
Bits of Vision:
Generative Modeling - 1

Recap
• Generative modeling. Using unlabeled

training data to
approximate the true data-generating
distribution, such that:

• Example. Gaussian mixture models
• Cluster information helps getting

high accuracy in downstream tasks
• Helps evaluating how likely each

data point is — anomaly detection

x1, …, xn ∼ pdata(x)

pθ(x) ≈ pdata(x)

Generative Modeling
• In modern contexts, generative modeling is being used as-is.
• Example. Suppose that we have a good model on the joint distribution:

from the image-text pairs crawled from the web

• Treating as the unlabeled data

pθ(x, y) ≈ pdata(x, y)
{(x, y)}n

i=1
z = (x, y)

Generative Modeling
• With a good generative model, we can do the following things:
• Generative Image Classification. We can use the Bayes rule to do:

pθ(y |x) =
pθ(x, y)
pθ(x)

OpenAI “CLIP”

Generative Modeling
• Text-conditioned Generation.

Use the Bayes rule the other way,
to generate an image from a text
description

pθ(x |y) =
pθ(x, y)
pθ(y)

Generative Modeling
• Image Inpainting. Generate missing pixels of the image in a way that

they are well-aligned with the observed pixels

pθ(xi |x1, …, xi−1, xi+1, …, xd)

Generative Modeling
• Text Generation. Generate the next word that is most likely to follow the

given text prompt

pθ(yn+1 |y1, …, yn)

Today
• Focus on the generative modeling for images

• Comparison with Language.
• Need to generate many pixels for high-resolution images

• Thus challenging to generate “realistic” ones
• Pixels have mostly continuous values, not discrete
• More locality involved, with 2D/3D geometry

Autoencoders

Autoencoder
• Originally an approach for representation learning
• Idea. Train a neural network that can do

dimensionality reduction
• Replace the linear model with neural nets
• Use SGD to optimize the reconstruction loss

min
f,g

𝔼x∥x − f(g(x))∥2

x z x̂Uenc Udec

Representation g(x) Output f(g(x))

f(⋅)g(⋅)

Input x

Autoencoder
• Problem. As NNs are too powerful, AEs end up learning trivial solutions

• Overfits to learning an identity function ,
without making the encoder meaningful

• Naïve. Reduce the dimension of further — extreme hourglass
• Not very effective in many cases…

f(g(x)) = x
g(⋅)
g(x)

Representation g(x) Output f(g(x))

f(⋅)g(⋅)

Input x

Denoising Autoencoder
• Idea. Add noise to the input image, and train to recover the clean image

• Never solved by identity function
• Requires understanding our real images look like

• Tells apart from random noise
• Other examples. Sparse autoencoders…

Variational Autoencoder
• Structurally similar to autoencoders, but very different in goals
• Goal. Train a decoder and a distribution such that

• Input. Send in a distribution

• Output. Get a data-generating distribution

pθ(z)
pθ(x) ≈ pdata(x)

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

Variational Autoencoder
• Training. Optimize the log probability

• Note. Equivalent to minimizing some distance between the empirical
distribution , and the modeled distribution
• The “Kullback-Leibler divergence”

 where

max
θ

n

∑
i=1

log pθ(xi)

̂p pθ

min
θ

D(̂p(x)∥pθ(x))

D(p ∥ q) = 𝔼p log(p/q)

pθ(x) ≈ ̂p(x)

Variational Autoencoder
• Problem. Computing the marginal distribution is intractible

• We can try drawing many samples from to approximate this
with samples (i.e., Monte Carlo approach)

• … but this is too costly

• Idea. Maximize some lower bound of
• Evidence lower bound (ELBO)

(We saw this in expectation-maximization!)

pθ(xi) = ∫ pθ(xi |z)pθ(z) dz

pθ(z)

log pθ(x)

Recap: ELBO
• Recap: Jensen’s inequality.

• For concave function , we have

• For convex function , we have

f(⋅) 𝔼[f(X)] ≤ f(𝔼[X])
f(⋅) 𝔼[f(X)] ≥ f(𝔼[X])

Recap: ELBO
• For some arbitrary , we have

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz

≥ ∫ qϕ(z) ⋅ log [pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]

Recap: ELBO

• We can sample from and measure the loss

• We can choose dependently on — thus

• Choose the option that maximizes the RHS

• In other words, we can solve:

• We train both and (and not)

log pθ(x) ≥ − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]

qϕ(z)
qϕ(z) x qϕ(z |x)

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ(z |x) pθ(x |z) pθ(z)

Variational Autoencoders

• Question. How do we model ?

• Answer. Jointly train a probabilistic encoder that expresses

• But how do we implement a probabilistic encoder?

qϕ(z |x)
qϕ(z |x)

Variational Autoencoders
• Idea: Reparametrization Trick.

Model as a conditional Gaussian

• are the outputs of a neural network encoder

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx

Variational Autoencoders
• Now, look at the optimization problem:

• First, take a look at the second term

• By using the model , it becomes

• That is, simply use the squared loss
• A bit more complicated if variances are also trained

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

pθ(xi |z) = 𝒩(fθ(z), η ⋅ Id)

−𝔼qϕ(⋅|xi) [1
2η

∥xi − fθ(zi)∥2] + const .

Variational Autoencoders

• If we use the Gaussian encoder

then this simply becomes
 regularizers on
• Check by yourself

• Thus, a squared loss
& regularizer

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ = 𝒩(μxi
, σxi

⋅ Ik)

ℓ2 μ, σ

ℓ2

Properties
• Advantages. Known to enjoy nice disentanglements

• Each dimension of correspond to clear semantic conceptsz

Properties
• Advantages. Known to enjoy nice disentanglements

• Each dimension of correspond to clear semantic conceptsz

Properties
• Limitations. Generate rather blurry images

• Clearly distinguishable from real images
(at least back then… as technologies advance fast)

Generative Adversarial Nets

Generative Adversarial Nets
• Idea. Train explicitly for the “hard-to-distinguish” propety

• View generative process as a two-player game
• Discriminator. Tries to distinguish the real / fake
• Generator. Tries to fool the discriminator

Dθ(x) = {1 ⋯ if fake
0 ⋯ if realGθ(z) = x

Generative Adversarial Nets
• Training. Jointly train the generator and the discriminator

• Solve the minimax optimization

• Discriminator outputs the likelihood of being real:

• Note. Equivalent to the Jensen-Shannon divergence

min
θg

max
θd

[𝔼x∼ ̂p log Dθd
(x) + 𝔼z∼p(z) log(1 − Dθd

∘ Gθg
(z))]

Dθd
(x) ∈ [0,1]

D (pθ
̂p + pθ

2) + D (̂p
̂p + pθ

2)

Discriminator declares
real image to be real

Discriminator declares
fake image to be fake

Generative Adversarial Nets

Generative Adversarial Nets
• Architecture. Generator uses convolutional layers as well:

Generative Adversarial Nets
• Advantages. GAN can give very sharp images

Conditional GAN
• Idea. Add class / text information to the latent code

• Generate realistic images under specific conditions

Conditional GAN

Limitations
• GAN training is known to be very unstable

• If the discriminator works too well, the generator gives up learning
• If the generator works too well, the discriminator cannot find any

meaningful patterns

Limitations
• As a result, generators tend to overfit to few good solutions

• called “mode collapse”

Next class
• Diffusion models

</lecture 17>

