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Overview
• Last two weeks. Deep learning for images 

• Architecture. ConvNet 
• Training. Augmentation & Self-supervised training 
• Generation. VAE, GAN, Diffusion 

• This week. Deep learning for text 
• Architecture. Preprocessing, RNN, Transformer 
• Generation. BERT & GPT
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Preview: Text vs. Image
• Text and image differs in many aspects 

(1) Text is discrete 
• Interpolating “ ” & “ ” vs. “A” & “C” 
• Required. A nice text vectorization mechanism



Preview: Text vs. Image
(2) Text has variable length 

•  image with fixed resolution — or can do downsampling 
• Required. An architecture that can handle sequences effectively

⇔



Preview: Text vs. Image
(3) Text has weaker locality than images 

•  image with high locality 
• Required. Architecture that can cover far distances

⇔

“The boy did not have 
   any idea where he is at.” 



Text preprocessing



Preprocessing
• Unlike images, translating text into vectors is not straightforward 

• Unicode? ASCII? A vs. B vs. C 

• Typically goes through: 
• Normalization 
• Pre-tokenization 
• Tokenization 
• Embedding

“The boy did not have 
   any idea where he is at.” 

(x1, x2, …, xn), xi ∈ ℝd

Model



Preprocessing
• The first three steps (normalization ~ tokenization) are responsible for 

chunking the text and mapping them into codes.



Preprocessing
• The last step (embedding) maps each chunk to a vector 

• Want to keep our dictionary small enough for handling

[token 1] x1 ∈ ℝd

[token 2] x2 ∈ ℝd

⋯
[token 30522] x30522 ∈ ℝd



Step 1. Normalization
• Various cleanups on the given text to reduce the data complexity 

• Remove unnecessary variations 

• Hello                       hello                                                # uppercase 

• I  ate it all               I ate it all                                       # whitespace 

• café                         cafe                                                       # accent 

• e-mail                      email                                            # punctuation 
• Unify date & numeric formats 

• 01/31/2024             2024-01-31 

• 31st Jan. 2024        2024-01-31

→
→
→
→

→
→



Step 1. Normalization
• Often, this is done at a unicode level 

• There are many equivalences… 
• https://www.unicode.org/reports/tr15/ 

• Note. Some LLMs are known to use a specific 
           unicode for “ “ 
• Easy to filter out LLM-generated data from 

their own training data 
• Copyright uses 
• Catching cheating ;)

https://www.unicode.org/reports/tr15/


Step 2. Pre-tokenization
• Break down text into manageable units 

• Facilitate more accurate tokenization — i.e., chunking 
• Sometimes, prevent breaking down 

• can’t                               can + ’t                                          # contraction 

• some sentence.           some sentence + .                     # punctuation 

• DMZ                               D + MZ                    # abbreviation & acronym

→
→
↛



Step 3. Tokenization
• Break down each sentence into tokens 
• Many variants… 

(1) Word-based tokenization 
• Good semantics 
• Too many vocabularies



Step 3. Tokenization
(2) Character-based tokenization 
• Small vocabulary size 
• Bad semantics



Step 3. Tokenization
(3) Subword tokenization 
• Frequent words are kept as a single token 
• Rare words are subdivided 

• Reduces the expected sequence length 
• How to take whitespaces into account differs from a tokenizer to another



Step 3. Tokenization
• As an example, we’ll take a look at Byte-Pair Encoding (BPE) 

• A data-driven method to generate subword tokenization policy 
• Similar: WordPiece 

• Idea. Merge frequent character combinations into tokens 
• Begin from the character-level tokens 
• If certain token appears together frequently, merge them 
• Repeat



Tokenization: Byte-Pair Encoding

• Example. Suppose that our text corpus consists of five words 
• Initial vocabulary:  [b, g, h, n, p, s, u] 
• Count the word frequencies: 
• Use this to count subword frequencies



Tokenization: Byte-Pair Encoding

• Example. Suppose that our text corpus consists of five words 
• Initial vocabulary:  [b, g, h, n, p, s, u] 
• Count the word frequencies: 
• Use this to count subword frequencies 

• Expand the vocabulary 

• Repeat, until the desired vocabulary size is met



Step 4. Embedding
• Token IDs are translated into one-hot encodings, and then to embeddings 

• Implementable with lookup tables 
• Embedding is trainable as well — more on this later



Architectures



Architectures
• We will cover two architectures that are designed for sequences 

• Recurrent neural nets (RNNs) 
• Transformers



RNNs



State-space models
• Idea. Handle sequential input using 

a state-space model (SSM) 

• Recall: Continuous SSMs 

• Handles a sequential input  by 
accumulating the internal state  

• Sequential output  is determined 
by both  

• Parameterized by transition matrices 

u(t)
x(t)

y(t)
u(t), x(t)

A, B, C, D



State-space models
• Discrete inputs can be handled similarly, with discrete SSMs 

• One can use     
                          

x(t) = Āx(t − 1) + B̄u(t)
y(t) = C̄x(t) + D̄u(t)



Recurrent layer
• More generally, we can use nonlinear modules: 

•                                             # note: change of notations 

•
ht = gθ(xt; ht−1)
ŷt = fθ(xt; ht−1)

RNN RNN (unrolled)



Recurrent layer
• In the simplest parameterization, the recurrence is formalized as: 

 

                                                         # Rumelhart (1986)

ht = tanh(Whhht−1 + Wxhxt)
yt = Whyht



Example: RNN for sentence generation
• Consider the case with: 

• Character-level tokens 
• Single-layer RNN 
• Identity embedding 

• Sentence generation can be 
done by feeding the generated 
character as a new input 

• Similar in GPT



Deep recurrent neural network
• Recurrent neural networks can be stacked 

to build a deep network 
• Strengthens the “memory” 

• Quite difficult to train 
• Vanishing/exploding gradient



Gradients of RNNs
• Suppose that we have computed the loss at time                            # i.e.,  

• We want to use this to update the hidden state at time          # i.e.,  

• The partial derivative of the current state w.r.t. past state is: 

 

• Then, we have: 
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Gradients of RNNs

• Solution. 
• Adopt extra modules that are designed for long-term dependencies 

• e.g., LSTM 
• Let the very old input directly affect the new output 

• e.g., Transformers



Transformers



Transformers
• Consists of: 

• a stack of encoder blocks 
• a stack of decoder blocks 

• Encoder-only. BERT 
• Decoder-only. GPT  (our focus)



• Each block consists of four elements 
• Multi-head Self Attention (MHA) 
• Feedforward network (FFN) 
• LayerNorm / RMSNorm 
• Residual connection 

• Only new component is the MHA

Transformers



• MHA and FFN plays a complementary role 
• MHA. Models inter-token interaction 
• FFN. Applies intra-token operation            # i.e., same op. for all tokens

MHA and FFN



• Roughly, the self-attention layer does two things 

(1) For i-th token, we measure the 
      relevance of {1,…,N}th tokens 

• called “attention score” 

(2) Take a relevance-weighted sum 
      of other token’s “values” to 
      compute the i-th token’s output 

     oi = ∑
j

attention(i, j) ⋅ val( j)

Self-Attention



• Step 1. For each token, we compute query, key, and value 
• Weight matrices are shared over all tokens

Self-Attention
https://jalammar.github.io/illustrated-transformer/



• Step 2. Compute dot products of the query (self) and key (self, others)

Self-Attention
https://jalammar.github.io/illustrated-transformer/



• Step 3. Compute output as a weighted sum of values 
• weighted by the softmax of dot products (attention score) 
• normalized by the dimensions

Self-Attention
https://jalammar.github.io/illustrated-transformer/



• Suppose that we have  tokens 

• Q/K/V computation:     

• Attention:                        

• Weighted sum:               

• Unlike RNNs, requires quadratic 
operations with respect to the 
sequence length! 

• Why we need many GPUs

n
O(n)
O(n2)
O(n2)

Computation & Memory
https://jalammar.github.io/illustrated-transformer/



• Typically, we use multiple self-attention layers in a transformer block 
• Computed in parallel 
• Outputs are concatenated and linearly projected

Multi-head Self-Attention



• Each attention head tend to capture diverse attention patterns 
• Similar to multiple convolution filters in a layer

Multi-head Self-Attention



• In decoder-only models (like GPT), the self-attention layers are masked 

• For generating -th token, the model can only utilize t x1, …, xt−1

Causal masking for attention



• Fully-connected layers that follow the MHA 
• Basic. Use two-layer MLP 

• Inverted bottleneck structure 
• Tend to be very compute-heavy 

• Especially so for larger models

Feedforward network
Mehta et al., “DeLight: Deep and lightweight transformer,” ICLR 2021



• Problem. Self-attention ignores the positional information of each token 
• Solution. Add position-specific vector to the token embedding 

• called positional encoding 
• added at initial embedding or in each block

Positional encoding
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



• Beginner. Jay Alammar’s blog posts 
• https://jalammar.github.io/illustrated-transformer/ 

• Advanced. 
• Phuong and Hutter, “Formal algorithms for Transformers,” 2022 

• https://arxiv.org/abs/2207.09238 
• He and Hoffman, “Simplifying Transformer Blocks,” 2023 

• https://arxiv.org/abs/2311.01906

More references

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906
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