s) \leftarrow \hat{V}^{\pi}(s) + \frac{1}{N(s)} (G_{i,t} - \hat{V}^{\pi}(s))$$

- Can be viewed as iterative updates
 - 1/N(s) is some learning rate

Properties

First-visit

- $\hat{V}^{\pi}(s)$ is unbiased: $\mathbb{E}[\hat{V}^{\pi}(s)] = V^{\pi}(s)$
- . $\hat{V}^{\pi}(s)$ is consistent: $\lim_{n \to \infty} \hat{V}^{\pi}(s) = V^{\pi}(s)$

Every-visit

- $\hat{V}^{\pi}(s)$ is biased: $\mathbb{E}[\hat{V}^{\pi}(s)] \neq V^{\pi}(s)$
- . $\hat{V}^{\pi}(s)$ is consistent: $\lim_{n \to \infty} \hat{V}^{\pi}(s) = V^{\pi}(s)$
- Often has a smaller MSE:

$$\mathbb{E}[\|\hat{V}_{\text{ev}}^{\pi} - V^{\pi}\|^{2}] \le \mathbb{E}[\|\hat{V}_{\text{fv}}^{\pi} - V^{\pi}\|^{2}]$$

Properties

 Both first-visit and every-visit Monte Carlo estimate tend to have a large variance, i.e.,

$$\mathbb{E}[\|\hat{V}_{\text{ev}}^{\pi} - V^{\pi}\|^{2}] \gg 0$$

- Requires many samples for convergence
 - In RL, the data collection is usually very expensive
 - Example. Robot Learning
 - Example. Drug discovery

Requires the episode to terminate before updating

Temporal Difference Learning

Idea. Use recursive estimates, just like Bellman's equation

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \left(R(a, s) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{\pi}(s) \right)$$

 $a\in A \qquad \qquad s'\in S$ • We can use the current estimates of $\hat{V}^\pi(s_{t+1})$, instead of waiting for the episode to be fully unrolled

• TD(0) Learning. At every transition (s_t, a_t, r_t, s_{t+1}) , do:

$$\hat{V}^{\pi}(s) \leftarrow \hat{V}^{\pi}(s_t) + \alpha \left[[r_t + \gamma \hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) \right]$$

• α is some "learning rate"

Properties

- Biased, in general
- Usually has a smaller variance and is more sample-efficient
- Requires less storage, and updates online

Wrapping up

So far

- We have looked at various ML algorithms:
 - From small-scale to large-scale methods
- Before mid-term: Classic ML
 - Empirical Risk Minimization vs. Bayesian Approach
 - Supervised Learning
 - Linear models, SVM, Nonlinear methods (based on kernels)
 - Unsupervised Learning
 - Clustering, GMM, PCA

So far

- After mid-term: Modern ML
 - Deep Learning & Optimization techniques
 - SGD and Backpropagation
 - Vision
 - Convolutions, Self-supervised Learning VAE, GAN, Diffusion,
 - Language
 - Tokenization, Language models, Post-training, Multimodal Al
 - Reinforcement Learning
 - Markov Decision Process, Temporal Difference Learning

What is missing?

- We have focused on fundamental topics, mostly
 - Stayed away from research frontiers
- Here is a very brief look at some "emerging topics"
 - **Dynamic world model.** https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/
 - Weather forecasting. https://blog.google/technology/google-deepmind/weathernext-2/

 Common: Want to encode "physical understanding" to save computations and training data needed

</le>