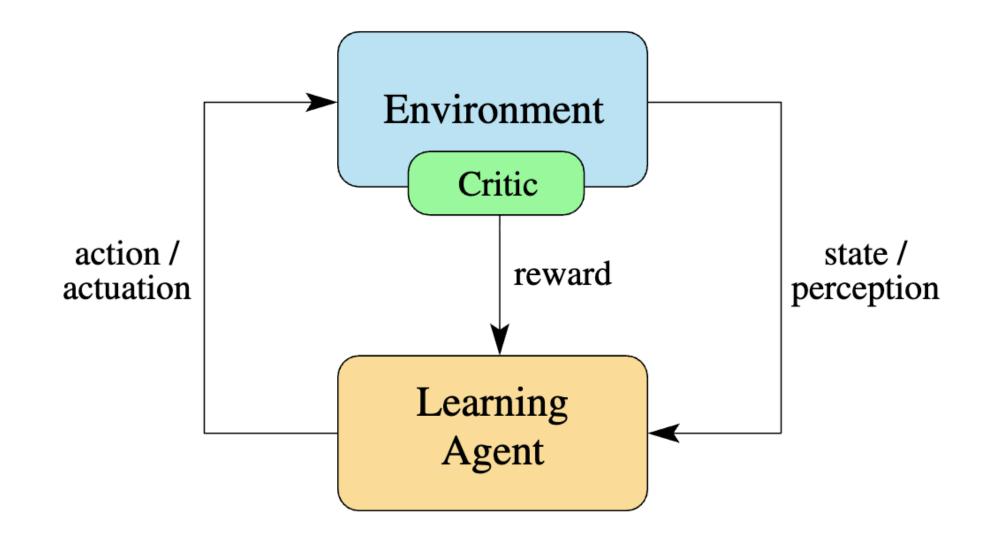
Reinforcement Learning - 2

Recap

- Last class.
 - Hand-wavy introduction to reinforcement learning
 - How it differs from supervised learning
 - Formalisms
 - Markov chain
 - Policy
- Today.
 - Markov Process / MRP / MDP
 - Bellman's equation

Recap: RL Framework

- Learning to solve sequential decision-making, without supervision
 - Can break down complicated problems into easier sub-problems
 - Can adapt to any change in environment
 - Easier to generalize
- Goal. Select actions to maximize the total expected future reward



```
for t=1,\ldots,n do

The agent perceives state s_t
The agent performs action a_t
The environment evolves to s_{t+1}
The agent receives reward r_t
end for
```

Markov Process

- Let t be the time clock
- A Markov process is a tuple (S, p)
 - S: state space
 - p: state transition probability
- We make a Markov assumption on p
 - The next state s_{i+1} is determined solely by the current state s_i ,

$$p(s_{t+1} | s_1, ..., s_t) = p(s_{t+1} | s_t)$$

- That is, "state" is rich enough to contain all relevant information
- Note. No rewards, no actions

Markov Process

- If the number of states is finite, the transition dynamics can be expressed via state transition matrix

• If states are
$$S = \{z_1, \cdots, z_N\}$$
, then we'll have
$$P = \begin{bmatrix} p(z_1 | z_1) & P(z_2 | z_1) & \cdots & p(z_N | z_1) \\ p(z_1 | z_2) & P(z_2 | z_2) & \cdots & p(z_N | z_2) \\ & & & \cdots \\ p(z_1 | z_N) & P(z_2 | z_N) & \cdots & p(z_N | z_N) \end{bmatrix}$$

Rainy

Example. Weather transition model

$$\begin{bmatrix} p_{\text{sunny}}^{(t+1)} \\ p_{\text{rainy}}^{(t+1)} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} p_{\text{sunny}}^{(t)} \\ p_{\text{rainy}}^{(t)} \end{bmatrix}$$
0.9
Sunny
$$\begin{bmatrix} p_{\text{sunny}}^{(t)} \\ p_{\text{rainy}}^{(t)} \end{bmatrix}$$

- A Markov reward process (MRP) is a tuple (S, p, r)
 - a Markov process (S, p)
 - a reward r
- The reward is earned by transitioning from one state to another
 - Deterministic: $r_t = r(s_t, s_{t+1})$
 - Stochastic: $r_t \sim r(\cdot \mid s_t, s_{t+1})$
- For simplicity, assume that it depends on the current state only
 - We can define the reward function

$$R(s) = \mathbb{E}[r_t | s_t = s]$$

We are interested in the expected accumulated rewards (or "return")

$$G_t = r_t + \gamma r_{t+1} + \dots + \gamma^{H-1} r_{t+H-1}$$

- γ : discount factor
- *H*: "horizon," i.e., the number of steps in each episode
 - can be infinite

The state value function is the expected return, starting at state s

$$V(s) = \mathbb{E}[G_t | s_t = s]$$

$$= \mathbb{E}[G_t | r_t + \gamma r_{t+1} + \dots + \gamma^{H-1} r_{t+H-1} | s_t = s]$$

If we have an infinite horizon, then we have:

$$V(s) = R(s) + \gamma \sum_{s' \in S} p(s'|s)V(s)$$

- Value = immediate reward + discounted sum of future rewards
- Note. This is called the Bellman equation (for MRPs)
- For a finite-state MRP, we have a neat matrix form

$$\begin{bmatrix} V(s_1) \\ \cdots \\ V(s_N) \end{bmatrix} = \begin{bmatrix} R(s_1) \\ \cdots \\ R(s_N) \end{bmatrix} + \gamma \begin{bmatrix} p(s_1 | s_1) & \cdots & p(s_N | s_1) \\ \cdots & \cdots & p(s_N | s_N) \end{bmatrix} \begin{bmatrix} V(s_1) \\ \cdots \\ p(s_1 | s_N) & \cdots & p(s_N | s_N) \end{bmatrix} \begin{bmatrix} V(s_1) \\ \cdots \\ V(s_N) \end{bmatrix}$$

• More simply, we can write

$$V = R + \gamma PV$$

$$V = R + \gamma PV$$

Solving the matrix equation, we have

$$V = (I - \gamma P)^{-1}R$$

- Fortunately, the matrix $(I \gamma P)$ is invertible
- Computation.
 - Direct inverse: Requires $O(N^3)$
 - Iterative solution: Requires $O(N^2)$ per step
 - Initialize $V_{(0)} = \mathbf{0}$
 - Repeat $V_{(k+1)} = R + \gamma PV_{(k)}$

Converges, theoretically (Fixed point theorem)

Markov Decision Process

- A Markov decision process (MRP) is a tuple (S, A, p, r)
 - ullet an action space A
 - a Markov reward process (S, p, r), with
 - Action-dependent transition model

$$p(s_{t+1} \mid s_t, a_t)$$

Action-dependent reward

$$r_t \sim r(\cdot \mid S_t, S_{t+1}, a_t)$$

• Again, for simplicity, assume independence w.r.t. \boldsymbol{s}_{t+1}

$$R(s, a) = \mathbb{E}[r_t | s_t = s, a_t = a]$$

MDP Policies

- Agent's behaviors are specified by policies
 - Deterministic: $a_t = \pi(s_t)$
 - Stochastic: $a_t \sim \pi(\cdot \mid s_t)$

- If we fix the policy π , then MDP becomes a MRP
 - The return function and the state transitions are given as

$$R^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) R(s, a)$$
$$p^{\pi}(s' \mid s) = \sum_{a \in A} \pi(a \mid s) p(s' \mid s, a)$$
$$a \in A$$

MDP Policies

- Now, we can compute the value function V(s) for this MRP
 - Similarly to MRP, we have a Bellman equation

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \left(R(a, s) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{\pi}(s) \right)$$

- Again, the solution can be found by an iterative method:
 - Initialize: $V_{(0)}^{\pi}(s) = \mathbf{0}$
 - Iterate:

$$V_{(k+1)}^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \left(R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V_{(k)}^{\pi}(s') \right)$$

Optimal Policy for MDP

- Given the initial state s, the expected return of a policy π is: $V^{\pi}(s)$
 - We are interested in the optimal policy:

$$\pi^*(s) = \underset{\pi}{\operatorname{arg max}} V^{\pi}(s)$$

- Mathematically, we can show that:
 - Exists a solution
 - The solution is unique
- For an infinite-horizon problem, the solution is:
 - Deterministic
 - Stationary

Finding the optimal policy

$$\pi^*(s) = \underset{\pi}{\operatorname{arg max}} V^{\pi}(s)$$

Question. How do we solve the optimization?

Naïve. Search all deterministic policies

$$\pi: S \to A$$

- Computationally very difficult
 - The search space has the size $|A|^{|S|}$

Finding the optimal policy

$$\pi^*(s) = \underset{\pi}{\operatorname{arg max}} V^{\pi}(s)$$

- Policy iteration. Usually more efficient
 - Initialize $\pi_0(s)$ randomly for all states s
 - Until convergence, do:
 - Evaluate π_i to get the function V^{π_i}
 - Update π_{i+1} to be an improved version
- Recall: Gradient descent, K-means, E-M

State-Action Value Q

Define the state-action value of a policy

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V^{\pi}(s')$$

- The expected return from:
 - taking an action a at state s
 - then continuing with the policy π

Satisfies the equality

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) Q^{\pi}(a, s)$$
 Fix

Update

Policy iteration

- Similar to the expectation-maximization, we do:
 - Compute the Q function for the current policy π_i

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V^{\pi_i}(s')$$

• Compute the new policy π_{i+1} for all $s \in S$

$$\pi_{i+1}(s) = \arg\max_{a \in A} Q^{\pi_i}(s, a), \quad \forall s \in S$$

- Theorem (w/o proof). We have $V^{\pi_{i+1}}(s) \geq V^{\pi_i}(s)$
 - Somewhat surprising, as the optimization of π_{i+1} was based on the assumption that we'll use π_i from the next step.

Value iteration

- Policy iteration operates as:
 - computes the infinite horizon value of a policy
 - somewhat heavy computing value requires iterations
 - improves that policy

- Value iteration is another technique:
 - Compute the best next state, when H=1
 - Compute the best next state, when H=2
 - •

Value iteration

- More formally, the value iteration is:
 - Initialize $V_{(0)}(s) = 0$ for all states s
 - Iterate:
 - Update the value function

$$V_{(i+1)}(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V_{(i)}(s') \right)$$

Update the policy function

$$\pi_{(i+1)}(s) = \arg\max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V_{(i)}(s') \right)$$

Value iteration vs. Policy iteration

Value iteration

- Lighter
 - Better for large state-/action spaces
- Can compute finite-horizon policies

Policy iteration

- Requires less iteration, usually
- Guaranteed and stable convergence
 - Especially when γ is very large

Next class

- Q-learning
- Policy Gradient
- Wrap-up

</le>