
Bits of Language:
Architecture

Overview
• Last two weeks. Deep learning for images

• Architecture. ConvNet
• Training. Augmentation & Self-supervised training
• Generation. VAE, GAN, Diffusion

• This week. Deep learning for text
• Architecture. Preprocessing, RNN, Transformer
• Generation. BERT & GPT

Overview
• Last two weeks. Deep learning for images

• Architecture. ConvNet
• Training. Augmentation & Self-supervised training
• Generation. VAE, GAN, Diffusion

• This week. Deep learning for text
• Architecture. Preprocessing, RNN, Transformer
• Generation. BERT & GPT

Preview: Text vs. Image
• Text and image differs in many aspects

(1) Text is discrete
• Interpolating “ ” & “ ” vs. “A” & “C”
• Required. A nice text vectorization mechanism

Preview: Text vs. Image
(2) Text has variable length

• image with fixed resolution — or can do downsampling
• Required. An architecture that can handle sequences effectively

⇔

Preview: Text vs. Image
(3) Text has weaker locality than images

• image with high locality
• Required. Architecture that can cover far distances

⇔

“The boy did not have
 any idea where he is at.”

Text preprocessing

Preprocessing
• Unlike images, translating text into vectors is not straightforward

• Unicode? ASCII? A vs. B vs. C

• Typically goes through:
• Normalization
• Pre-tokenization
• Tokenization
• Embedding

“The boy did not have
 any idea where he is at.”

(x1, x2, …, xn), xi ∈ ℝd

Model

Preprocessing
• The first three steps (normalization ~ tokenization) are responsible for

chunking the text and mapping them into codes.

Preprocessing
• The last step (embedding) maps each chunk to a vector

• Want to keep our dictionary small enough for handling

[token 1] x1 ∈ ℝd

[token 2] x2 ∈ ℝd

⋯
[token 30522] x30522 ∈ ℝd

Step 1. Normalization
• Various cleanups on the given text to reduce the data complexity

• Remove unnecessary variations

• Hello hello # uppercase

• I ate it all I ate it all # whitespace

• café cafe # accent

• e-mail email # punctuation
• Unify date & numeric formats

• 01/31/2024 2024-01-31

• 31st Jan. 2024 2024-01-31

→
→
→
→

→
→

Step 1. Normalization
• Often, this is done at a unicode level

• There are many equivalences…
• https://www.unicode.org/reports/tr15/

• Note. Some LLMs are known to use a specific
 unicode for “ “
• Easy to filter out LLM-generated data from

their own training data
• Copyright uses
• Catching cheating ;)

https://www.unicode.org/reports/tr15/

Step 2. Pre-tokenization
• Break down text into manageable units

• Facilitate more accurate tokenization — i.e., chunking
• Sometimes, prevent breaking down

• can’t can + ’t # contraction

• some sentence. some sentence + . # punctuation

• DMZ D + MZ # abbreviation & acronym

→
→
↛

Step 3. Tokenization
• Break down each sentence into tokens
• Many variants…

(1) Word-based tokenization
• Good semantics
• Too many vocabularies

Step 3. Tokenization
(2) Character-based tokenization
• Small vocabulary size
• Bad semantics

Step 3. Tokenization
(3) Subword tokenization
• Frequent words are kept as a single token
• Rare words are subdivided

• Reduces the expected sequence length
• How to take whitespaces into account differs from a tokenizer to another

Step 3. Tokenization
• As an example, we’ll take a look at Byte-Pair Encoding (BPE)

• A data-driven method to generate subword tokenization policy
• Similar: WordPiece

• Idea. Merge frequent character combinations into tokens
• Begin from the character-level tokens
• If certain token appears together frequently, merge them
• Repeat

Tokenization: Byte-Pair Encoding

• Example. Suppose that our text corpus consists of five words
• Initial vocabulary: [b, g, h, n, p, s, u]
• Count the word frequencies:
• Use this to count subword frequencies

Tokenization: Byte-Pair Encoding

• Example. Suppose that our text corpus consists of five words
• Initial vocabulary: [b, g, h, n, p, s, u]
• Count the word frequencies:
• Use this to count subword frequencies

• Expand the vocabulary

• Repeat, until the desired vocabulary size is met

Step 4. Embedding
• Token IDs are translated into one-hot encodings, and then to embeddings

• Implementable with lookup tables
• Embedding is trainable as well — more on this later

Architectures

Architectures
• We will cover two architectures that are designed for sequences

• Recurrent neural nets (RNNs)
• Transformers

RNNs

State-space models
• Idea. Handle sequential input using

a state-space model (SSM)

• Recall: Continuous SSMs

• Handles a sequential input by
accumulating the internal state

• Sequential output is determined
by both

• Parameterized by transition matrices

u(t)
x(t)

y(t)
u(t), x(t)

A, B, C, D

State-space models
• Discrete inputs can be handled similarly, with discrete SSMs

• One can use

x(t) = Āx(t − 1) + B̄u(t)
y(t) = C̄x(t) + D̄u(t)

Recurrent layer
• More generally, we can use nonlinear modules:

• # note: change of notations

•
ht = gθ(xt; ht−1)
ŷt = fθ(xt; ht−1)

RNN RNN (unrolled)

Recurrent layer
• In the simplest parameterization, the recurrence is formalized as:

 # Rumelhart (1986)

ht = tanh(Whhht−1 + Wxhxt)
yt = Whyht

Example: RNN for sentence generation
• Consider the case with:

• Character-level tokens
• Single-layer RNN
• Identity embedding

• Sentence generation can be
done by feeding the generated
character as a new input

• Similar in GPT

Deep recurrent neural network
• Recurrent neural networks can be stacked

to build a deep network
• Strengthens the “memory”

• Quite difficult to train
• Vanishing/exploding gradient

Gradients of RNNs
• Suppose that we have computed the loss at time # i.e.,

• We want to use this to update the hidden state at time # i.e.,

• The partial derivative of the current state w.r.t. past state is:

• Then, we have:

t Lt

1 h1

∂ht

∂ht−1
= tanh′￼(Whhht−1 + Wxhxt)Whh

∂Lt

∂h1
=

∂Lt

∂ht
⋅

∂ht

∂ht−1
⋅ ⋯ ⋅

∂h2

∂h1
=

∂Lt

∂ht
⋅ (

t

∏
i=2

tanh′￼(Whhhi−1 + Wxhxi)) Wt−1
hh

Gradients of RNNs

• Solution.
• Adopt extra modules that are designed for long-term dependencies

• e.g., LSTM
• Let the very old input directly affect the new output

• e.g., Transformers

Transformers

Transformers
• Consists of:

• a stack of encoder blocks
• a stack of decoder blocks

• Encoder-only. BERT
• Decoder-only. GPT (our focus)

• Each block consists of four elements
• Multi-head Self Attention (MHA)
• Feedforward network (FFN)
• LayerNorm / RMSNorm
• Residual connection

• Only new component is the MHA

Transformers

• MHA and FFN plays a complementary role
• MHA. Models inter-token interaction
• FFN. Applies intra-token operation # i.e., same op. for all tokens

MHA and FFN

• Roughly, the self-attention layer does two things

(1) For i-th token, we measure the
 relevance of {1,…,N}th tokens

• called “attention score”

(2) Take a relevance-weighted sum
 of other token’s “values” to
 compute the i-th token’s output

 oi = ∑
j

attention(i, j) ⋅ val(j)

Self-Attention

• Step 1. For each token, we compute query, key, and value
• Weight matrices are shared over all tokens

Self-Attention
https://jalammar.github.io/illustrated-transformer/

• Step 2. Compute dot products of the query (self) and key (self, others)

Self-Attention
https://jalammar.github.io/illustrated-transformer/

• Step 3. Compute output as a weighted sum of values
• weighted by the softmax of dot products (attention score)
• normalized by the dimensions

Self-Attention
https://jalammar.github.io/illustrated-transformer/

• Suppose that we have tokens

• Q/K/V computation:

• Attention:

• Weighted sum:

• Unlike RNNs, requires quadratic
operations with respect to the
sequence length!

• Why we need many GPUs

n
O(n)
O(n2)
O(n2)

Computation & Memory
https://jalammar.github.io/illustrated-transformer/

• Typically, we use multiple self-attention layers in a transformer block
• Computed in parallel
• Outputs are concatenated and linearly projected

Multi-head Self-Attention

• Each attention head tend to capture diverse attention patterns
• Similar to multiple convolution filters in a layer

Multi-head Self-Attention

• In decoder-only models (like GPT), the self-attention layers are masked

• For generating -th token, the model can only utilize t x1, …, xt−1

Causal masking for attention

• Fully-connected layers that follow the MHA
• Basic. Use two-layer MLP

• Inverted bottleneck structure
• Tend to be very compute-heavy

• Especially so for larger models

Feedforward network
Mehta et al., “DeLight: Deep and lightweight transformer,” ICLR 2021

• Problem. Self-attention ignores the positional information of each token
• Solution. Add position-specific vector to the token embedding

• called positional encoding
• added at initial embedding or in each block

Positional encoding
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

• Beginner. Jay Alammar’s blog posts
• https://jalammar.github.io/illustrated-transformer/

• Advanced.
• Phuong and Hutter, “Formal algorithms for Transformers,” 2022

• https://arxiv.org/abs/2207.09238
• He and Hoffman, “Simplifying Transformer Blocks,” 2023

• https://arxiv.org/abs/2311.01906

More references

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906

</lecture 19>

