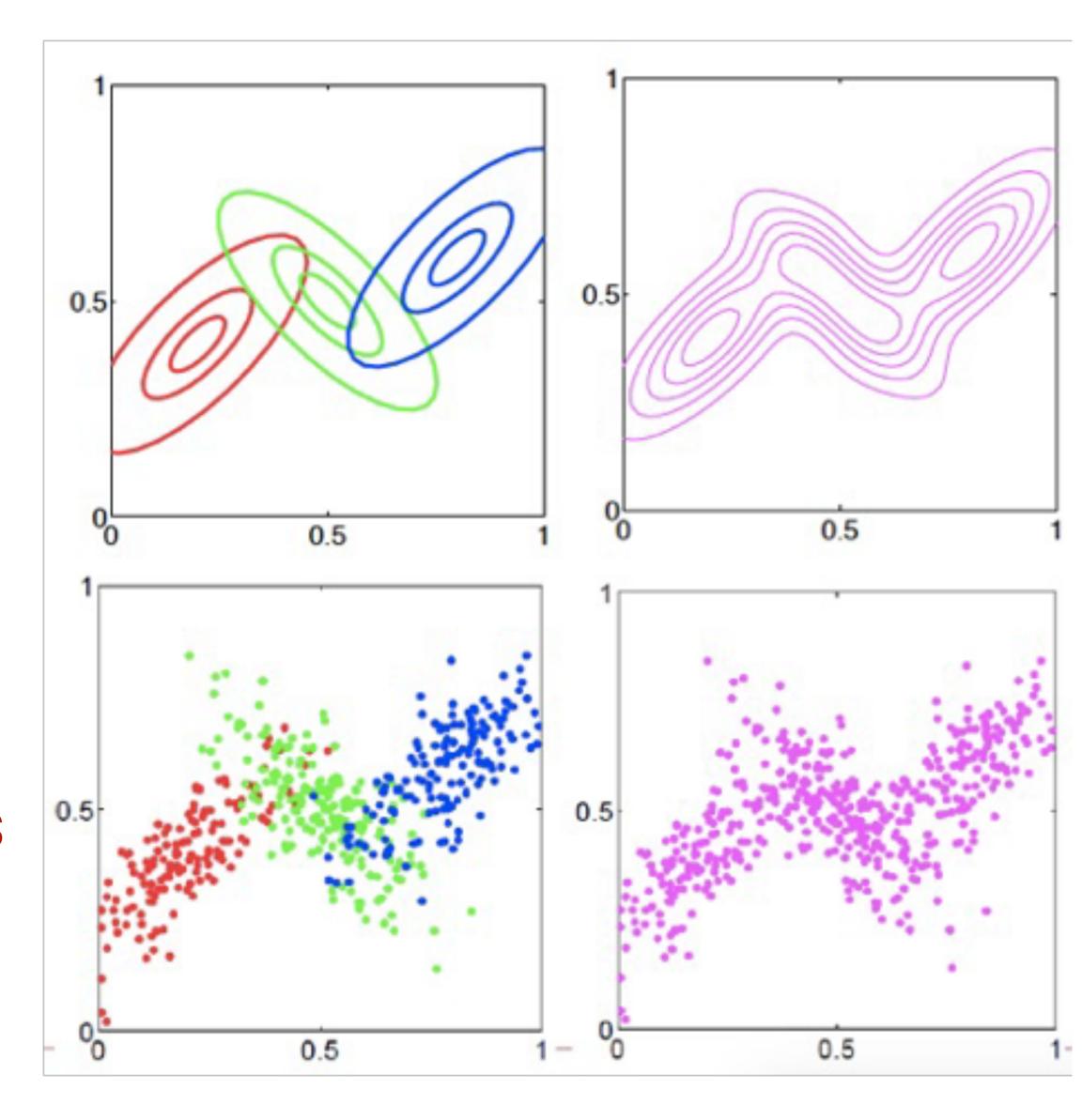
Bits of Vision: Generative Modeling - 1

Recap

• Generative modeling. Using unlabeled training data $\mathbf{x}_1, ..., \mathbf{x}_n \sim p_{\text{data}}(\mathbf{x})$ to approximate the true data-generating distribution, such that:

$$p_{\theta}(\mathbf{x}) \approx p_{\text{data}}(\mathbf{x})$$

- Example. Gaussian mixture models
 - Cluster information helps getting high accuracy in downstream tasks
 - Helps evaluating how likely each data point is — anomaly detection

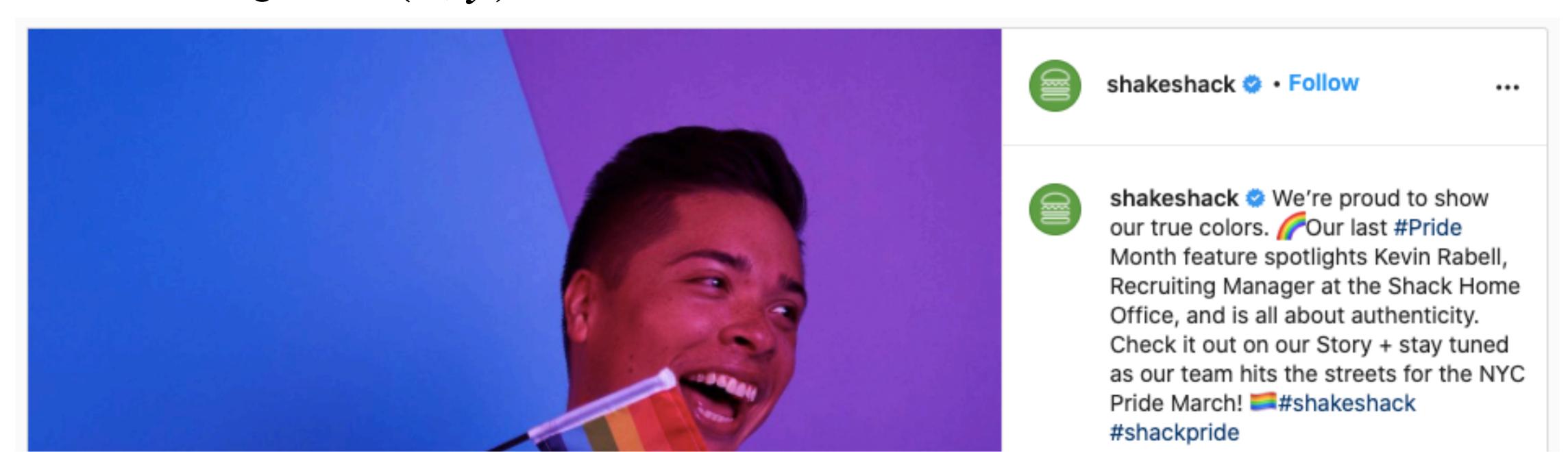


- In modern contexts, generative modeling is being used as-is.
- Example. Suppose that we have a good model on the joint distribution:

$$p_{\theta}(\mathbf{x}, \mathbf{y}) \approx p_{\text{data}}(\mathbf{x}, \mathbf{y})$$

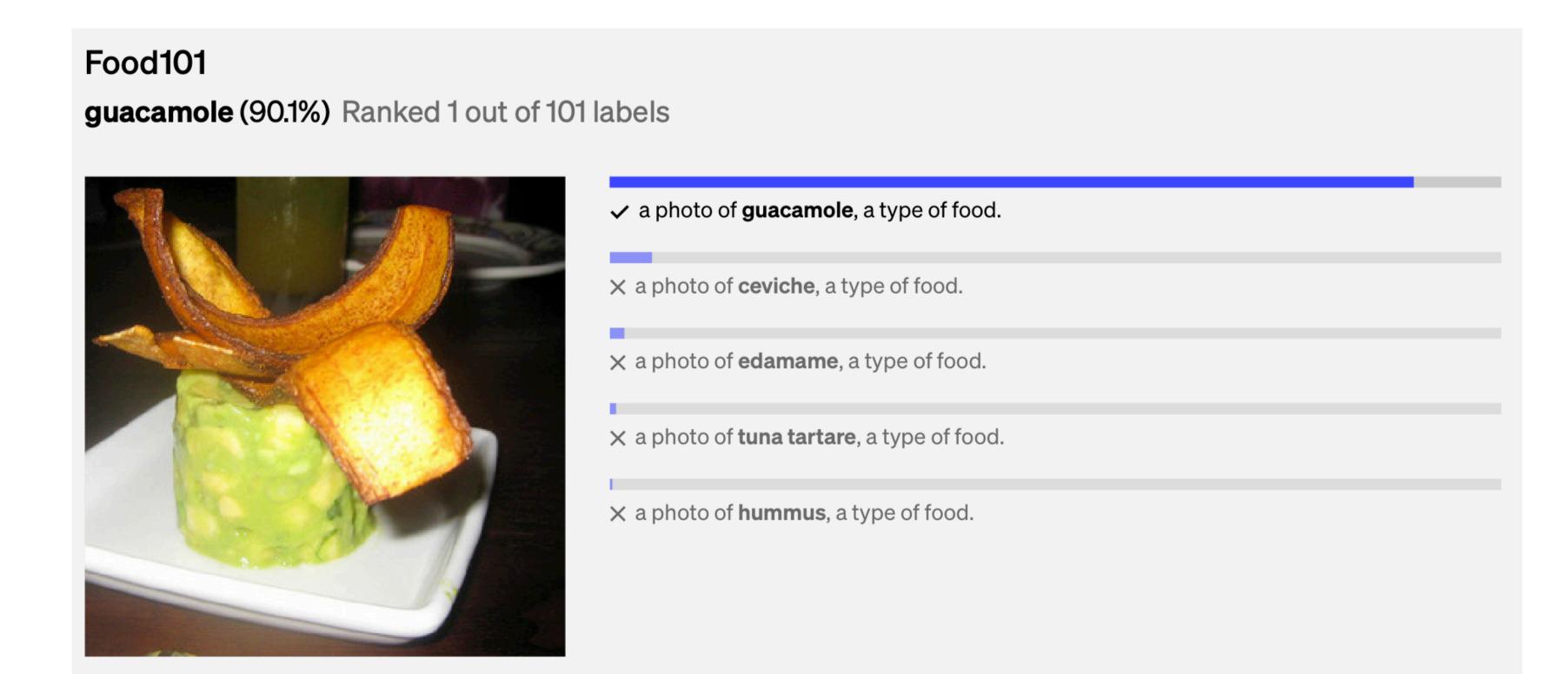
from the image-text pairs $\{(\mathbf{x}, y)\}_{i=1}^n$ crawled from the web

• Treating z = (x, y) as the unlabeled data



- With a good generative model, we can do the following things:
- Generative Image Classification. We can use the Bayes rule to do:

$$p_{\theta}(y \mid \mathbf{x}) = \frac{p_{\theta}(\mathbf{x}, y)}{p_{\theta}(\mathbf{x})}$$



Text-conditioned Generation.
 Use the Bayes rule the other way, to generate an image from a text description

$$p_{\theta}(\mathbf{x} \mid \mathbf{y}) = \frac{p_{\theta}(\mathbf{x}, \mathbf{y})}{p_{\theta}(\mathbf{y})}$$

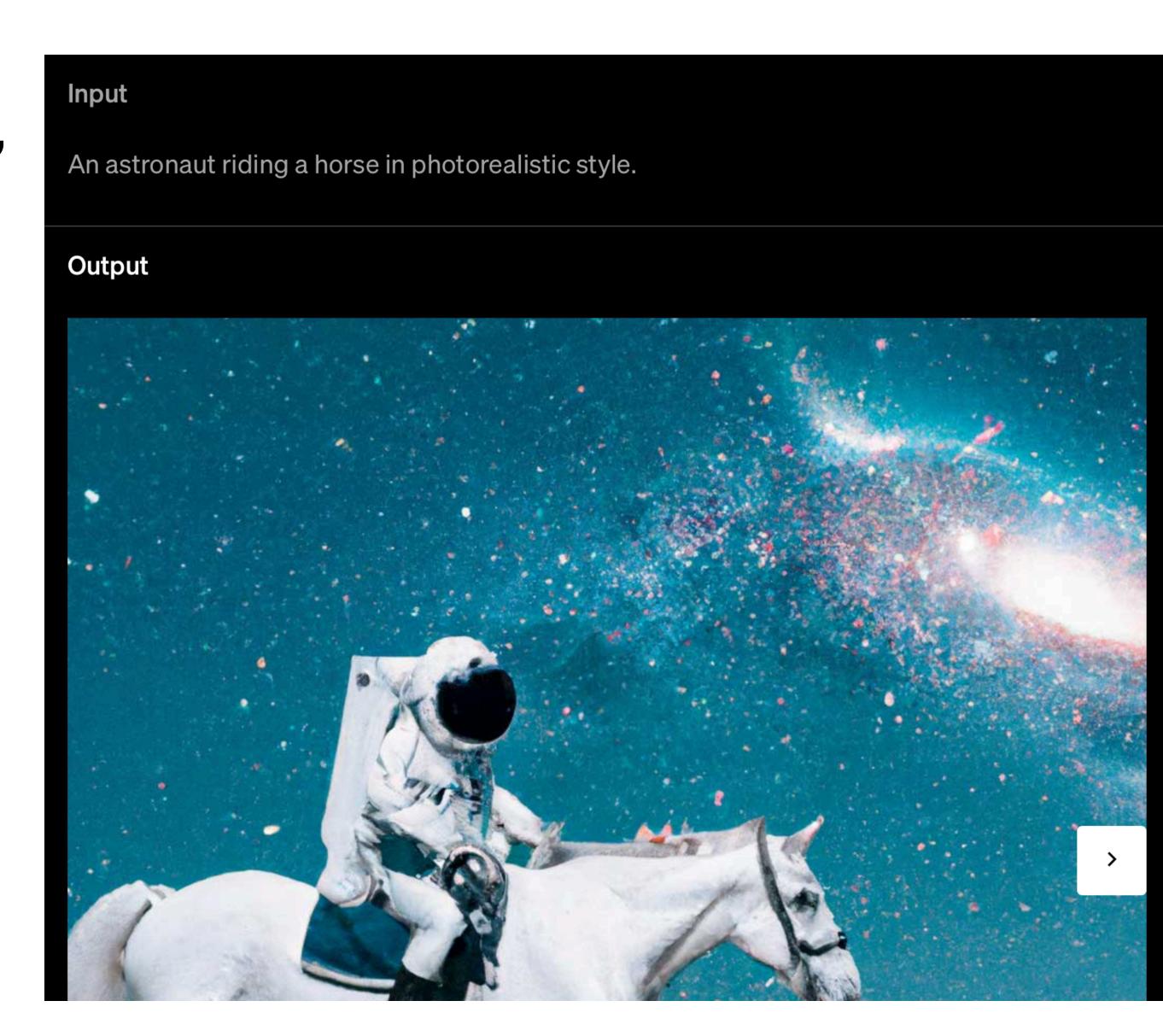
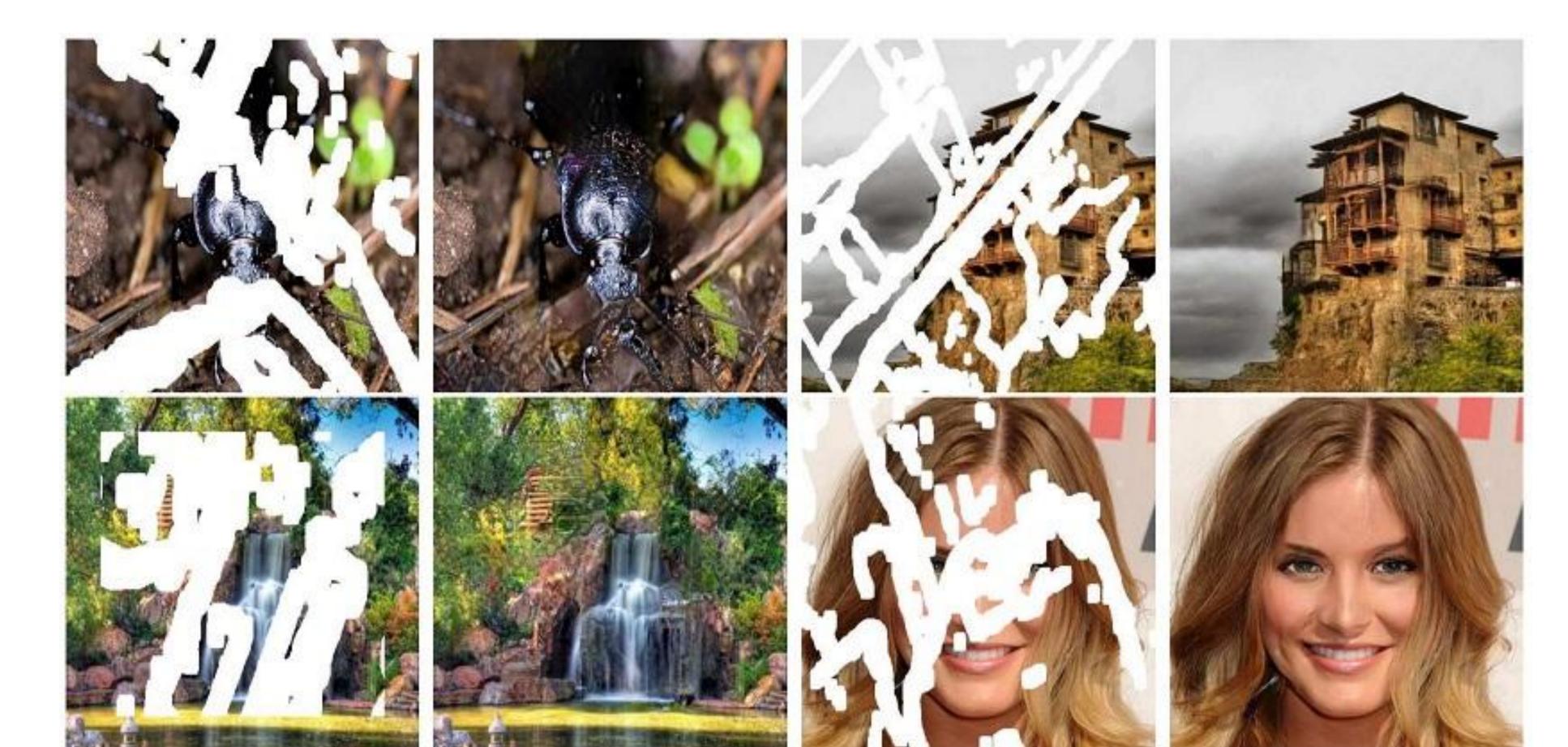


 Image Inpainting. Generate missing pixels of the image in a way that they are well-aligned with the observed pixels

$$p_{\theta}(x_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_d)$$



 Text Generation. Generate the next word that is most likely to follow the given text prompt

$$p_{\theta}(y_{n+1} | y_1, ..., y_n)$$

```
pub queue: Vec<(EncodedMessage, ClientFilter)>,
   sender: Arc<Sender<Vec<(EncodedMessage, ClientFilter)>>>,
   receiver: Arc<Receiver<Vec<(EncodedMessage, ClientFilter)>>>,
impl EncodedMessageQueue {
You, 8 seconds ago • Uncommitted changes
   pub fn new() → Self {
        let (sender, receiver) = crossbeam_channel::unbounded();
        Self {
           queue: vec![],
           sender: Arc::new(sender),
            receiver: Arc::new(receiver),
```

Today

Focus on the generative modeling for images

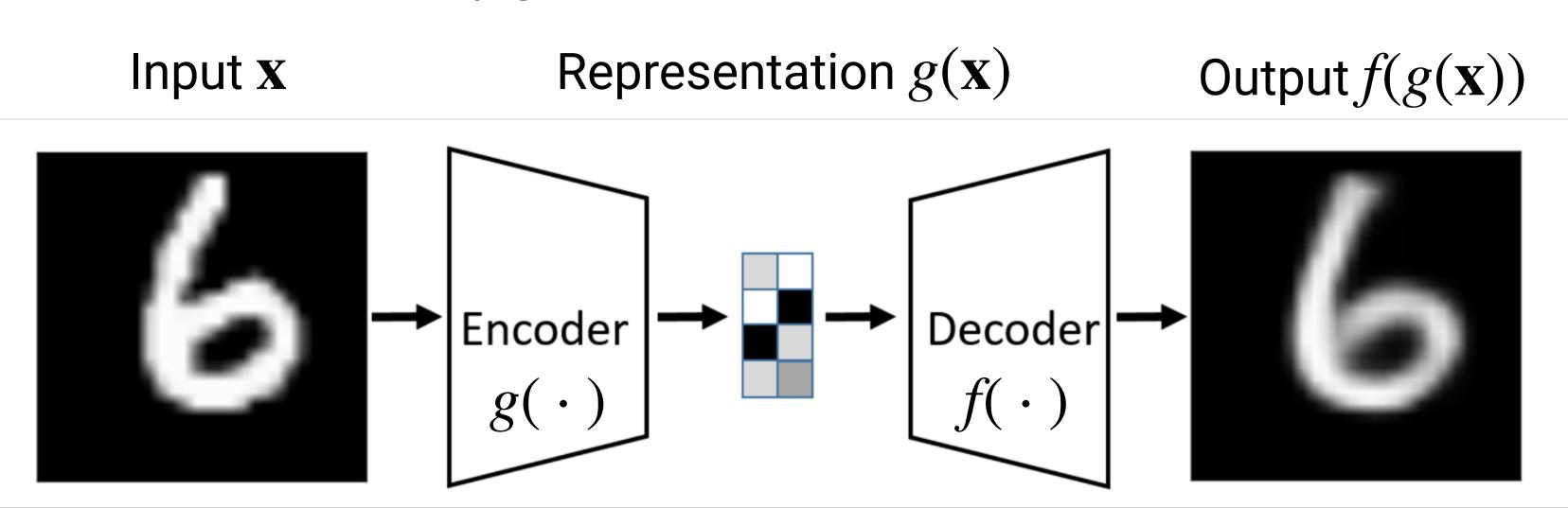
- Comparison with Language.
 - Need to generate many pixels for high-resolution images
 - Thus challenging to generate "realistic" ones
 - Pixels have mostly continuous values, not discrete
 - More locality involved, with 2D/3D geometry

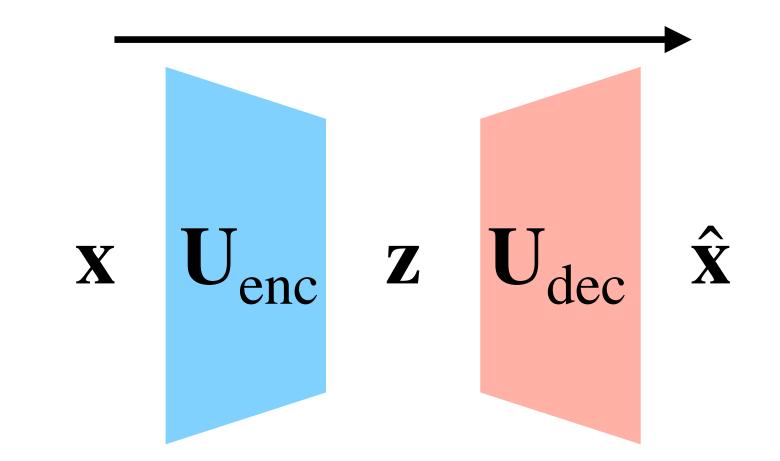
Autoencoders

Autoencoder

- Originally an approach for representation learning
- Idea. Train a neural network that can do dimensionality reduction
 - Replace the linear model with neural nets
 - Use SGD to optimize the reconstruction loss

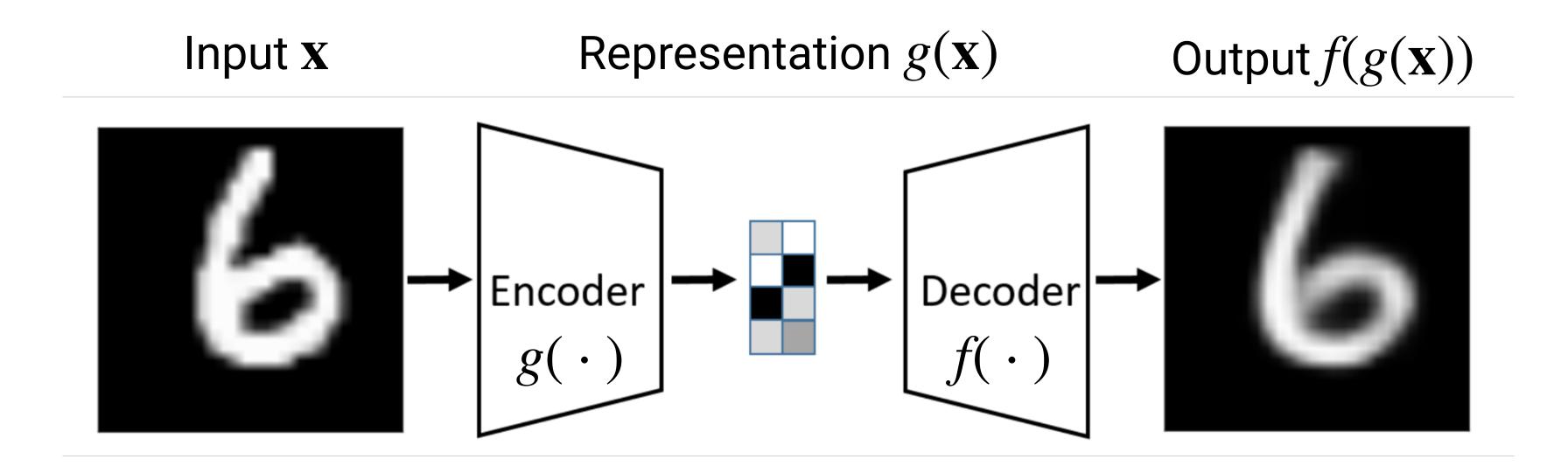
$$\min_{f,g} \mathbb{E}_{\mathbf{x}} ||\mathbf{x} - f(g(\mathbf{x}))||^2$$





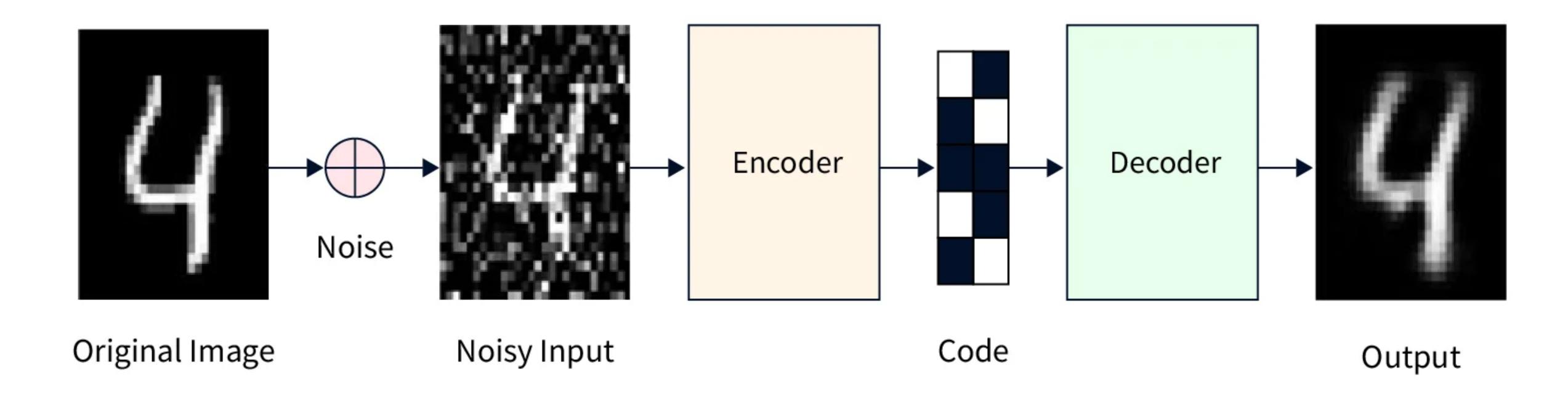
Autoencoder

- Problem. As NNs are too powerful, AEs end up learning trivial solutions
 - Overfits to learning an identity function f(g(x)) = x, without making the encoder $g(\cdot)$ meaningful
- Naïve. Reduce the dimension of $g(\mathbf{x})$ further extreme hourglass
 - Not very effective in many cases...

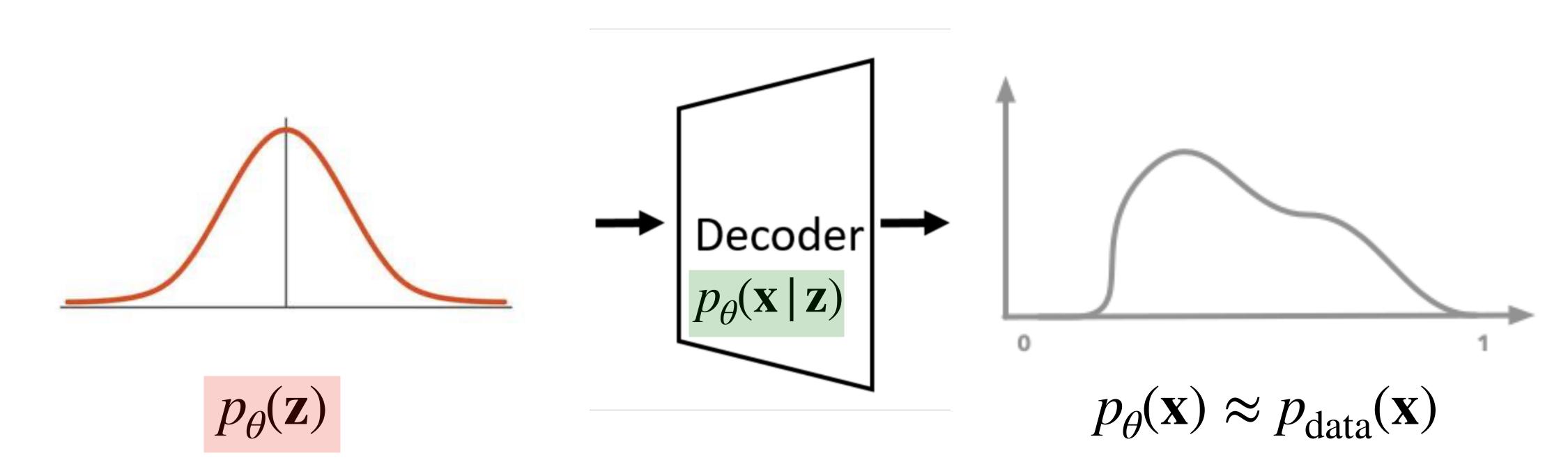


Denoising Autoencoder

- Idea. Add noise to the input image, and train to recover the clean image
 - Never solved by identity function
 - Requires understanding our real images look like
 - Tells apart from random noise
- Other examples. Sparse autoencoders...



- Structurally similar to autoencoders, but very different in goals
- Goal. Train a decoder and a distribution such that
 - Input. Send in a distribution $p_{\theta}(\mathbf{z})$
 - Output. Get a data-generating distribution $p_{\theta}(\mathbf{x}) pprox p_{\mathrm{data}}(\mathbf{x})$

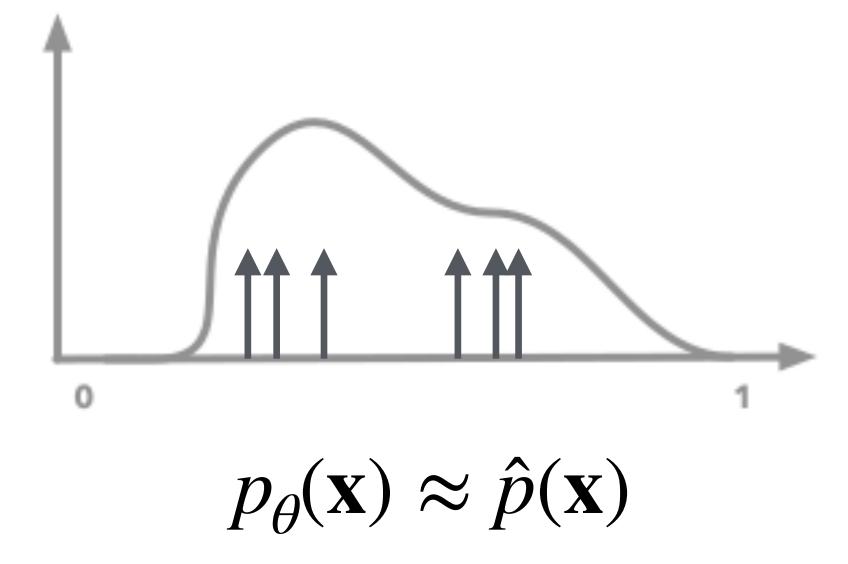


• Training. Optimize the log probability

$$\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}_i)$$

- Note. Equivalent to minimizing some distance between the empirical distribution \hat{p} , and the modeled distribution p_{θ}
 - The "Kullback-Leibler divergence"

$$\min_{\theta} D(\hat{p}(\mathbf{x}) \| p_{\theta}(\mathbf{x}))$$
 where
$$D(p \parallel q) = \mathbb{E}_p \log(p/q)$$



Problem. Computing the marginal distribution is intractible

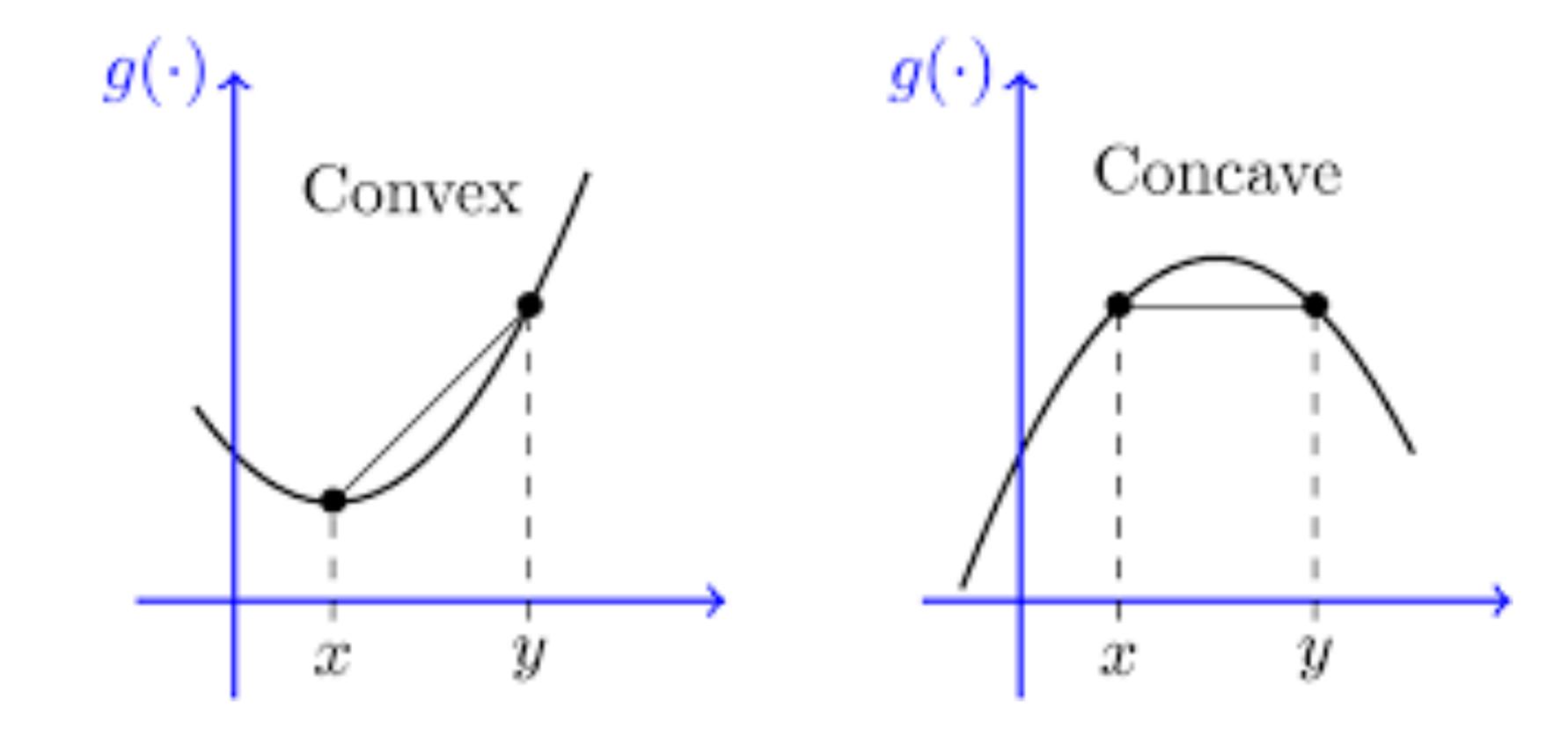
$$p_{\theta}(\mathbf{x}_i) = \int p_{\theta}(\mathbf{x}_i | \mathbf{z}) p_{\theta}(\mathbf{z}) \, d\mathbf{z}$$

- We can try drawing many samples from $p_{\theta}(\mathbf{z})$ to approximate this with samples (i.e., Monte Carlo approach)
- ... but this is too costly

- Idea. Maximize some lower bound of $\log p_{\theta}(\mathbf{x})$
 - Evidence lower bound (ELBO)
 (We saw this in expectation-maximization!)

Recap: ELBO

- Recap: Jensen's inequality.
 - For concave function $f(\cdot)$, we have $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$
 - For convex function $f(\cdot)$, we have $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$



Recap: ELBO

• For some arbitrary $q_{\phi}(\mathbf{z})$, we have

$$\begin{split} \log p_{\theta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x} \,|\, \mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \log \int q_{\phi}(\mathbf{z}) \frac{p_{\theta}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p_{\theta}(\mathbf{x} \,|\, \mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}) \cdot \log \left[\frac{p_{\theta}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p_{\theta}(\mathbf{x} \,|\, \mathbf{z}) \right] \, \mathrm{d}\mathbf{z} \\ &= -D(q_{\phi}(\mathbf{z}) || p_{\theta}(\mathbf{z})) + \mathbb{E}_{\mathbf{z} \sim q_{\phi}} [\log p_{\theta}(\mathbf{x} \,|\, \mathbf{z})] \end{split}$$

Recap: ELBO

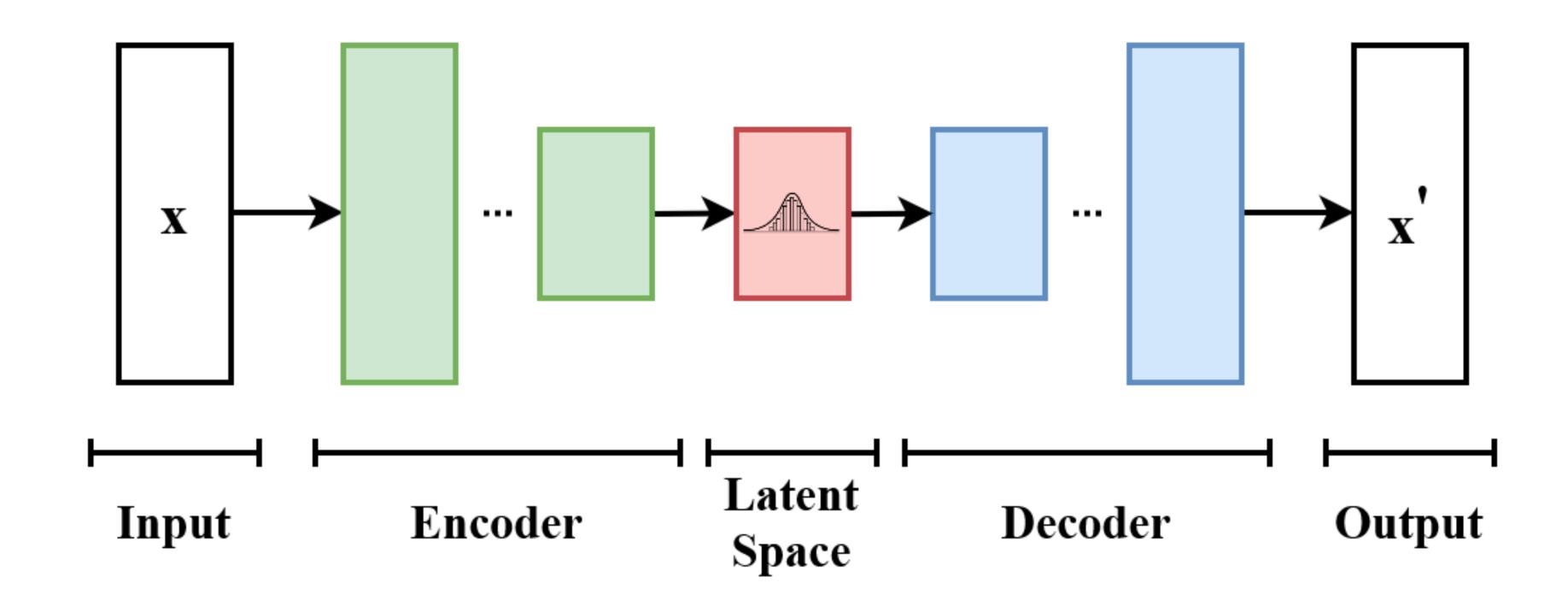
$$\log p_{\theta}(\mathbf{x}) \ge -D(q_{\phi}(\mathbf{z}) \| p_{\theta}(\mathbf{z})) + \mathbb{E}_{\mathbf{z} \sim q_{\phi}}[\log p_{\theta}(\mathbf{x} \,|\, \mathbf{z})]$$

- We can sample from $q_{\phi}(\mathbf{z})$ and measure the loss
 - We can choose $q_{\phi}(\mathbf{z})$ dependently on \mathbf{x} thus $q_{\phi}(\mathbf{z} \,|\, \mathbf{x})$
 - Choose the option that maximizes the RHS
- In other words, we can solve:

$$\max_{\theta} \log p_{\theta}(\mathbf{x}_i) \ge \max_{\theta} \max_{\phi} \left(-D(q_{\phi}(\mathbf{z} \,|\, \mathbf{x}_i) \| p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\cdot |\mathbf{x}_i)}[\log p_{\theta}(\mathbf{x}_i \,|\, \mathbf{z})] \right)$$

• We train both $q_{\phi}(\mathbf{z} \,|\, \mathbf{x})$ and $p_{\theta}(\mathbf{x} \,|\, \mathbf{z})$ (and not $p_{\theta}(\mathbf{z})$)

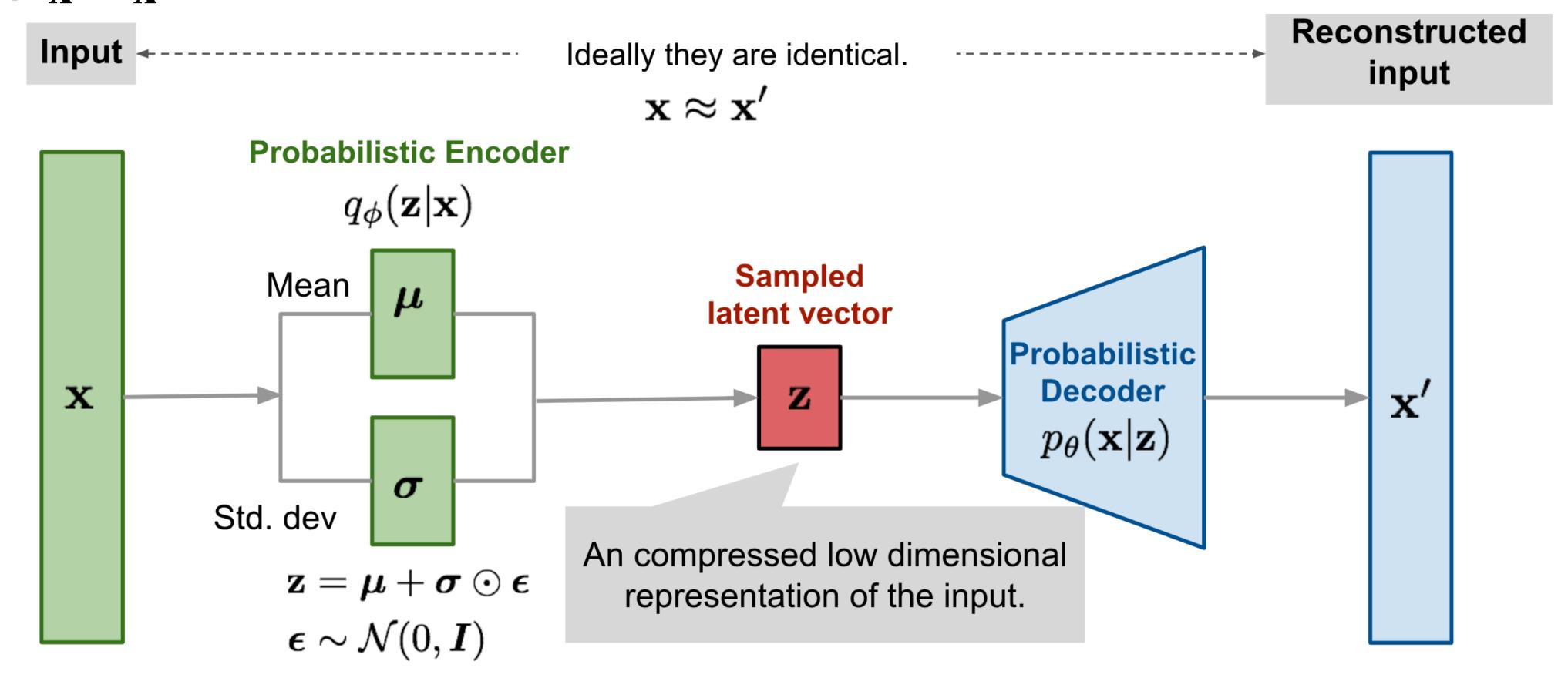
- Question. How do we model $q_{\phi}(\mathbf{z} \mid \mathbf{x})$?
 - Answer. Jointly train a probabilistic encoder that expresses $q_{\phi}(\mathbf{z} \,|\, \mathbf{x})$
 - But how do we implement a probabilistic encoder?



Idea: Reparametrization Trick.

Model $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ as a conditional Gaussian $\mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2)$

• $\mu_{\mathbf{x}}$, $\sigma_{\mathbf{x}}$ are the outputs of a neural network encoder



Now, look at the optimization problem:

$$\max_{\theta} \max_{\phi} \left(-D(q_{\phi}(\mathbf{z} \,|\, \mathbf{x}_i) \| p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\cdot |\mathbf{x}_i)}[\log p_{\theta}(\mathbf{x}_i \,|\, \mathbf{z})] \right)$$

- First, take a look at the second term
 - By using the model $p_{\theta}(\mathbf{x}_i | \mathbf{z}) = \mathcal{N}(f_{\theta}(\mathbf{z}), \eta \cdot I_d)$, it becomes

$$-\mathbb{E}_{q_{\phi}(\cdot|\mathbf{x}_i)}\left[\frac{1}{2\eta}\|\mathbf{x}_i - f_{\theta}(\mathbf{z}_i)\|^2\right] + \text{const.}$$

- That is, simply use the squared loss
 - A bit more complicated if variances are also trained

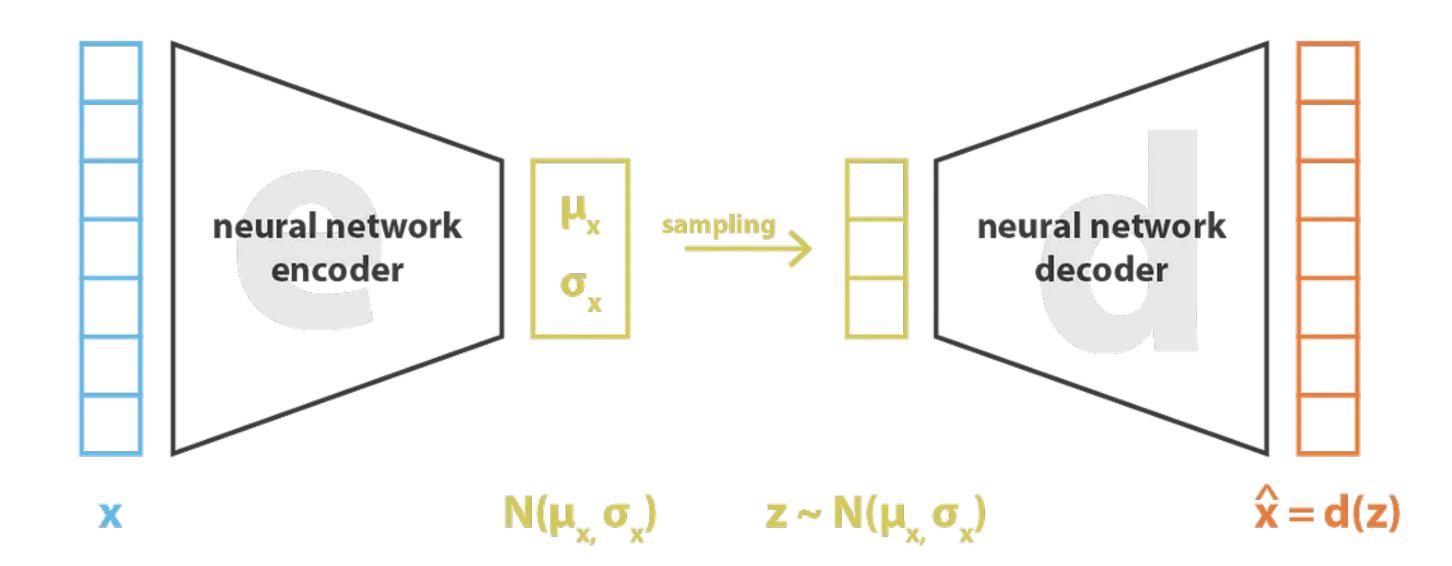
$$\max_{\theta} \max_{\phi} \left(-D(q_{\phi}(\mathbf{z} \,|\, \mathbf{x}_i) || p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\cdot |\mathbf{x}_i)}[\log p_{\theta}(\mathbf{x}_i \,|\, \mathbf{z})] \right)$$

If we use the Gaussian encoder

$$q_{\phi} = \mathcal{N}(\mu_{\mathbf{X}_i}, \sigma_{\mathbf{X}_i} \cdot I_k)$$
 then this simply becomes

 ℓ^2 regularizers on μ,σ

Check by yourself



• Thus, a squared loss $\& \ell^2$ regularizer

loss =
$$\|\mathbf{x} - \mathbf{x}'\|^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)] = \|\mathbf{x} - \mathbf{d}(\mathbf{z})\|^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)]$$

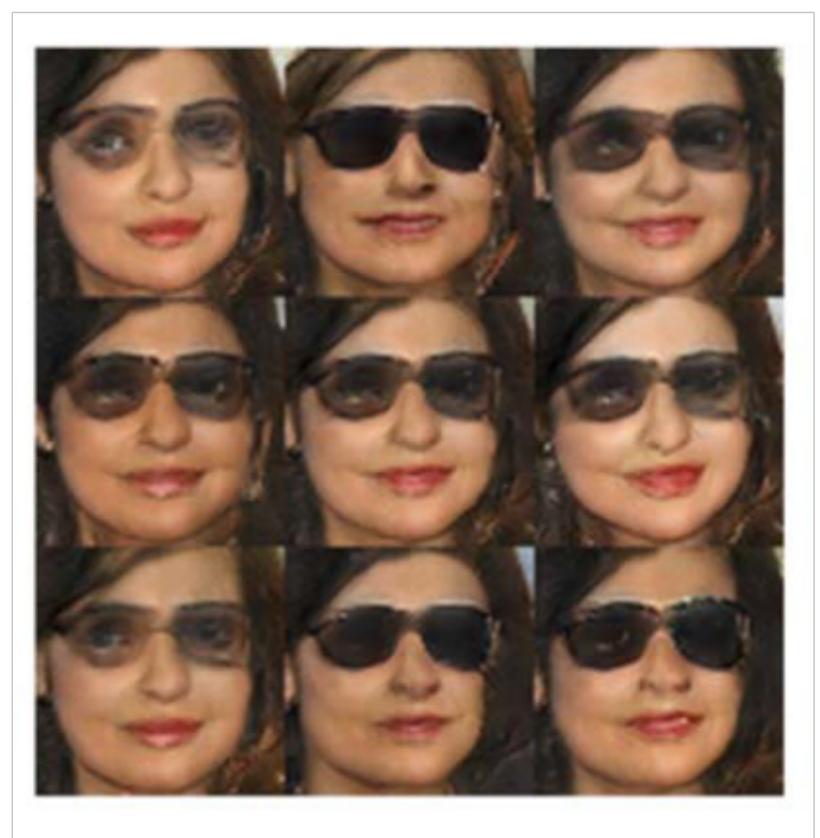
Properties

- Advantages. Known to enjoy nice disentanglements
 - Each dimension of z correspond to clear semantic concepts

data manifold for 2-d z vary z_1 777777111111111/ 77777711111111111 vary \mathbf{Z}_2

Properties

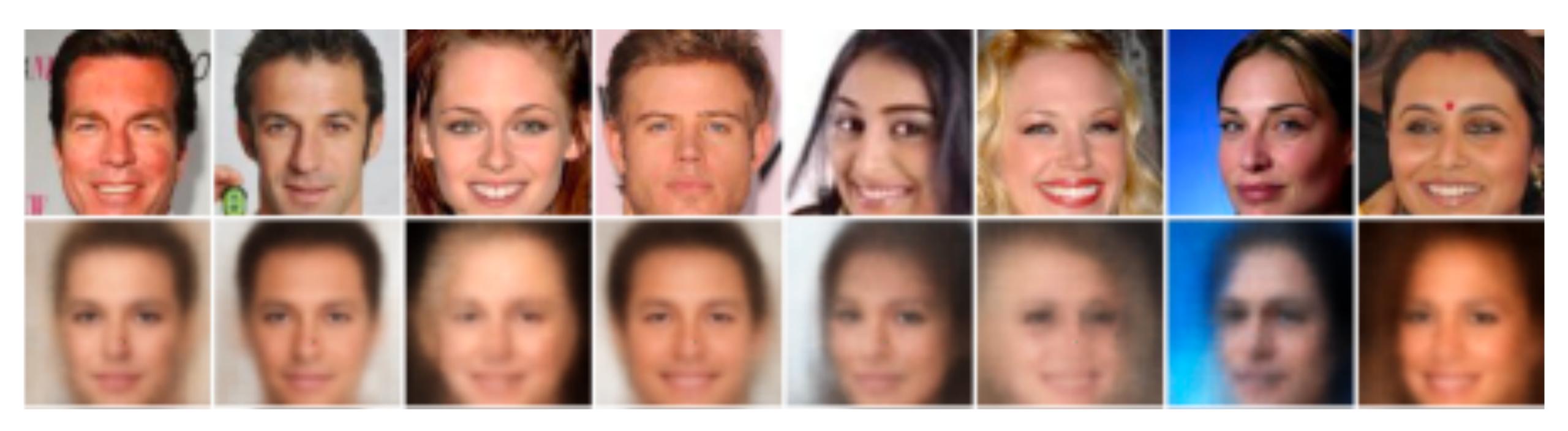
- Advantages. Known to enjoy nice disentanglements
 - Each dimension of z correspond to clear semantic concepts



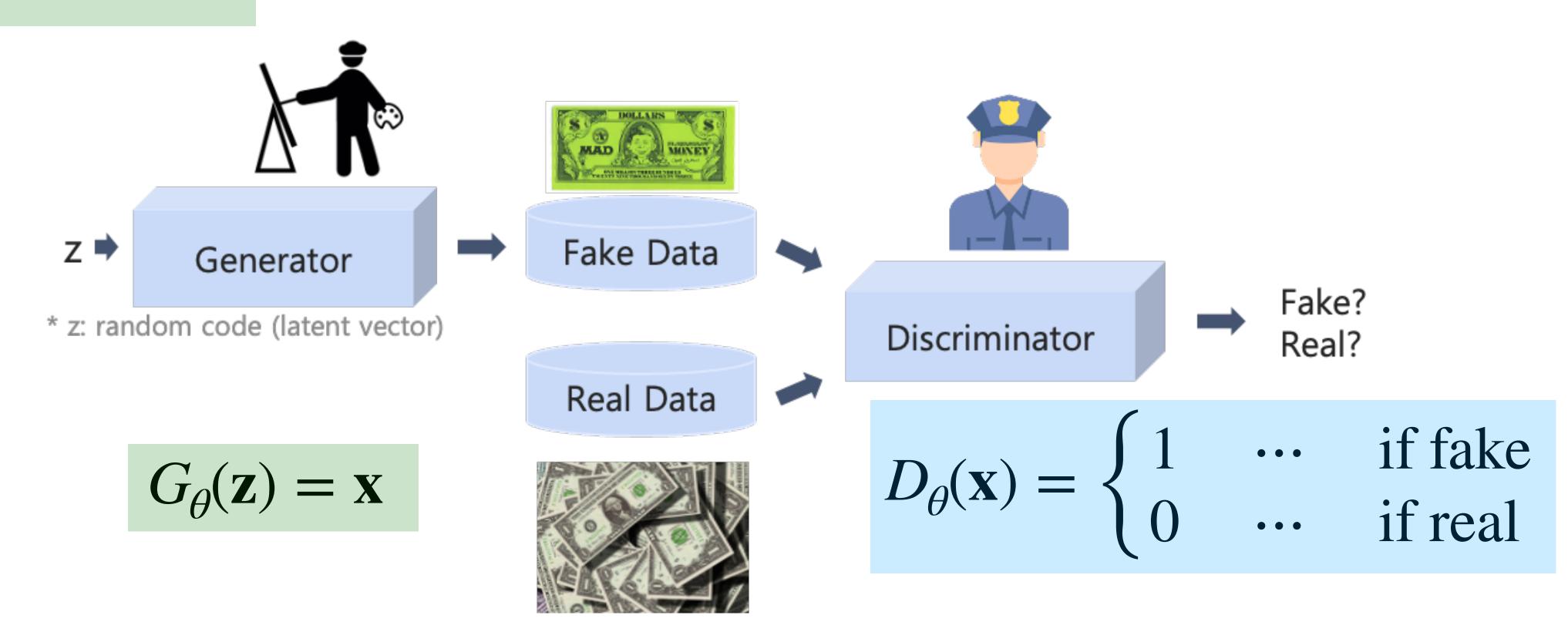
woman with glasses

Properties

- Limitations. Generate rather blurry images
 - Clearly distinguishable from real images
 (at least back then... as technologies advance fast)



- Idea. Train explicitly for the "hard-to-distinguish" propety
 - View generative process as a two-player game
 - <u>Discriminator</u>. Tries to distinguish the real / fake
 - Generator. Tries to fool the discriminator

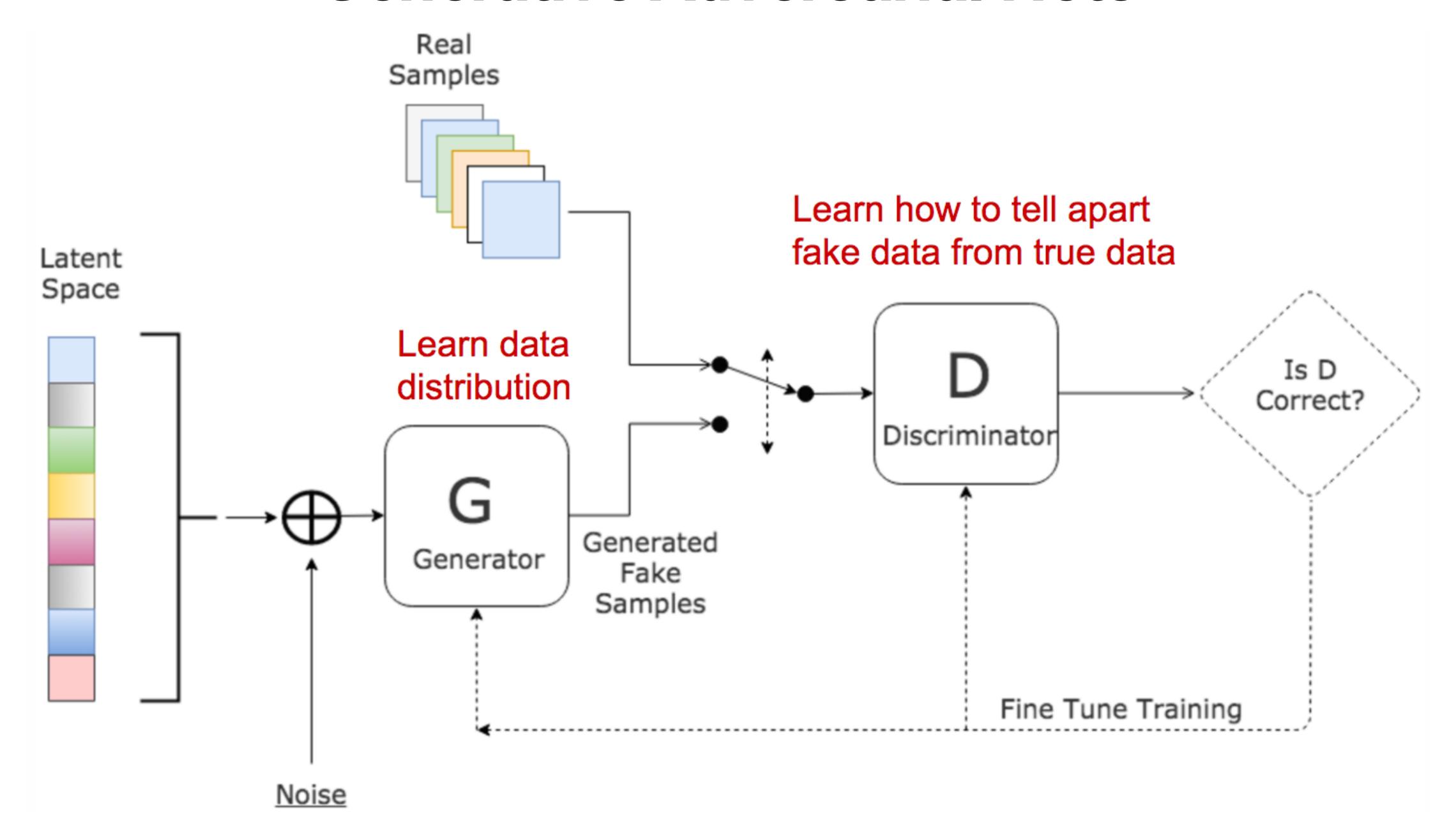


- Training. Jointly train the generator and the discriminator
 - Solve the minimax optimization

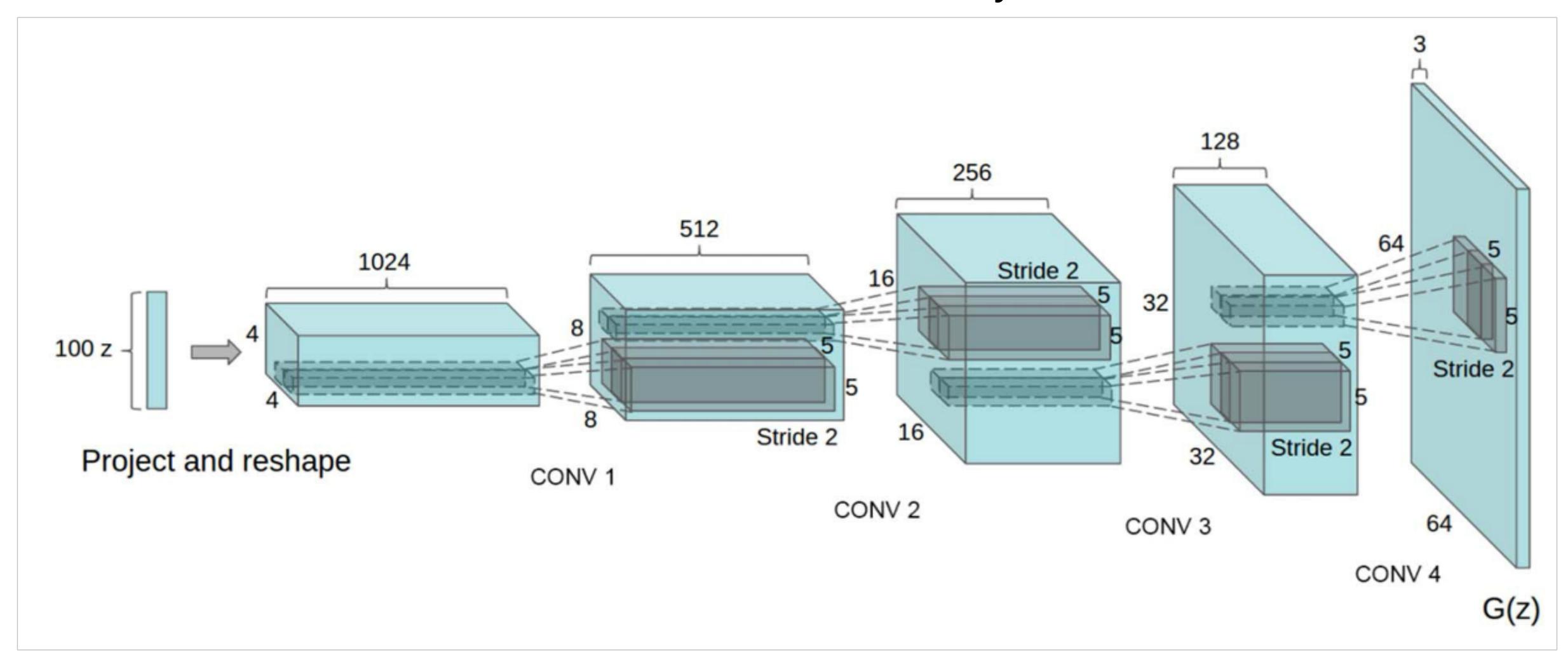
$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{\mathbf{X} \sim \hat{p}} \left| \log D_{\theta_d}(\mathbf{X}) + \mathbb{E}_{\mathbf{Z} \sim p(z)} \right| \log (1 - D_{\theta_d} \circ G_{\theta_g}(z)) \right]$$
 Discriminator declares real image to be real

- Discriminator outputs the likelihood of being real: $D_{\theta_d}(\mathbf{x}) \in [0,1]$
- Note. Equivalent to the Jensen-Shannon divergence

$$D\left(p_{\theta} \left\| \frac{\hat{p} + p_{\theta}}{2} \right) + D\left(\hat{p} \left\| \frac{\hat{p} + p_{\theta}}{2} \right) \right)$$



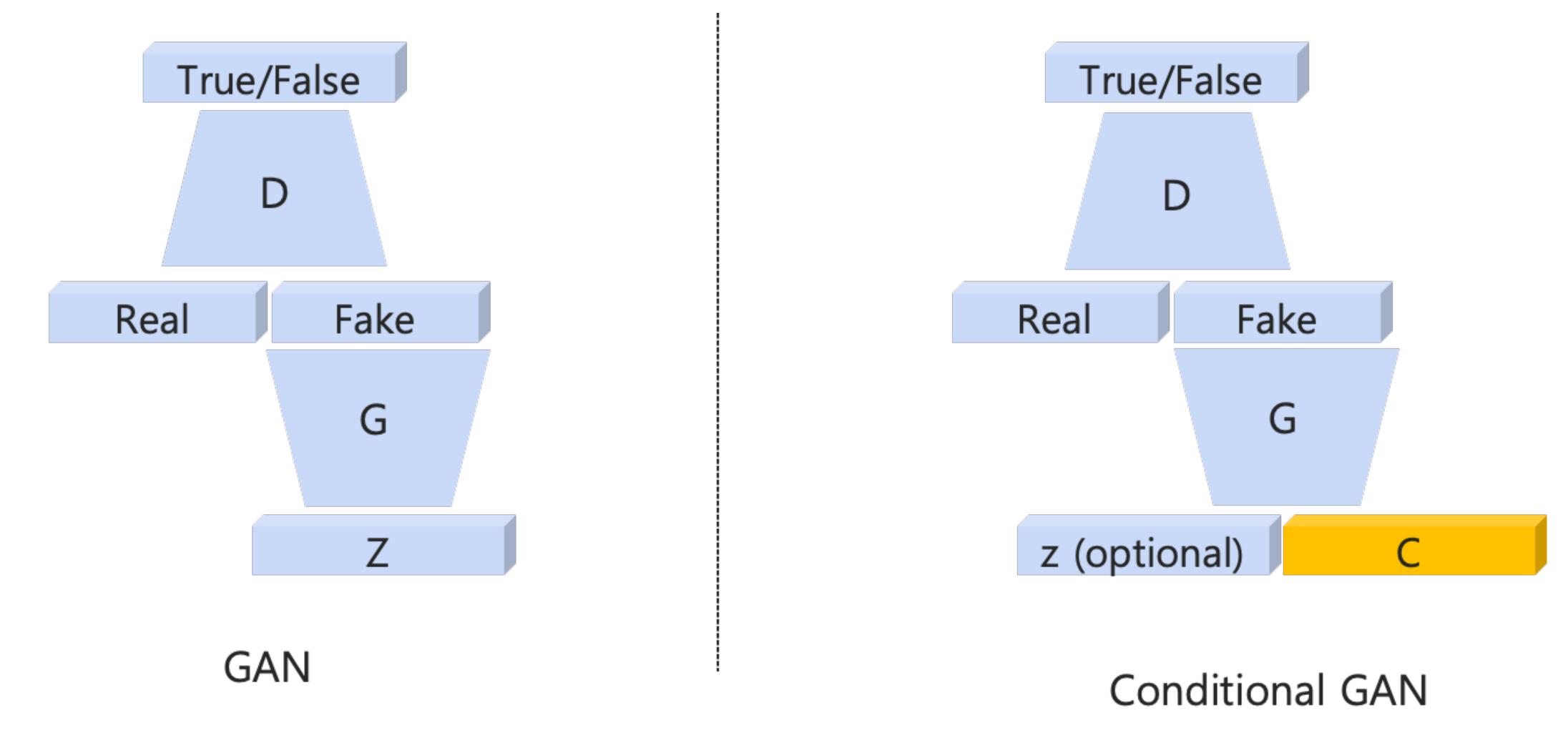
Architecture. Generator uses convolutional layers as well:



Advantages. GAN can give very sharp images

Conditional GAN

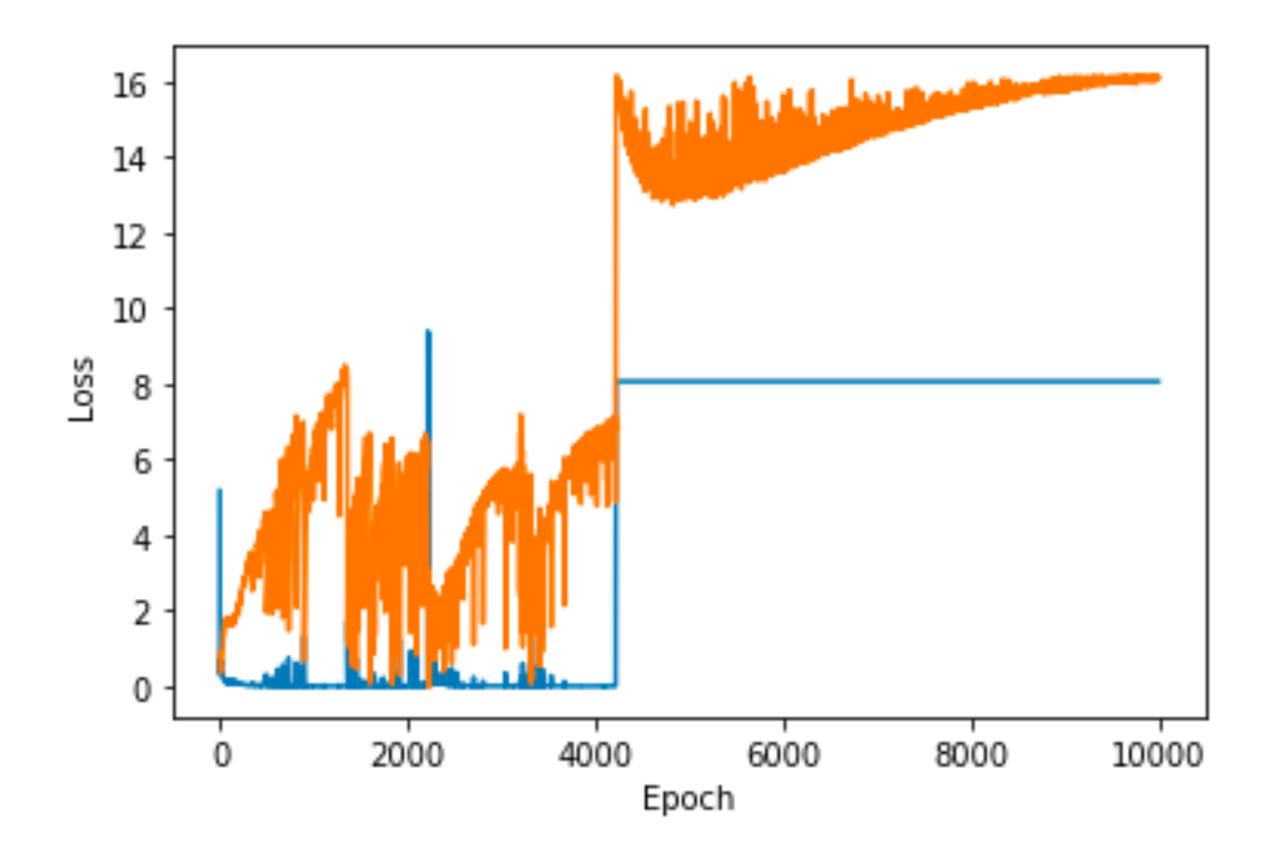
- Idea. Add class / text information to the latent code
 - Generate realistic images under specific conditions



Conditional GAN

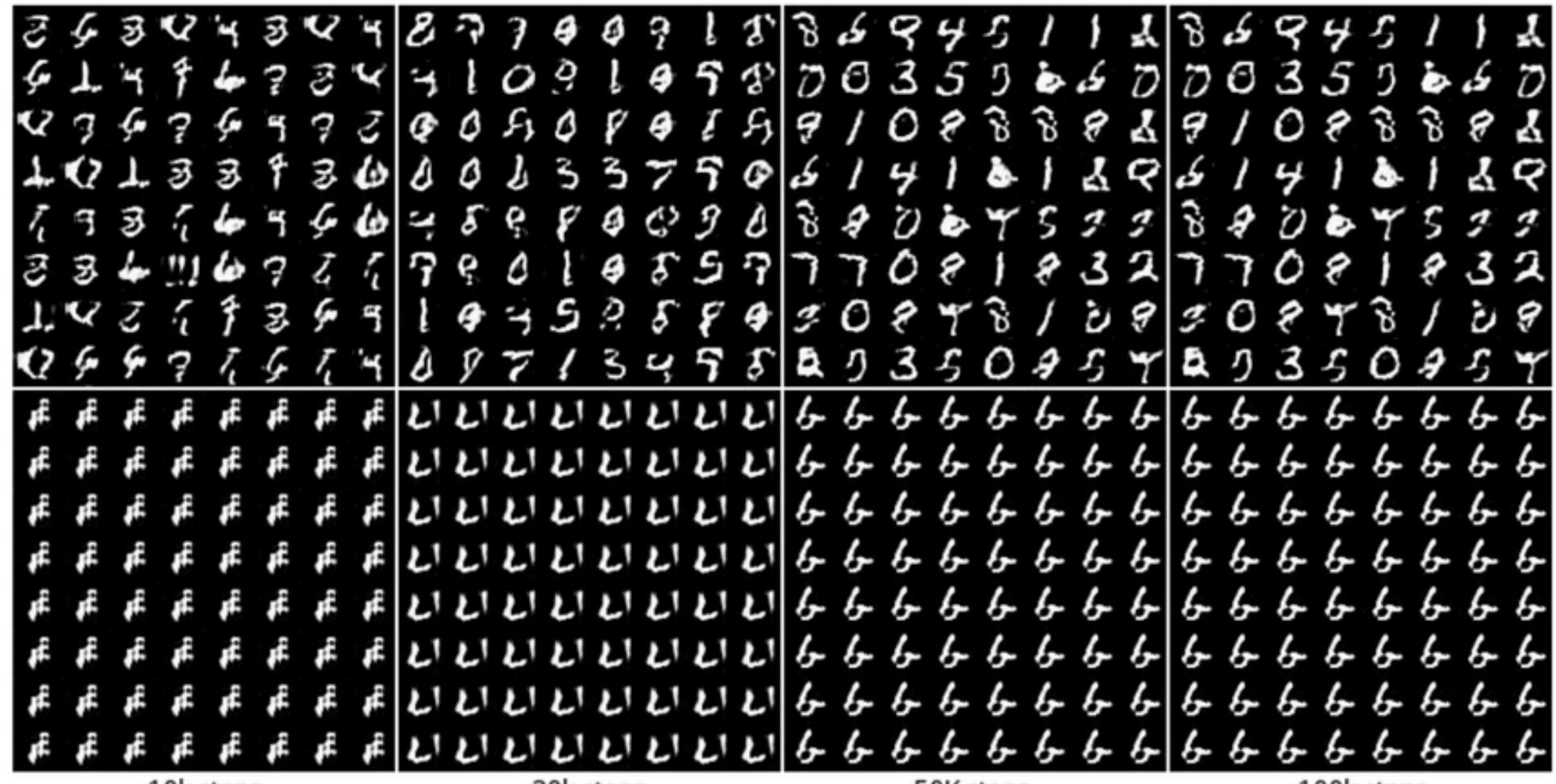
Limitations

- GAN training is known to be very unstable
 - If the discriminator works too well, the generator gives up learning
 - If the generator works too well, the discriminator cannot find any meaningful patterns



Limitations

- As a result, generators tend to overfit to few good solutions
 - called "mode collapse"



10k steps 20k steps 50K steps 100k steps

Next class

Diffusion models

</le>