Elements of ML

Recap: What is learning?

The process of extracting and utilizing patterns from the samples

Recap: What is learning?

- Today. We formalize this concept:
 - What exactly is a pattern?
 - How can we program a machine to find one?

- In particular, we provide some unified but hand-wavy perspectives:
 - starting next week, we look at individual ML algorithms

- Associations of distinct variables
- Example. "Green pixels" are associated with "another green pixel"

- Associations of distinct variables
- Example. The text "A dog is" is associated with the word "cute"

(Next word prediction — GPT is trained this way)

- The variables need not be of same modality
- Example. An image is associated with its textual description

Inputs

Image-to-Text Model

Output

Detailed description

a herd of giraffes and zebras grazing in a field

- We can make associations with imaginary variables
- Example. "Locations" are associated with "Categories (imaginary)"

Categories

- ullet Roughly, learning is about associating different random variables: $X,\,Y$
 - Jointly distributed as some probability distribution $P_{XY}(x,y)$
 - However, P_{XY} is not known to the learner

Instead, we have training data

Categories

- Depending on the type of data available, learning can be categorized into:
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

- Note: Of course, there are many other terminologies
 - semi-supervised, self-supervised, active, ...
- Note: In this course, we focus on supervised & unsupervised
 - Reinforcement learning as a special session

Categories: Supervised Learning

- We have many input-output pairs $D = \{(X_i, Y_i)\}_{i=1}^n, (X_i, Y_i) \sim P_{XY}$
 - Learn the input-to-output mapping
 (e.g., learning to predict the color of points)

Categories: Unsupervised Learning

- We have many unlabeled input data $D = \{X_i\}_{i=1}^n, X_i \sim P_X$
 - Learn useful structures of data or virtual labels (e.g., identifying clusters of data)
 - The structures may be useful for downstream tasks

Categories: Reinforcement Learning

- We have an environment that we can interact with:
 - Can collect sequence of interactions with the environment
 - Actions, Rewards, States
 - Learn an interaction policy (i.e., agent) that maximizes the reward
 - Somewhat specialized; we'll discuss this as a special topic later

Supervised Learning

Supervised Learning

- For now, let's focus on the supervised learning scenario:
 - We have two random variables: X, Y
 - Jointly distributed as some probability distribution $P_{XY}(x,y)$
- Consider a simple prediction task, where
 - X is easy to collect (called features)
 - e.g., natural images
 - Y is costly to acquire (called labels)
 - e.g., human-written labels

Supervised Learning

- ullet Goal. Given some X, predict the associated label Y
- Challenge. We do not know the joint distribution $P_{XY}(x,y)$
 - Instead, we only have access to some data
 - If we knew: we can get the posterior distribution...

$$P_{Y|X}(y \mid x) = \frac{P_{XY}(x, y)}{P_{X}(x)}$$

$$= \frac{P_{XY}(x, y)}{\int_{y} P_{XY}(x, y) dy}$$

Warm-up quiz. Given $P_{Y\mid X}$, do you know what to do?

Quiz: Estimation Basics

- Imagine a biased die
 - Its face probabilities depend on the table condition, $X \in \mathbb{R}^d$
 - The event of each face coming up is represented by $Y \in \{1,2,\ldots,6\}$

Quiz: Estimation Basics

- We are given some weather (X = x)
 - Then, we can compute the probability of each face:

$$P_{Y|X}(1|x) = p_1, \quad P_{Y|X}(2|x) = p_2, \quad ..., \quad P_{Y|X}(6|x) = p_6$$

- Question. Given these, how will you predict the outcome \hat{Y} , if you want to:
 - Maximize the probability of being wrong?
 - Minimize the expected error $\mathbb{E}[(\hat{Y} Y)^2]$?
 - Simulate the (random) outcome Y of the die?

Quiz: Estimation Basics

- Answer. we can construct, e.g.,
 - Maximum a posteriori estimate (MAP), for discrete Y

$$\hat{y} = \arg\max_{y} P_{Y|X}(y|x)$$

• Minimum Mean-Squared Error (MMSE), for continuous Y

$$\hat{y} = \mathbb{E}[Y|X = x] = \int_{y} y \cdot P_{Y|X}(y|x) \, dy$$

Sampling a solution, for diverse generation / prediction

$$\hat{y} \sim P_{Y|X}(\cdot \mid x)$$

• You can construct similar estimates, e.g., to minimize $\mathbb{E}[|\hat{Y} - Y|]$.

Two approaches in ML

• Now let's get back on track — in learning, we do not know ${\cal P}_{XY}$

• Instead, we want to use training data to build an estimate

$$\hat{Y} = f(X)$$

- Question. How can we do this in a principled way?
 - Generative
 - Discriminative

Two approaches in ML: Generative

- Generative approach aims to directly model P_{XY}
 - i.e., capturing the data generation process itself
 - Can be used to construct $\hat{P}_{Y|X}$
 - Examples: Naïve Bayes, VAE, GAN, Diffusion
 - de Once it works well, many other perks
 - Generation (P_X) , Conditional Generation $(P_{X|Y})$, quantify the uncertainty of prediction $P_{Y|X}(\hat{y}\mid x)$, ...
 - √ Very difficult to achieve a lot of data, or heavy assumption

Two approaches in ML: Discriminative

- Discriminative approach aims to model $P_{Y|X}$
 - Often model the <u>estimates</u> based on $P_{Y\mid X}$ (e.g., MAP), not itself
 - Example: Logistic regression, SVM, neural net classifiers
 - de Can learn with relatively less samples
 - Usually better accuracy on the target task
 - Tannot generate data, potentially poor calibration, limited use case

Note: In DL, people used to work on D (~2019), then moved onto G

Learning as an optimization

Learning as an optimization

- Now, let's focus on the discriminative case for supervised learning
 - That is, we have a bunch of data

$$\{(X_i, Y_i)\}_{i=1}^n \sim P_{XY}$$

And our goal is to find a nice model

$$\hat{P}_{Y|X}(y|x)$$

which fits this data the best.

This optimization is what learning algorithm does

Learning as an optimization

- Question. How exactly do we do this?
 - Answer. Differs from algorithm to algorithm (sadly)

- There are two unified perspectives toward various ML algorithms
 - Statistical learning
 - Bayesian approach

Note: These two are — to some degree — interchangeable

Learning as an optimization: Statistical learning

- Under the statistical learning paradigm, each learning algorithm is characterized by three elements:
 - Hypothesis space
 - Loss function
 - Search algorithm

Hypothesis space. A bag of models

$$\mathcal{F} = \left\{ f_{\theta}(\,\cdot\,) \mid f_{\theta} : \mathcal{X} \to \mathcal{Y}, \quad \theta \in \Theta \right\}$$

- \mathcal{X} : set of all possible X (e.g., set of all 256 x 256 images)
- \mathscr{Y} : set of all possible Y (e.g., set of all labels)
- θ : parameters (which we optimize for)
- Example. Set of all affine models

$$f_{\theta}(x) = Wx + b, \qquad \theta = (W, b), W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$$

Loss function. A measure of "wrongness" of the model prediction:

$$\ell(\cdot,\cdot):\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$$

• If we get a sample (X^*,Y^*) , the loss of a predictor f_{θ} is:

$$\mathcal{C}(f_{\theta}(X), Y)$$

• Example. Squared loss

$$\mathcal{E}(\hat{Y}, Y) = \|\hat{Y} - Y\|_2^2$$

Zero-one loss

$$\mathcal{E}(\hat{Y}, Y) = \mathbf{1}\{\hat{Y} = Y\}$$

• Before we describe the search algo, let us first formalize our final goal:

Objective. Given the hypothesis space and the loss, our goal is to solve:

$$\min_{\theta \in \Theta} \mathbb{E}_{(X,Y) \sim P_{XY}} [\ell(f_{\theta}(X), Y)]$$

• That is, we want to find the function f_{θ} which has the smallest average loss on the test sample (X,Y)

- ullet Problem. We don't know P_{XY}
- Idea. We conduct Empirical Risk Minimization (ERM):
 - That is, we find the model which achieves the minimum average loss on training dataset:

$$\min_{\theta \in \Theta} \mathbb{E}_{(X,Y) \sim D}[\ell(f_{\theta}(X), Y)] = \min_{\theta \in \Theta} \left[\frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i) \right]$$

Rationale. If we have enough samples, the law of large numbers say that

$$\frac{1}{n} \sum_{i=1}^{n} \mathscr{C}(f_{\theta}(X_i), Y_i) \xrightarrow{n \to \infty} \mathbb{E}[\mathscr{C}(f_{\theta}(X), Y)]$$

for any fixed θ

- Thus, the empirical loss can be a good proxy of the population loss
 - Caveat: LLN requires independent(-ish) draws of the samples!

Search algorithm. How we solve this ERM optimization

$$\min_{\theta \in \Theta} \mathbb{E}_{(X,Y) \sim D} [\ell(f_{\theta}(X), Y)] = \min_{\theta \in \Theta} \left[\frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i) \right]$$

- Example.
 - Analytical solution
 - Solve by iterative optimization (e.g., SGD)

(more on this later)

Learning as an optimization: Bayesian perspective

Bayesian approach

Bayesians prefer a generative explanation:

"If our model is correct, the probability of our model generating the data would be high."

(called the "maximum likelihood principle")

Bayesian approach

- This principle provides a mean to compare two models:
- Example. Suppose that we have two "models"

$$P_{XY}^{(1)}(x,y), \qquad P_{XY}^{(2)}(x,y)$$

- Suppose that we are given one sample: (X^*, Y^*)
 - If we have

$$P_{XY}^{(1)}(X^*, Y^*) > P_{XY}^{(2)}(X^*, Y^*)$$

then $P^{(1)}$ is more likelier to be correct!

Bayesian approach

Suppose that we have a family of parametrized joint distributions

$$P_{\theta}(x, y) = P_{\theta}(x)P_{\theta}(y|x), \quad \theta \in \Theta$$

ullet Goal. Find heta maximizing the probability of generating all training data:

$$\max_{\theta} P_{\theta}((X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n))$$

If all training data are independently drawn, we know that this is:

$$\max_{\theta} \left(\prod_{i=1}^{n} P_{\theta}(X_i, Y_i) \right)$$

forgive me for the abuse of notation;)

Bayesian approach

We can apply $log(\cdot)$ to make things look simpler:

$$\max_{\theta} \sum_{i=1}^{n} \log P_{\theta}(X_i, Y_i)$$

This is what we call the maximum log-likelihood solution

We can break down P_{θ} and write:

$$\max_{\theta} \left(\sum_{i=1}^n \log P_{\theta}(Y_i|X_i) + \sum_{i=1}^n \log P_{\theta}(X_i) \right)$$
 • For simplicity, ignore the second term

Bayesian approach

Notice that this is similar to doing ERM:

$$\max_{\theta} \left(\sum_{i=1}^{n} \log P_{\theta}(Y_i | X_i) \right) \Leftrightarrow \min_{\theta} \left(\frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{P_{\theta}(Y_i | X_i)} \right)$$

• If we have a nice loss and f_{θ} such that

$$\log \frac{1}{P_{\theta}(y \mid x)} = \ell(f_{\theta}(x), y)$$

then Bayesian approach reduces to ERM!

(many loss functions — e.g., cross-entropy — have this origin)

Summing up

- Most ML algorithms are ERM, with different choice of
 - Hypothesis space
 - Loss
 - Search algorithm

But why are there so many algorithms?

Considerations of building an ML algorithm

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(f_{\theta}(X_i), Y_i) \quad \text{(+ regularizers)}$$

Basically, designing the components of this optimization formula

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{C}(f_{\theta}(X_i), Y_i) \quad \text{(+ regularizers)}$$

- Model Size (= Richness of \mathscr{F})
 - If too small, even the best $f_{ heta}$ cannot fit the training data

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i) \quad \text{(+ regularizers)}$$

- Model Size (= Richness of \mathscr{F})
 - If too large, can overfit the training data + large inference cost

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{C}(f_{\theta}(X_i), Y_i) \quad \text{(+ regularizers)}$$

- Optimization (= Difficulty of solving ERM)
 - Need tailoring for each model class
 - If models are highly complicated & nonlinear:
 - Analytical solution unavailable
 - Takes a long time to solve

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(f_{\theta}(X_i), Y_i) \quad \text{(+ regularizers)}$$

- Loss & Regularizer
 - Affects the difficulty of optimization
 - e.g., non-continuous loss
 - Affects overfitting
 - e.g., penalizing model complexity

Designing the right model class

Think about this data:

Designing the right model class

- We, as a human, may believe that this is a straight line + noise
 - This is due to our inductive bias simpler solutions (in some sense) are more desirable

From the next class

- We study popular ML algorithms one-by-one
 - Each designed with different inductive bias
 - Different hypothesis space
 - Different optimization mechanism
 - Different loss / regularizer

- Note. Many of these choices heavily depend on tasks:
 - e.g., image vs text vs tabular