Bits of Language:
Architecture

Overview

» Last two weeks. Deep learning for images
» Architecture. ConvNet
» Training. Augmentation & Self-supervised training
 Generation. VAE, GAN, Diffusion

* This week. Deep learning for text
» Architecture. Preprocessing, RNN, Transformer
* (Generation. BERT & GPT

Overview

» Last two weeks. Deep learning for images
» Architecture. ConvNet
» Training. Augmentation & Self-supervised training
 Generation. VAE, GAN, Diffusion

* This week. Deep learning for text
» Architecture. Preprocessing, RNN, Transformer
* (Generation. BERT & GPT

Preview: Text vs. Image

» Text and image differs in many aspects

(1) Text is discrete
e Interpolating “®m” & “Wm” ys, “A" & “C”
* Required. A nice text vectorization mechanism

Preview: Text vs. Image
(2) Text has variable length

e & image with fixed resolution — or can do downsampling
* Required. An architecture that can handle sequences effectively

Are we still on for later?

yeah.

What time do you want to
meet?

could do 7.

Great, see you later!

see you then.

Preview: Text vs. Image

(3) Text has weaker locality than images
e & image with high locality
» Required. Architecture that can cover far distances

“The boy did not have
any idea where he is at.”

DETECTIVE BOOKS
& STORIES of alllime

Text preprocessing

Preprocessing

* Unlike images, translating text into vectors is not straightforward
* Unicode? ASCII? Avs.Bvs. C

“The boy did not have

. Typically goes through: any idea where he is at.

* Normalization

* Pre-tokenization
* Tokenization

* Embedding

Preprocessing

 The first three steps (normalization ~ tokenization) are responsible for
chunking the text and mapping them into codes.

Tokens Characters

31 137

There are plenty of different ways to tokenize the text into multiple
pleces. GPT-40 and GPT-3.5 are actually using different tokenizers.

Text Token IDs

[5632, 553, 13509, 328, 2647, 6984, 316, 192720, 290, 2201, 1511, 7598,
12762, 13, 174803, 12, 19, 78, 326, 174803, 12, 18, 13, 20, 553, 4771,
2360, 2647, 6602, 24223, 13]

Text Token IDs

Preprocessing

* The last step (embedding) maps each chunk to a vector
» Want to keep our dictionary small enough for handling

[5632, 553, 13509, 328, 2647, 6984, 316, 192720, 290, 2201, 1511, 7598,
12762, 13, 174803, 12, 19, 78, 326, 174803, 12, 18, 13, 20, 553, 4771,
2360, 2647, 6602, 24223, 13]

Text Token IDs

[token1] — X; €|
[token2] — X, €| d

[tOken 50522] —> X30522 =4 a

Step 1. Normalization

» Various cleanups on the given text to reduce the data complexity
* Remove unnecessary variations

 Hello — hello
e | ateit all — | ate it all
e café — cafe
e e-mail — email

» Unify date & numeric formats
« 01/31/2024 — 2024-01-31
e 31stJdan.2024 — 2024-01-31

Step 1. Normalization

Subtype Examples

* Often, this is done at a unicode level s
* There are many equivalences... . n_ —» H
‘ Linebreaking differences [N BSP] S [SPACE]
* https://www.unicode.org/reports/tr15/ posionatvarantioms |, ¢
E
. e = 4
* Note. Some LLMs are known to use a specific .
uniCOde fOr (o Circled variants @ L 1
» Easy to filter out LLM-generated data from i
their own training data o e
. BT L)
o Copyrlght uses Superscripts/subscripts i9 . i9
 Catching cheating ;) s — 9
Squared characters le . 7 /\0_ I\
Fractions % B 1/4
Other di e dz

https://www.unicode.org/reports/tr15/

Step 2. Pre-tokenization

* Break down text into manageable units
» Facilitate more accurate tokenization — i.e., chunking
» Sometimes, prevent breaking down

e cant — can+ 't
e some sentence. — some sentence +.
e DM/ -~ D+ MZ

Step 3. Tokenization

 Break down each sentence into tokens
* Many variants...

(1) Word-based tokenization
* Good semantics
* Too many vocabularies

Split on spaces

Let’s do tokenization!

Split on punctuation

Let 'S do tokenization

Step 3. Tokenization

(2) Character-based tokenization
* Small vocabulary size
» Bad semantics

Step 3. Tokenization

(3) Subword tokenization

* Frequent words are kept as a single token
» Rare words are subdivided

» Reduces the expected sequence length
* How to take whitespaces into account differs from a tokenizer to another

Let’s </w> do</w> token 1Ization</w> I</w>

Step 3. Tokenization

 As an example, we'll take a look at Byte-Pair Encoding (BPE)
» A data-driven method to generate subword tokenization policy
» Similar: WordPiece

» ldea. Merge frequent character combinations into tokens
» Begin from the character-level tokens
* |f certain token appears together frequently, merge them
* Repeat

Tokenization: Byte-Pair Encoding

“hug“, llpugll, ”pun“, Ilbunll, Ilhugsll

* Example. Suppose that our text corpus consists of five words
* |nitial vocabulary: [b, g, h,n, p, s, U}
* Count the word frequencies: (hue', 10), (‘pug’, 5), Cpun’, 12), ("bun’, 4), (‘hugs”, 5)
* Use this to count subword frequencies

(Ilhll IIUII Ilgll’ 1@), (Ilpll Ilull IIgII, 5), (llpll IIU IInII' 12)' (llbll IIUII IInII, 4)’ (Ilhll Ilull Ilgll IISII, 5)

Tokenization: Byte-Pair Encoding

(Ilhugll, 1@), (“pug“, 5), (“pun“, 12), (IlbunII' 4)' (Ilhugsll’ 5)

(Ilhll Ilull IIgII’ 10)’ (Ilpll Ilull IIgII, 5)’ (Ilpll Ilull IInII, 12)’ (Ilbll IIUII IInII' 4), (Ilhll Ilull Ilgll ”S”, 5)

» Expand the vocabulary

Vocabulary: [IIbII, “g“, Ilhll, IlnII, IIpII, ”S“, IIUII, Ilugll]
COIpUS: (llhll IIUgII’ 10), (Ilpll IlugH, 5), (Ilpll Ilull IInII, 12), (Ilbll Ilull Ilnll' 4), (Ilhll Ilugll “S”, 5)

» Repeat, until the desired vocabulary size is met

Vocabulary: [IIbII, IIgII, IIhII, IInII, IIpII, ”S“, ”U“, Ilugll' llunll, llhuglI]
COIpUS: (Ilhugll' 10)' (llpll llugII, 5), (Ilpll IlunII, 12), (Ilbll Ilunll, 4), (llhugll ”S”’ 5)

Step 4. Embedding

* Token IDs are translated into one-hot encodings, and then to embeddings
* Implementable with lookup tables
* Embedding is trainable as well — more on this later

Tokens Token IDs One Hot Encoding Embedding

a | The | eats | cat |mouse Dim 1 | Dim 2 | Dim 3
(The f>{<>}—>0 1 0o 0o o O O @
Lt f>{ <> 0 0o o 1 o (O O O
(eas fJ>{ <= }—> 0 0 1 0o o O O O
La f>{<}>1 0o o o o O O O
mouse }—>{ 5> > 0 0 o0 o 1 »O O O

Architectures

Architectures

» We will cover two architectures that are designed for sequences
 Recurrent neural nets (RNNs)
* Transformers

one to one one to many many to one many to many many to many

State-space models
» |ldea. Handle sequential input using
a state-space model (SSM) y
* Recall: Continuous SSMs
» Handles a sequential input u(?) by /—U

accumulating the internal state x(7)

X = Ax + Bu
y =(Cx+ Du

» Sequential output y(7) is determined
by both u(#), x(7)

» Parameterized by transition matrices -
ABCD Continuous
Representation

State-space models

* Discrete inputs can be handled similarly, with discrete SSMs

e Onecanuse x(?) = /Xx(t — 1)+ Bu(?)
y(1) = Cx(t) + Du(r)

Tal

Discretize _ _
x = Ax + Bu ; x =Ax + Bu

y = Cx + Du y =Cx+ Du

Continuous Recurrent
Representation Representation

Recurrent layer

* More generally, we can use nonlinear modules:

e h, =g,yx;h,_) # note: change of notations
’ yt =f9(Xt; ht—l)

RNN RNN (unrolled)

Recurrent layer

* |n the simplest parameterization, the recurrence is formalized as:

ht — tanh(Whhht_l + WXhXt)

y, = Whyht # Rumelhart (1986)
S o000 o o = ® o000 o
® . e, @ .19 ® ©oeoo00 o
() . O O O
® ® o ' ©

h

~

h_q Win Xt Vit I/I/hy hy

Example: RNN for sentence generation

» Consider the case with:
* Character-level tokens
» Single-layer RNN
* |dentity embedding

e Sentence generation can be
done by feeding the generated
character as a new input

 Similar in GPT

target chars:

output layer

hidden layer

iInput layer

input chars: “

W hh| -

 Recurrent neural networks can be stacked
to build a deep network

» Strengthens the “memory”

 Quite difficult to train
» Vanishing/exploding gradient

depth

A

Deep recurrent neural network

time

Gradients of RNNs

e Suppose that we have computed the loss at time

« We want to use this to update the hidden state at time 1

» The partial derivative of the current state w.r.t. past state is:
oh,

oh,_,

— tanh’(Whhht_l —+ WXth‘)Whh

 Then, we have:

oL, oL oh oh oL f
= 2 = | TTanh(Wigh, + Wix)) | Wi
@hl 6ht 8ht_ 1 ahl aht j="

Gradients of RNNs

“the trailers were the best part of the whole movie.”

\

the trailers were the whole movie

E ON RNN OUTPUT

e Solution.
» Adopt extra modules that are designed for long-term dependencies
* e.g,LSTM
* Let the very old input directly affect the new output
* e.g., Transformers

Transformers

Transformers

 Consists of:

e a stack of encoder blocks % THE TRANSFORMER am a student
g stack of decoder blocks ENCODER STACK I A
(ENC;)DER) . ;(DECC+)DER)
. Encoder-only. BERT (oo) (oo),

E(ENCODER)§ ,(DECODER)§

* Decoder-only. GPT (our focus) e))

3 3 : 3

é(ENCODER)} ;(DECODER)}
; 4 z z . 5
: ENCODER)E ;(DECODER j

INPUT | Je suis etudiant

Transformers

» Each block consists of four elements Normal Structure Pre-normalization
» Multi-head Self Attention (MHA) »T »T
» Feedforward network (FFN) LayerNorm MLP
* LayerNorm / RMSNorm MIP RMSLorm
» Residual connection 4 4
LayerTNorm Atte},t.on
e Only new component is the MHA 1 1

Input Input

MHA and FFN

 MHA and FFN plays a complementary role
 MHA. Models inter-token interaction

* FFN. Applies intra-token operation #i.e., same op. for all tokens
_ J
4 t
]
. T) T)
f f
HEEN NN
$ $
- R
_ Y,

Self-Attention

* Roughly, the self-attention layer does two things

The The
(1) For i-th token, we measure the animal_ animal_
relevance of {1,...N}th tokens didn_ didn_
» called "attention score” t t
Cross_ Cross_
the the_
(2) Take a relevance-weighted sum street_ street_
of other token'’s “values” to because_ because_
compute the i-th token'’s output it it
was was _
0; = Z attention(i, j) - val(j) too_ too_

tire tire
J ; -

https://jJalammar.github.io/illustrated-transformer/

Self-Attention

» Step 1. For each , We compute , key, and
* Weight matrices are shared over all tokens

Input

Embedding

Queries

Keys

Values

https://jJalammar.github.io/illustrated-transformer/

Self-Attention
 Step 2. Compute of the query (self) and key (self, others)

Input Thi_n_kLing Machines
Embedding X1 X2

Queries q1 42

Keys K1 K2

Values V1 V2

Score qi® Ki= qi ® k2 =

https://jJalammar.github.io/illustrated-transformer/

Self-Attention

» Step 3. Compute as a weighted sum of
» weighted by the
* normalized by the dimensions

softmax()

https://jJalammar.github.io/illustrated-transformer/

Computation & Memory

Input

e Suppose that we have n tokens
+ Q/K/V computation: O(n) ™

Queries
e Attention: O(n?)
Keys
» Weighted sum: Oo(n*) . .
Score = =
* Unlike RNNs, requires quadratic ivide by 8 (Vi)
operations with respect to the
sequence length! softmax
* Why we need many GPUs softmax

Sum

Multi-head Self-Attention

» Typically, we use multiple self-attention layers in a transformer block
* Computed in parallel
» QOutputs are concatenated and linearly projected

Attention Attention

Queries Keys Values

Multi-head Self-Attention

e Each attention head tend to capture diverse attention patterns
» Similar to multiple convolution filters in a layer

this this this this

IS IS IS IS

the the the the
first first first first
book book book book
that that that that

I [I [

did did did did
[END] [END] [END] [END]

Head 1 Head 2 Head 3 Head 4

Causal masking for attention

* |In decoder-only models (like GPT), the self-attention layers are masked

» For generating #-th token, the model can only utilize Xy, ..., X,_;

Self-Attention Masked Self-Attention

.+) 4

Mehta et al., “DeLight: Deep and lightweight transformer,” ICLR 2021

Feedforward network

Fully-connected layers that follow the MHA d | \
» Basic. Use two-layer MLP _ dQ“y a‘“;
ke h h
* Inverted bottleneck structure 5
= > Attentlon
Tend to be very compute-heavy E
. - | Attention ops: Concat
» Especially so for larger models | ow@,n2) _ ldn
% % % % I
1 FLOPs/ FLOPS FLOPS FLOPS FLOPS ldm
description update MHA FFN attn logit — Add |«
8 OPT setups E
9 760M 4.3E+15 35% 44% 14.8% 5.8% ™ y dm FEN |
10 1.3B 1.3E+16 32% 51% 12.7% 5.0% § / \ paranS'
1 278 25E+16 29% 56% 11.2% 3.3% 5 |dy=4d,, 8dz.
12 6.7B 11E+17 24% 65% 8.1% 2.4% % \ /
13 13B 41E+17 22% 69% 6.9% 1.6% S
14 30B 9.0E+17 20% 74% 5.3% 1.0% ks ldm g)
15 66B 9.5E+17 18% 77% 4.3% 0.6% 3 » Add Depth =4
16 175B 24E+18 17% 80% 3.3% 0.3% i1 ' - /

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional encoding

* Problem. Self-attention ignores the positional information of each token
» Solution. Add position-specific vector to the token embedding

 called positional encoding

» added at initial embedding or in each block

O
“E:‘:i:fﬂfJJ¥;||II||II I
o
o li'I i
W j

|
N . ik
0 20

]

N
':':':'lilll ||

40

H]h"""l

cos(wg.t),

DDDDD

if i = 2k 1
ifi = 2k + 1

More references

* Beginner. Jay Alammar’s blog posts
» https://jalammar.github.io/illustrated-transtformer/

* Advanced.
* Phuong and Hutter, “Formal algorithms for Transformers,” 2022
* https://arxiv.org/abs/2207.09238
* He and Hoffman, “Simplifying Transformer Blocks,” 2023
» https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906

</lecture 19>

