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Recap
• Generative modeling. Using unlabeled 

training data  to 
approximate the true data-generating 
distribution, such that: 

     

• Example. Gaussian mixture models 
• Cluster information helps getting 

high accuracy in downstream tasks 
• Helps evaluating how likely each 

data point is — anomaly detection

x1, …, xn ∼ pdata(x)

pθ(x) ≈ pdata(x)



Generative Modeling
• In modern contexts, generative modeling is being used as-is. 
• Example. Suppose that we have a good model on the joint distribution: 

 

from the image-text pairs  crawled from the web 

• Treating  as the unlabeled data

pθ(x, y) ≈ pdata(x, y)
{(x, y)}n

i=1
z = (x, y)



Generative Modeling
• With a good generative model, we can do the following things: 
• Generative Image Classification. We can use the Bayes rule to do: 

pθ(y |x) =
pθ(x, y)
pθ(x)

OpenAI “CLIP”



Generative Modeling
• Text-conditioned Generation. 

Use the Bayes rule the other way, 
to generate an image from a text 
description 

pθ(x |y) =
pθ(x, y)
pθ(y)



Generative Modeling
• Image Inpainting. Generate missing pixels of the image in a way that 

they are well-aligned with the observed pixels 

pθ(xi |x1, …, xi−1, xi+1, …, xd)



Generative Modeling
• Text Generation. Generate the next word that is most likely to follow the 

given text prompt 

pθ(yn+1 |y1, …, yn)



Today
• Focus on the generative modeling for images 

• Comparison with Language. 
• Need to generate many pixels for high-resolution images 

• Thus challenging to generate “realistic” ones 
• Pixels have mostly continuous values, not discrete 
• More locality involved, with 2D/3D geometry



Autoencoders



Autoencoder
• Originally an approach for representation learning 
• Idea. Train a neural network that can do 

dimensionality reduction 
• Replace the linear model with neural nets 
• Use SGD to optimize the reconstruction loss 

min
f,g

𝔼x∥x − f(g(x))∥2

x z x̂Uenc Udec

Representation g(x) Output f(g(x))

f( ⋅ )g( ⋅ )

Input x



Autoencoder
• Problem. As NNs are too powerful, AEs end up learning trivial solutions 

• Overfits to learning an identity function  , 
without making the encoder  meaningful 

• Naïve. Reduce the dimension of  further — extreme hourglass 
• Not very effective in many cases…

f(g(x)) = x
g( ⋅ )
g(x)

Representation g(x) Output f(g(x))

f( ⋅ )g( ⋅ )

Input x



Denoising Autoencoder
• Idea. Add noise to the input image, and train to recover the clean image 

• Never solved by identity function 
• Requires understanding our real images look like 

• Tells apart from random noise 
• Other examples. Sparse autoencoders…



Variational Autoencoder
• Structurally similar to autoencoders, but very different in goals 
• Goal. Train a decoder and a distribution such that 

• Input. Send in a distribution  

• Output. Get a data-generating distribution 

pθ(z)
pθ(x) ≈ pdata(x)

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)



Variational Autoencoder
• Training. Optimize the log probability 

 

• Note. Equivalent to minimizing some distance between the empirical 
distribution , and the modeled distribution  
• The “Kullback-Leibler divergence” 

              

    where 

max
θ

n

∑
i=1

log pθ(xi)

̂p pθ

min
θ

D( ̂p(x)∥pθ(x))

D(p ∥ q) = 𝔼p log(p/q)

pθ(x) ≈ ̂p(x)



Variational Autoencoder
• Problem. Computing the marginal distribution is intractible 

 

• We can try drawing many samples from  to approximate this 
with samples (i.e., Monte Carlo approach) 

• … but this is too costly 

• Idea. Maximize some lower bound of  
• Evidence lower bound (ELBO) 

(We saw this in expectation-maximization!)

pθ(xi) = ∫ pθ(xi |z)pθ(z) dz

pθ(z)

log pθ(x)



Recap: ELBO
• Recap: Jensen’s inequality.  

• For concave function , we have  

• For convex function , we have 

f( ⋅ ) 𝔼[ f(X)] ≤ f(𝔼[X])
f( ⋅ ) 𝔼[ f(X)] ≥ f(𝔼[X])



Recap: ELBO
• For some arbitrary , we have 

 

  

  

  

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz

≥ ∫ qϕ(z) ⋅ log [ pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]



Recap: ELBO
 

• We can sample from  and measure the loss 

• We can choose  dependently on  — thus  

• Choose the option that maximizes the RHS 

• In other words, we can solve: 

 

• We train both  and     (and not )

log pθ(x) ≥ − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]

qϕ(z)
qϕ(z) x qϕ(z |x)

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ(z |x) pθ(x |z) pθ(z)



Variational Autoencoders

• Question. How do we model ? 

• Answer. Jointly train a probabilistic encoder that expresses  

• But how do we implement a probabilistic encoder?

qϕ(z |x)
qϕ(z |x)



Variational Autoencoders
• Idea: Reparametrization Trick.  

Model  as a conditional Gaussian  

•  are the outputs of a neural network encoder

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx



Variational Autoencoders
• Now, look at the optimization problem: 

 

• First, take a look at the second term 

• By using the model , it becomes 

 

•  That is, simply use the squared loss 
• A bit more complicated if variances are also trained

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

pθ(xi |z) = 𝒩( fθ(z), η ⋅ Id)

−𝔼qϕ(⋅|xi) [ 1
2η

∥xi − fθ(zi)∥2] + const .



Variational Autoencoders
 

• If we use the Gaussian encoder 

 

then this simply becomes 
 regularizers on  
• Check by yourself 

• Thus, a squared loss 
&  regularizer

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ = 𝒩(μxi
, σxi

⋅ Ik)

ℓ2 μ, σ

ℓ2



Properties
• Advantages. Known to enjoy nice disentanglements 

• Each dimension of  correspond to clear semantic conceptsz



Properties
• Advantages. Known to enjoy nice disentanglements 

• Each dimension of  correspond to clear semantic conceptsz



Properties
• Limitations. Generate rather blurry images 

• Clearly distinguishable from real images 
(at least back then… as technologies advance fast)



Generative Adversarial Nets



Generative Adversarial Nets
• Idea. Train explicitly for the “hard-to-distinguish” propety 

• View generative process as a two-player game 
• Discriminator. Tries to distinguish the real / fake 
• Generator. Tries to fool the discriminator

Dθ(x) = {1 ⋯ if fake
0 ⋯ if realGθ(z) = x



Generative Adversarial Nets
• Training. Jointly train the generator and the discriminator 

• Solve the minimax optimization 

 

• Discriminator outputs the likelihood of being real:   

• Note. Equivalent to the Jensen-Shannon divergence 

min
θg

max
θd

[𝔼x∼ ̂p log Dθd
(x) + 𝔼z∼p(z) log(1 − Dθd

∘ Gθg
(z))]

Dθd
(x) ∈ [0,1]

D (pθ
̂p + pθ

2 ) + D ( ̂p
̂p + pθ

2 )

Discriminator declares 
real image to be real

Discriminator declares 
fake image to be fake



Generative Adversarial Nets



Generative Adversarial Nets
• Architecture. Generator uses convolutional layers as well:



Generative Adversarial Nets
• Advantages. GAN can give very sharp images



Conditional GAN
• Idea. Add class / text information to the latent code 

• Generate realistic images under specific conditions



Conditional GAN



Limitations
• GAN training is known to be very unstable 

• If the discriminator works too well, the generator gives up learning 
• If the generator works too well, the discriminator cannot find any 

meaningful patterns



Limitations
• As a result, generators tend to overfit to few good solutions 

• called “mode collapse”



Next class
• Diffusion models
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