
Elements of ML



Recap: What is learning?
• The process of extracting and utilizing patterns from the samples

LearningSamples Behaviors 
(guided by patterns)



Recap: What is learning?
• Today. We formalize this concept: 

• What exactly is a pattern? 
• How can we program a machine to find one? 

• In particular, we provide some unified but hand-wavy perspectives: 
• starting next week, we look at individual ML algorithms



Patterns



Patterns
• Associations of distinct variables 
• Example.“Green pixels” are associated with “another green pixel”

?



Patterns
• Associations of distinct variables 
• Example.The text “A dog is” is associated with the word “cute” 

(Next word prediction — GPT is trained this way)

“A dog is     ?     ”



Patterns
• The variables need not be of same modality 
• Example. An image is associated with its textual description 



Patterns
• We can make associations with imaginary variables 
• Example.“Locations” are associated with “Categories (imaginary)”



Categories
• Roughly, learning is about associating different random variables:  

• Jointly distributed as some probability distribution  

• However,  is not known to the learner 

• Instead, we have training data

X, Y
PXY(x, y)

PXY



Categories
• Depending on the type of data available, learning can be categorized into: 

• Supervised learning 
• Unsupervised learning 
• Reinforcement learning 

• Note: Of course, there are many other terminologies 
• semi-supervised, self-supervised, active, … 

• Note: In this course, we focus on supervised & unsupervised 
• Reinforcement learning as a special session



Categories: Supervised Learning
• We have many input-output pairs  

• Learn the input-to-output mapping 
(e.g., learning to predict the color of points)

D = {(Xi, Yi)}n
i=1, (Xi, Yi) ∼ PXY



Categories: Unsupervised Learning
• We have many unlabeled input data  

• Learn useful structures of data — or virtual labels 
(e.g., identifying clusters of data) 

• The structures may be useful for downstream tasks

D = {Xi}n
i=1, Xi ∼ PX



Categories: Reinforcement Learning
• We have an environment that we can interact with: 

• Can collect sequence of interactions with the environment 
• Actions, Rewards, States 

• Learn an interaction policy (i.e., agent) that maximizes the reward 
• Somewhat specialized; we’ll discuss this as a special topic later



Supervised Learning



Supervised Learning
• For now, let’s focus on the supervised learning scenario: 

• We have two random variables:  

• Jointly distributed as some probability distribution  

• Consider a simple prediction task, where 

•  is easy to collect     (called features) 
• e.g., natural images 

•  is costly to acquire  (called labels) 
• e.g., human-written labels

X, Y
PXY(x, y)

X

Y



Supervised Learning
• Goal. Given some , predict the associated label  

• Challenge. We do not know the joint distribution  
• Instead, we only have access to some data 
• If we knew: we can get the posterior distribution… 

 

                              

Warm-up quiz. Given , do you know what to do?

X Y
PXY(x, y)

PY|X(y |x) =
PXY(x, y)

PX(x)

=
PXY(x, y)

∫
y
PXY(x, y) dy

PY|X



Quiz: Estimation Basics
• Imagine a biased die 

• Its face probabilities depend on the table condition,  

• The event of each face coming up is represented by 

X ∈ ℝd

Y ∈ {1,2,…,6}



Quiz: Estimation Basics
• We are given some weather ( ) 

• Then, we can compute the probability of each face: 

 

• Question. Given these, how will you predict the outcome , 
                   if you want to: 
• Maximize the probability of being wrong? 

• Minimize the expected error ? 

• Simulate the (random) outcome  of the die?

X = x

PY|X(1 |x) = p1, PY|X(2 |x) = p2, …, PY|X(6 |x) = p6

̂Y

𝔼[( ̂Y − Y)2]
Y



Quiz: Estimation Basics
• Answer. we can construct, e.g., 

• Maximum a posteriori estimate (MAP), for discrete  

 

• Minimum Mean-Squared Error (MMSE), for continuous  

 

• Sampling a solution, for diverse generation / prediction 

  

• You can construct similar estimates, e.g., to minimize .

Y
̂y = arg max

y
PY|X(y |x)

Y

̂y = 𝔼[Y |X = x] = ∫y
y ⋅ PY|X(y |x) dy

̂y ∼ PY|X( ⋅ |x)
𝔼[ | ̂Y − Y | ]



Two approaches in ML
• Now let’s get back on track — in learning, we do not know  

• Instead, we want to use training data to build an estimate 

 

• Question. How can we do this in a principled way? 
• Generative 
• Discriminative

PXY

̂Y = f(X)



Two approaches in ML: Generative
• Generative approach aims to directly model  

• i.e., capturing the data generation process itself 

• Can be used to construct  

• Examples: Naïve Bayes, VAE, GAN, Diffusion 

👍 Once it works well, many other perks 

• Generation ( ), Conditional Generation ( ), 
quantify the uncertainty of prediction , … 

👎 Very difficult to achieve — a lot of data, or heavy assumption

PXY

̂PY|X

PX PX|Y
PY|X( ̂y |x)



Two approaches in ML: Discriminative
• Discriminative approach aims to model  

• Often model the estimates based on  (e.g., MAP), not itself 

• Example: Logistic regression, SVM, neural net classifiers 

👍 Can learn with relatively less samples 
• Usually better accuracy on the target task 

👎 Cannot generate data, potentially poor calibration, limited use case 

Note: In DL, people used to work on D (~2019), then moved onto G 

PY|X

PY|X



Learning as an optimization



Learning as an optimization
• Now, let’s focus on the discriminative case for supervised learning 

• That is, we have a bunch of data 

 

• And our goal is to find a nice model 

 

which fits this data the best. 

• This optimization is what learning algorithm does

{(Xi, Yi)}n
i=1 ∼ PXY

̂PY|X(y |x)



Learning as an optimization
• Question. How exactly do we do this? 

• Answer. Differs from algorithm to algorithm (sadly) 

• There are two unified perspectives toward various ML algorithms 
• Statistical learning 
• Bayesian approach 

• Note: These two are — to some degree — interchangeable



Learning as an optimization: 
Statistical learning



Statistical Learning
• Under the statistical learning paradigm, 

each learning algorithm is characterized by 
three elements: 
• Hypothesis space 
• Loss function 
• Search algorithm



Statistical Learning
• Hypothesis space. A bag of models 

 

• : set of all possible       (e.g., set of all 256 x 256 images) 

• : set of all possible        (e.g., set of all labels) 

• :   parameters                      (which we optimize for) 

• Example. Set of all affine models 

ℱ = {fθ( ⋅ ) | fθ : 𝒳 → 𝒴, θ ∈ Θ}
𝒳 X
𝒴 Y
θ

fθ(x) = Wx + b, θ = (W, b), W ∈ ℝm×d, b ∈ ℝm



Statistical Learning
• Loss function. A measure of “wrongness” of the model prediction: 

 

• If we get a sample , the loss of a predictor  is: 

  

• Example. Squared loss 

 
                      Zero-one loss 

ℓ( ⋅ , ⋅ ) : 𝒴 × 𝒴 → ℝ
(X*, Y*) fθ

ℓ( fθ(X), Y)

ℓ( ̂Y, Y) = ∥ ̂Y − Y∥2
2

ℓ( ̂Y, Y) = 1{ ̂Y = Y}



Statistical Learning
• Before we describe the search algo, let us first formalize our final goal: 

• Objective. Given the hypothesis space and the loss, our goal is to solve: 

 

• That is, we want to find the function  which has the smallest 
average loss on the test sample 

min
θ∈Θ

𝔼(X,Y)∼PXY
[ℓ( fθ(X), Y)]

fθ
(X, Y)



Statistical Learning
• Problem. We don’t know  

• Idea. We conduct Empirical Risk Minimization (ERM): 
• That is, we find the model which achieves the minimum average loss 

on training dataset: 

PXY

min
θ∈Θ

𝔼(X,Y)∼D[ℓ( fθ(X), Y)] = min
θ∈Θ [1

n

n

∑
i=1

ℓ( fθ(Xi), Yi)]



Statistical Learning
• Rationale. If we have enough samples, the law of large numbers say that 

 

                         for any fixed  

• Thus, the empirical loss can be a good proxy of the population loss 
• Caveat: LLN requires independent(-ish) draws of the samples!

1
n

n

∑
i=1

ℓ( fθ(Xi), Yi)
n→∞⟶ 𝔼[ℓ( fθ(X), Y)]

θ



Statistical Learning
• Search algorithm. How we solve this ERM optimization 

 

• Example. 
• Analytical solution 
• Solve by iterative optimization (e.g., SGD) 

(more on this later)

min
θ∈Θ

𝔼(X,Y)∼D[ℓ( fθ(X), Y)] = min
θ∈Θ [1

n

n

∑
i=1

ℓ( fθ(Xi), Yi)]

Model 1 Model 2 Model N…

Search 
Algorithm

Training 
Data



Learning as an optimization: 
Bayesian perspective



Bayesian approach
• Bayesians prefer a generative explanation: 

“If our model is correct, the probability of our model 
generating the data would be high.” 

(called the “maximum likelihood principle”)

If we see this data, 
maybe our model is wrong…



Bayesian approach
• This principle provides a mean to compare two models: 
• Example. Suppose that we have two “models” 

 

• Suppose that we are given one sample:  
• If we have 

 

then  is more likelier to be correct!

P(1)
XY (x, y), P(2)

XY (x, y)
(X*, Y*)

P(1)
XY (X*, Y*) > P(2)

XY (X*, Y*)
P(1)



Bayesian approach
• Suppose that we have a family of parametrized joint distributions 

 

• Goal. Find  maximizing the probability of generating all training data: 

 

• If all training data are independently drawn, we know that this is: 

 

forgive me for the abuse of notation ;)

Pθ(x, y) = Pθ(x)Pθ(y |x), θ ∈ Θ

θ
max

θ
Pθ((X1, Y1), (X2, Y2), …, (Xn, Yn))

max
θ (

n

∏
i=1

Pθ(Xi, Yi))



Bayesian approach
• We can apply  to make things look simpler: 

 

• This is what we call the maximum log-likelihood solution 

• We can break down  and write: 

 

• For simplicity, ignore the second term

log( ⋅ )

max
θ

n

∑
i=1

log Pθ(Xi, Yi)

Pθ

max
θ (

n

∑
i=1

log Pθ(Yi |Xi) +
n

∑
i=1

log Pθ(Xi))



Bayesian approach
• Notice that this is similar to doing ERM: 

 

• If we have a nice loss and  such that 

 

then Bayesian approach reduces to ERM! 

(many loss functions — e.g., cross-entropy — have this origin)

max
θ (

n

∑
i=1

log Pθ(Yi |Xi)) ⇔ min
θ (1

n

n

∑
i=1

log
1

Pθ(Yi |Xi) )
fθ

log
1

Pθ(y |x)
= ℓ( fθ(x), y)



Summing up
• Most ML algorithms are ERM, with different choice of 

• Hypothesis space 
• Loss 
• Search algorithm 

• But why are there so many algorithms?



Considerations of 
building an ML algorithm



Which algorithm should we use?

     (+ regularizers) 

• Basically, designing the components of this optimization formula

min
θ∈Θ

1
n

n

∑
i=1

ℓ( fθ(Xi), Yi)



Which algorithm should we use?

     (+ regularizers) 

• Model Size (= Richness of ) 

• If too small, even the best  cannot fit the training data

min
θ∈Θ

1
n

n

∑
i=1

ℓ( fθ(Xi), Yi)

ℱ
fθ



Which algorithm should we use?

     (+ regularizers) 

• Model Size (= Richness of ) 
• If too large, can overfit the training data + large inference cost

min
θ∈Θ

1
n

n

∑
i=1

ℓ( fθ(Xi), Yi)

ℱ



Which algorithm should we use?

     (+ regularizers) 

• Optimization (= Difficulty of solving ERM) 
• Need tailoring for each model class 
• If models are highly complicated & nonlinear: 

• Analytical solution unavailable 
• Takes a long time to solve

min
θ∈Θ

1
n

n

∑
i=1

ℓ( fθ(Xi), Yi)



Which algorithm should we use?

     (+ regularizers) 

• Loss & Regularizer 
• Affects the difficulty of optimization 

• e.g., non-continuous loss 
• Affects overfitting 

• e.g., penalizing model complexity

min
θ∈Θ

1
n

n

∑
i=1

ℓ( fθ(Xi), Yi)



Designing the right model class
• Think about this data:

X

Y



Designing the right model class
• We, as a human, may believe that this is a straight line + noise 

• This is due to our inductive bias — 
simpler solutions (in some sense) are more desirable

X

Y



From the next class
• We study popular ML algorithms one-by-one 

• Each designed with different inductive bias 
• Different hypothesis space 
• Different optimization mechanism 
• Different loss / regularizer 

• Note. Many of these choices heavily depend on tasks: 
• e.g., image vs text vs tabular


