Reinforcement Learning - 1

Recap

- So far.
 - Supervised Learning
 - Unsupervised Learning
 - Generative Modeling
- Today.
 - Reinforcement Learning

Reinforcement learning

- Different from other ML paradigms in several aspects:
 - No supervisor only a reward
 - Delayed feedback not instantaneous
 - Time matters Sequential, non-i.i.d. data
 - Agent's action affect the subsequent data it receives

Overview: A Maze Example

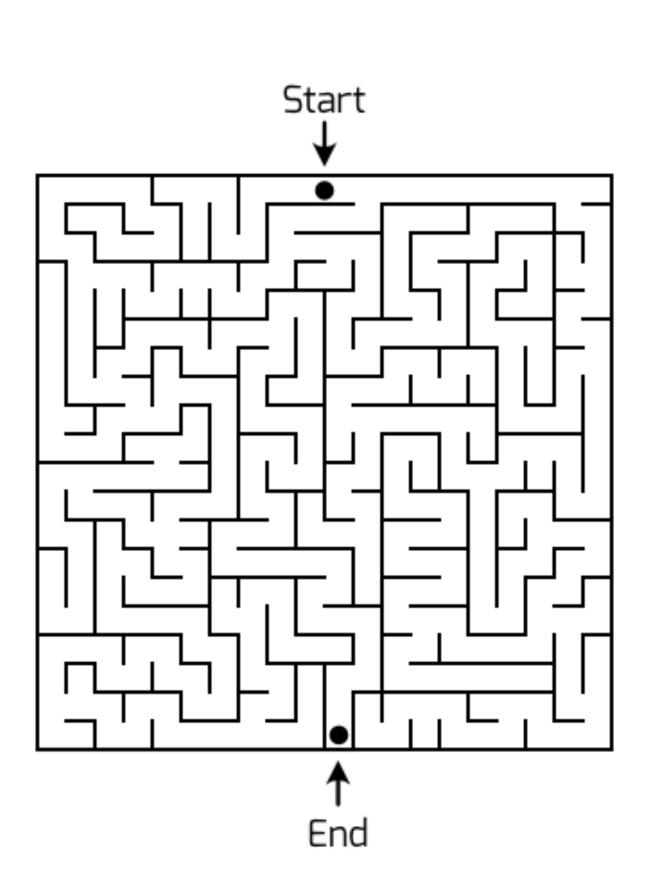
Problem

- Suppose that we want to solve maze
- **Task.** Given any maze, train a model that can find a path: Start -> End $f(\text{maze}) = \hat{\text{path}} = (\log_1, \log_2, ...)$
- Goal.
 - (1) Path should solve the maze:

$$\hat{path}[0] = \text{start}, \ \hat{path}[-1] = \text{end}$$

(2) Path should be valid

(3) Make it shortest as possible



Supervised Learning

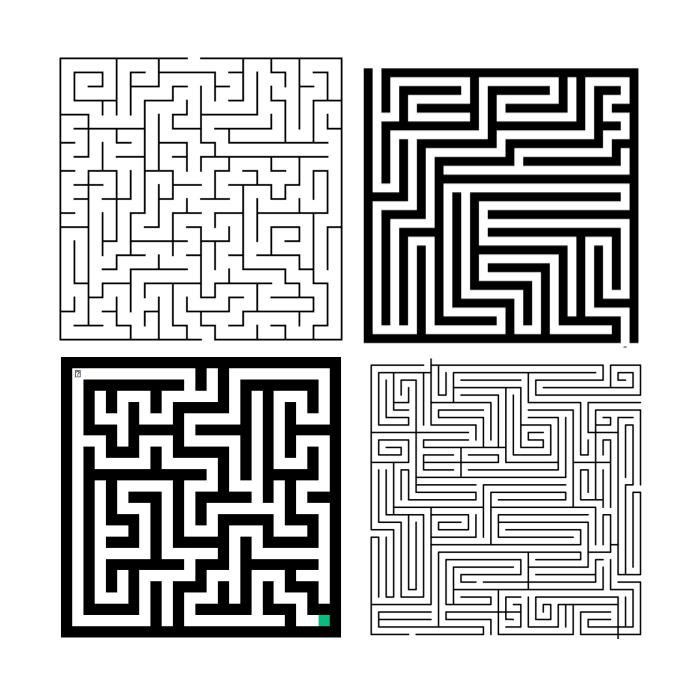
- How do we solve this problem?
- Naïve. Try a supervised learning
 - Collect many samples of mazes

$$maze_1, maze_2, ..., maze_n$$

• Label the samples (e.g., hire maze experts)

$$(maze_1, path_1), ..., (maze_n, path_n)$$

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \operatorname{diff}(\operatorname{path}_{i}, f(\operatorname{maze}_{i})) + \lambda \cdot \operatorname{len}(f(\operatorname{maze}_{i}))$$

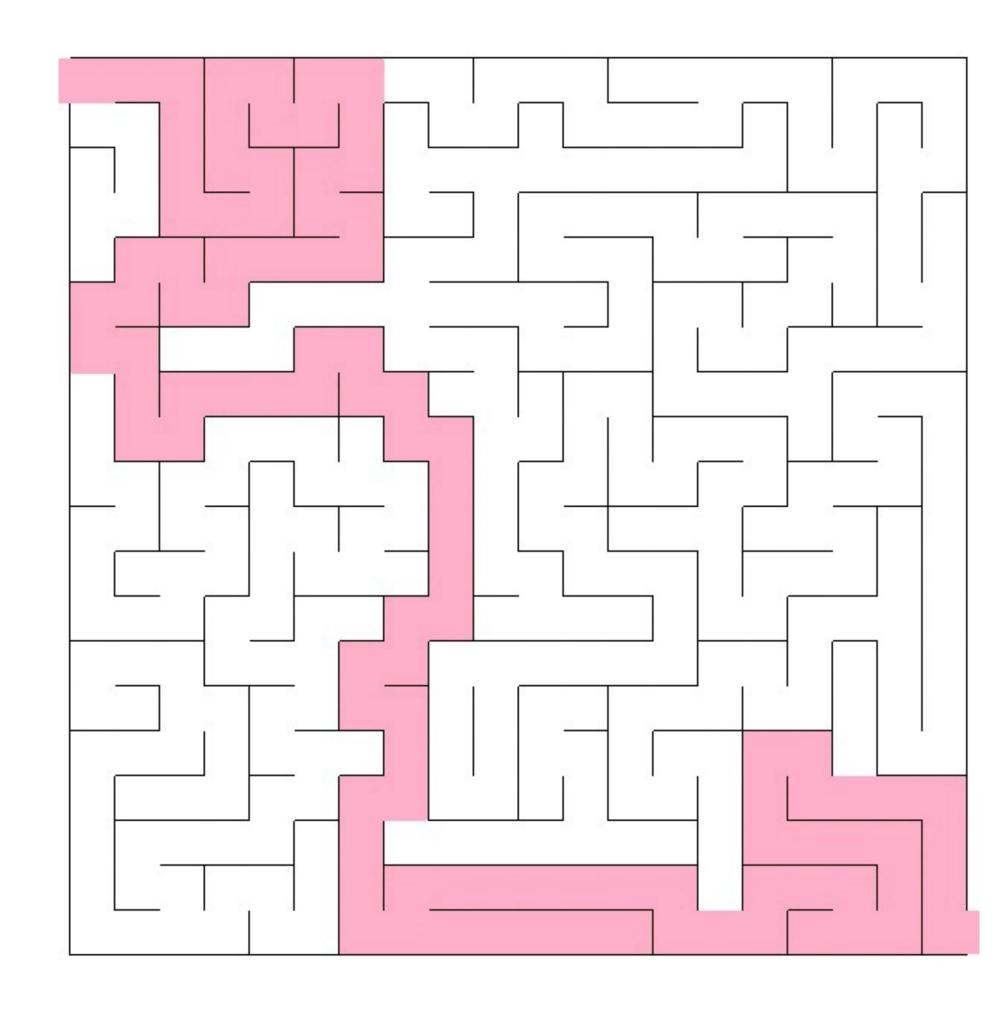


Limitations

This approach suffers from many limitations

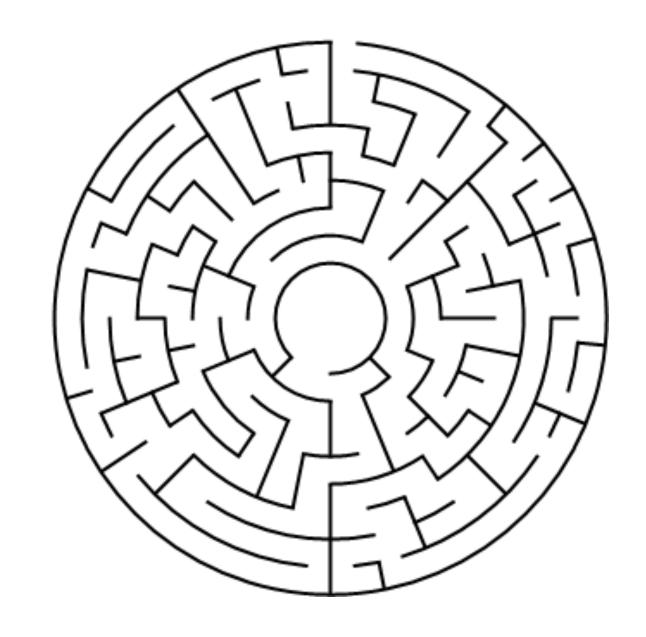
- 1. Annotation. Costly to collect
- Expensive to hire expert maze solvers
- Some mazes are too difficult
- Multiple solutions can be true

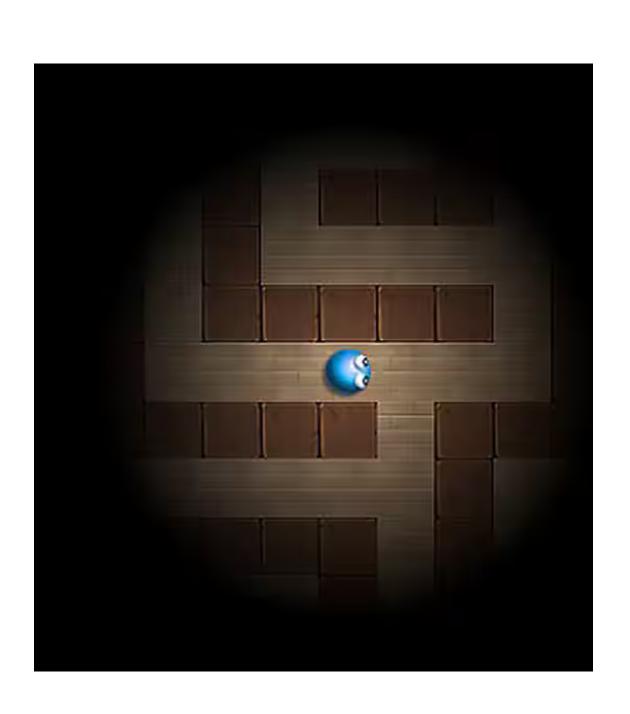
- 2. Complexity. Label space is too complicated
- Requires a lot of data



Limitations

- 3. Generalization. Often generalizes very poorly
- Unseen data types and styles
 - Circular maze
- Incomplete observables
 - Maze in the dark





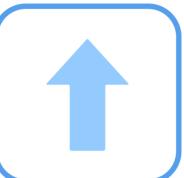
Idea

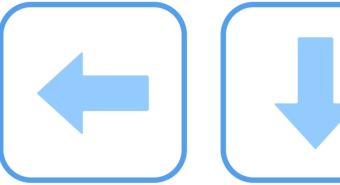
- Formulate the problem as a sequential decision-making
 - Greatly simplifies the prediction task
- Given your current **state** (i.e., position), predict **action** (i.e., direction) $g(loc_i; maze) = dir_i \in \{up, down, left, right\}$
 - The next state is determined by both current state and action

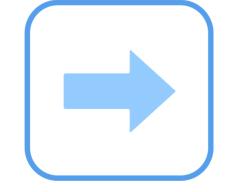
$$loc_{i+1} = loc_i + dir_i$$

Repeat until you arrive (or reach max runtime)

$$loc_t = end \quad or \quad t \geq T$$







Idea

• Objective. Maximize the reward (i.e., success rate)

$$\mathbb{E}\left[\mathbf{1}[g^{t}(\text{start}; \text{maze}_{i}) = \text{end, for some } t]\right]$$

 Data collection. Deploy the model on sample mazes to collect many episode (i.e., path) unrolled by the model

$$\operatorname{maze}_{i}$$
, $(\operatorname{loc}_{1}, \operatorname{loc}_{2}, ..., \operatorname{loc}_{T})$

- If succeeded, use it as a successful sample
- If failed, use it as a wrong sample

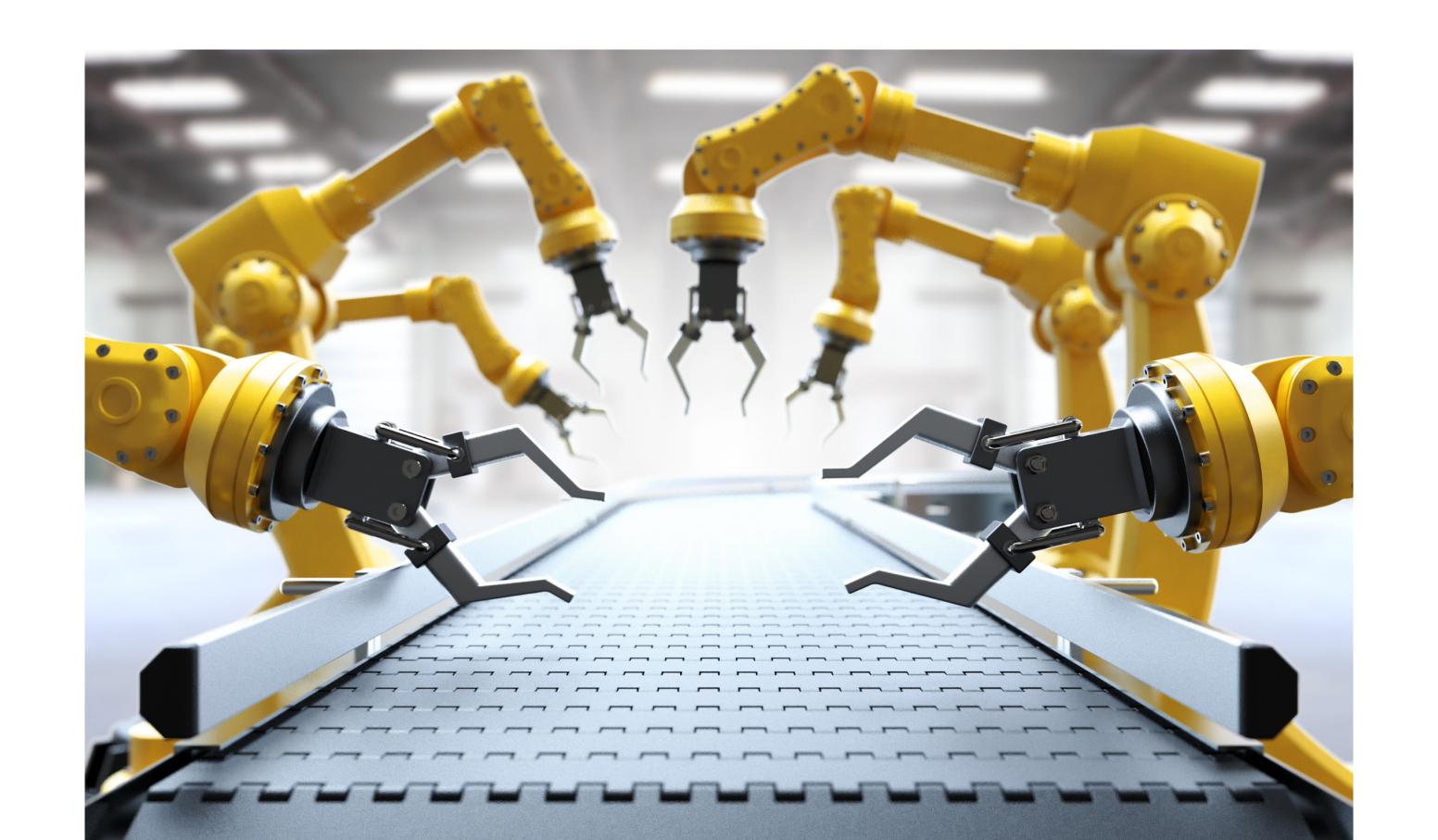
Mostly wrong samples at first, but will get better as training goes on

Idea

- Note. No human supervision at all!
 - Unlike image/text cases, the success depends on objective criterion
 - We have access to an environment, which gives us reward
 - If we have, we can also use human-labeled samples
 - Guide for early training
- Question. How do we encourage shorter path?
 - Select some discount factor $\gamma \in (0,1]$ and try to maximize

$$\mathbb{E}\left[\gamma^t \cdot \mathbf{1}[g^t(\text{start}; \text{maze}_i) = \text{end, for some } t]\right]$$

Robotic control, especially when "human supervision" does not work movement_i = $g(\text{image}_i, \text{instruction}_i, \text{robot state}_i)$



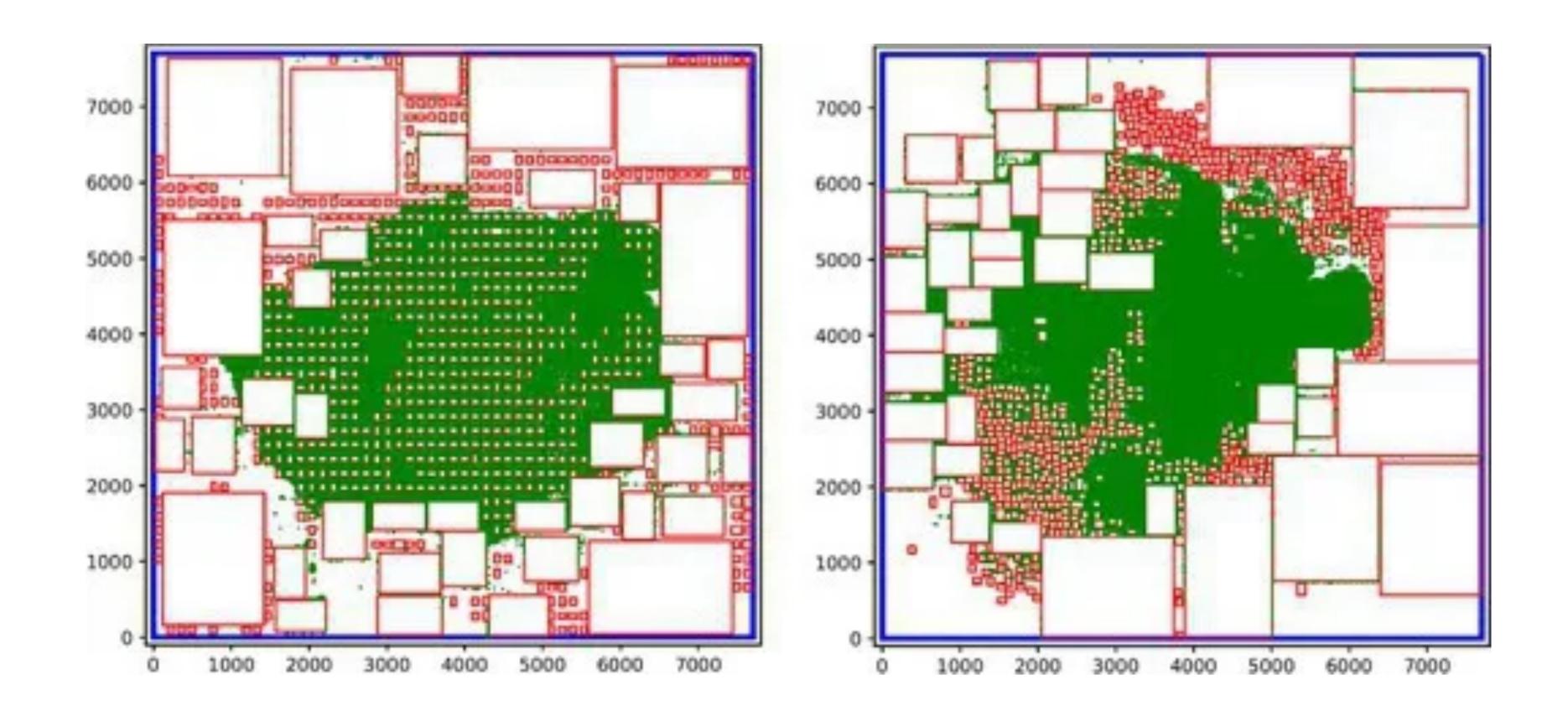
Stock trading

trading decision_i = $g(\text{market}_i, \text{portfolio}_i)$

- Drug discovery
 - Next material to try can be generated by adding/subtracting atoms material to $try_i = g(materials\ tried_i)$

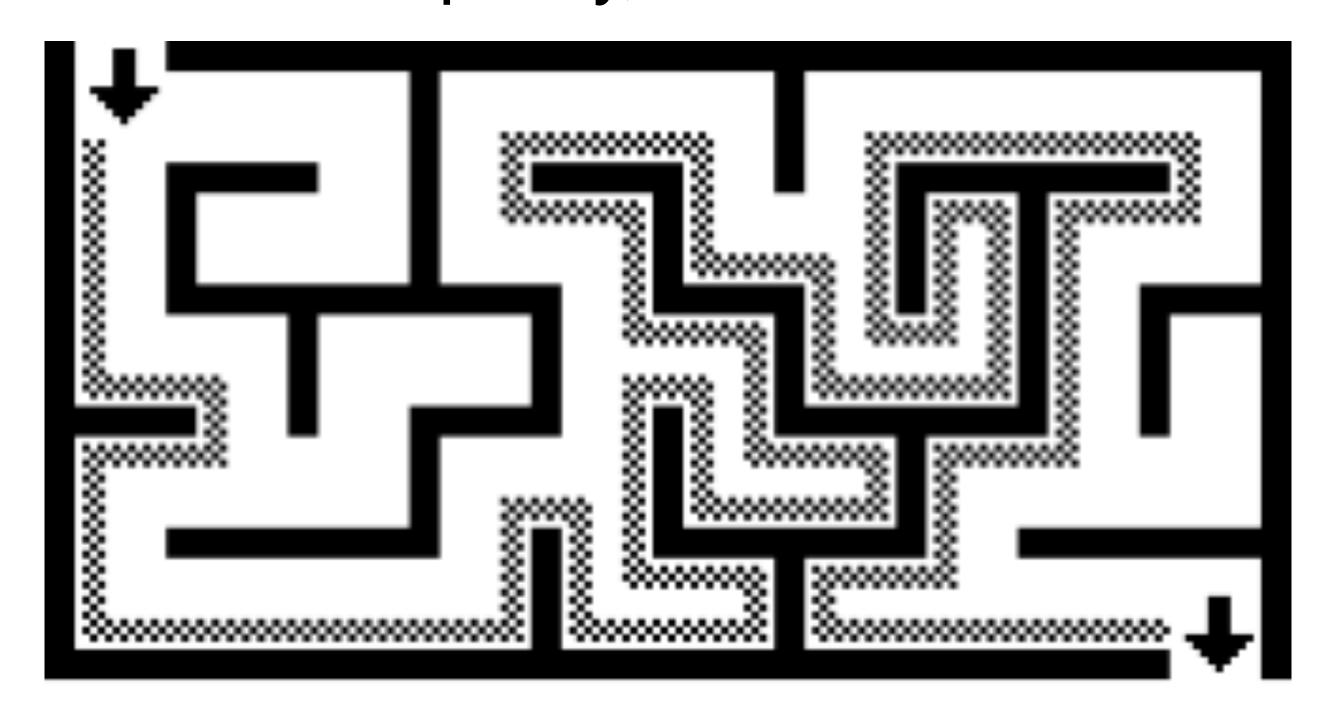
Macro-level placement plans for chips

(element_i, location_i) =
$$g(\text{current plan}_i)$$



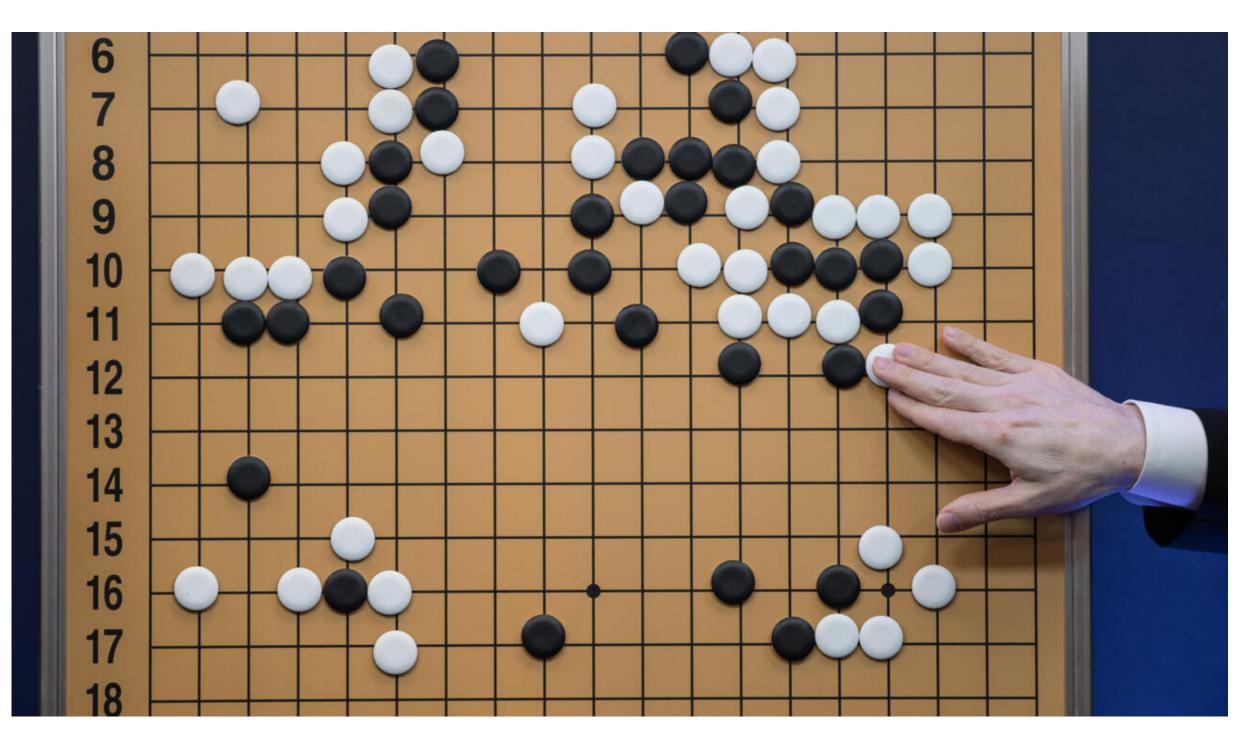
Key issues

- Often, we have an exploration-exploitation tradeoff
 - If we find a successful predictor —e.g., right-hand policy
 - Then we can either
 - Explore. Try a new policy, potentially finding a better one
 - Exploit. Stick to the policy, to maximize the success rate



Key issues

- Rewards are sparse in many cases
 - Difficult to know if your intermediate actions have been correct
 - Especially problematic for long-horizon tasks
 - Can fall into myopic actions



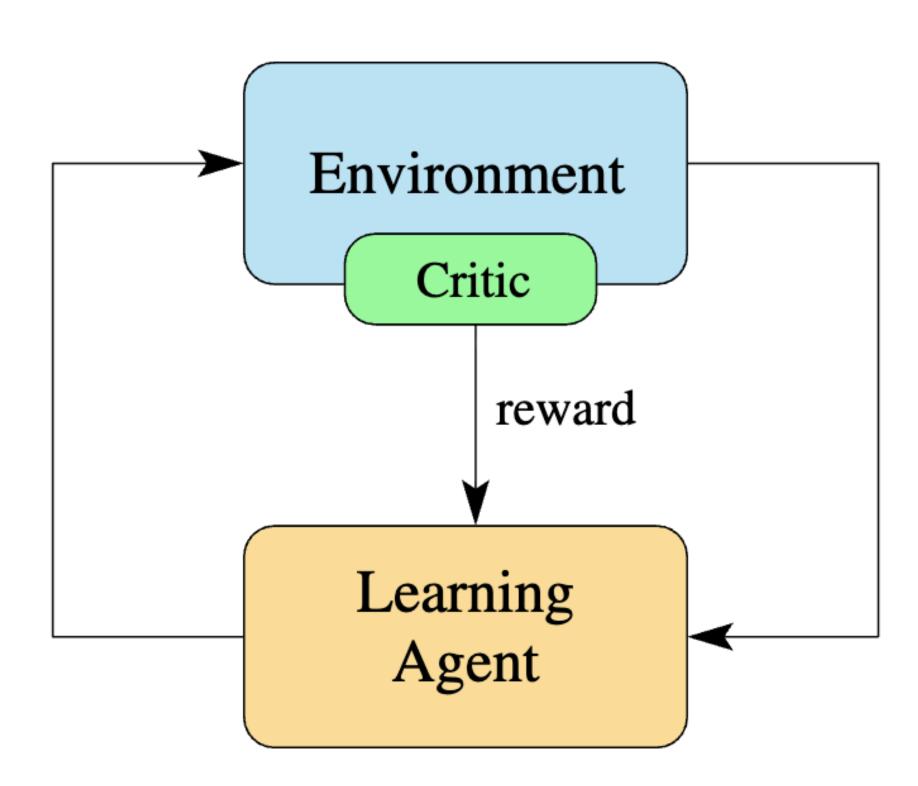
In what follows

- Formalisms
 - Markov Decision Process
 - Bellman Equation
- Algorithms
 - As time permits...

Formalism

Reinforcement learning

Learning a behavior strategy (a policy),
 which maximizes the long term sum of rewards (delayed reward)
 by a direct interaction (trial-and-error)
 with an unknown and uncertain environments



Interaction protocol

Agent. Generates action, given the current state (plus reward)

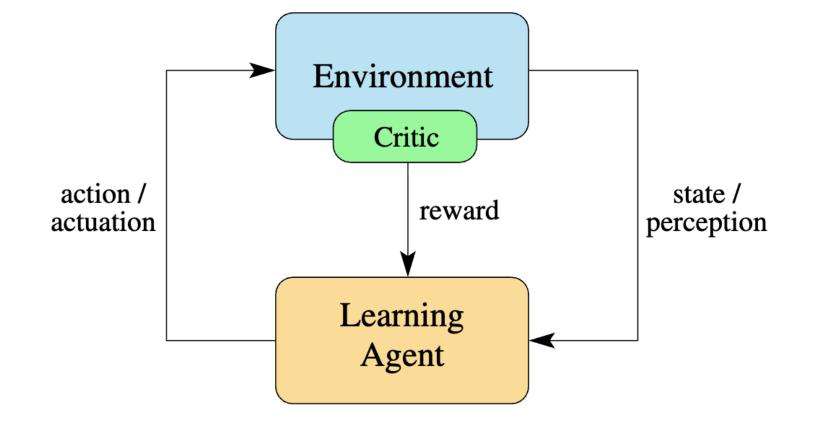
$$a_i = f_{\theta}(s_i)$$

• Environment. Generates next state, given the action and current state

$$s_{i+1} = g(s_i, a_i)$$

• Critic. Generates reward

$$r_i = h(s_i, s_{i+1}, a_i)$$



```
for t=1,\ldots,n do

The agent perceives state s_t
The agent performs action a_t
The environment evolves to s_{t+1}
The agent receives reward r_t
end for
```

- A key property of this framework is that the future state s_{i+1} depends only on (s_i, a_i)
 - It does not depend on $(s_{i-1}, a_{i-1}), (s_{i-2}, a_{i-2}), \dots$

0 START	6	12	18	24	30	36	42
1	7	13	19	25	31	37	43
2	8	14	20	26	32	38	44
3	9	15		27	33	39	45
4	10	16	22	28	34	40	46
5	11	17	23	29	35	41	47 END

• All information about the past is contained inside s_i

- Let's make this argument a little more formal
 - Mathematical base for how to model "states"

Definition (Markov Chain).

Suppose that we have three random variables $X,\,Y,\,Z$. We say that they form a Markov chain X-Y-Z, whenever

$$P(Z|Y,X) = P(Z|Y)$$

That is, Z and X are conditionally independent, given Y

Example (Weather).

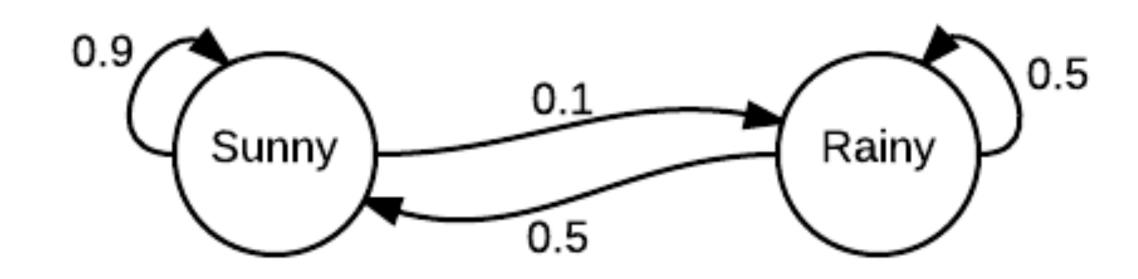
Suppose that in Pohang, it is only "sunny" 🍀 or "rainy" 🥋

- If it was sunny yesterday, then it will stay sunny with 90% chance
- If it was rainy yesterday, then it will stay rainy with 50% chance

Then, letting

- X: Yesterday's weather
- Y: Today's weather
- Z: Tomorrow's weather

We have X - Y - Z a Markov chain.



- For this weather model, let $p_1^{(i)}$ be the probability of being sunny on i-th day and $p_2^{(i)}$ be the probability of being rainy.
 - Then, we know that

State Transition Matrix
$$\begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} p_1^{(i)} \\ p_2^{(i)} \end{bmatrix} = \begin{bmatrix} p_1^{(i+1)} \\ p_2^{(i+1)} \end{bmatrix}_{0.9}$$

• If there is some p_1, p_2 such that

$$\begin{bmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

then the weather distribution is stationary — stays same everyday

Markov decision process

The evolution of environment can be formalized as follows:

Definition (Markov Decision Process; MDP).

A Markov decision process is defined as a tuple M = (S, A, p, r), where

- t: time clock
- S: state space
- \bullet A: action space
- p(y | x, a): transition probability, with

$$p(y | x, a) = \mathbf{P}(s_{t+1} = y | s_t = x, a_t = a)$$

• r(x, y, a): reward of transition (x, y, a)

Policy

The behavior of agents can be characterized by policy

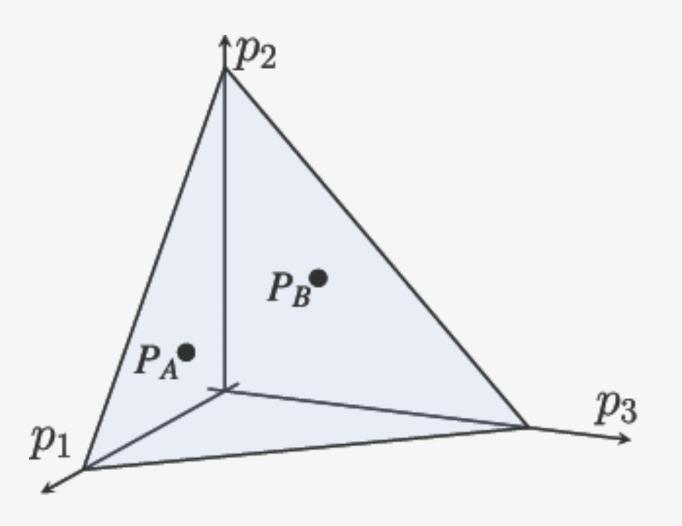
Definition (Policy).

A decision rule π_t can be:

- Deterministic: $\pi_t: S \to A$
- Stochastic: $\pi_t: S \to \Delta(A)$

A policy can be:

- Non-stationary: $\pi = (\pi_0, \pi_1, \dots)$
- Stationary: $\pi = (\pi, \pi, ...)$



MDP + Stationary Policy

- Remark. Suppose that ...
 - Our state evolves as an MDP
 - Our policy is stationary

Then, we have a Markov chain of state S and transition probability

$$p(y \mid x) = p(y \mid x, \pi(x))$$

 This framework is powerful enough, capturing many sequential decisionmaking problems.

Interaction protocol

- The environment may differ by:
- Controllability. Fully (e.g., chess)

Partially (e.g., portfolio optimization)

• Uncertainty. Deterministic (e.g., chess)

Stochastic (e.g., dice-involving)

• Reactive. Adversarial (e.g., chess)

Fixed (tetris)

• Observability. Full (e.g., chess)

Partial (e.g., starcraft)

• Availability. Known (e.g., chess)

Unknown (e.g., robotics)

Next class

- Markov reward process
- Bellman equation
- Basic algorithms

</le>