Bits of Vision:
Generative Modeling - 1

Recap

* Generative modeling. Using unlabeled

training data X, ..., X, ~ Py.a(X) tO
approximate the true data-generating
distribution, such that:

pH(X) ~ pdata(X)

« Example. Gaussian mixture models

» Cluster information helps getting
high accuracy in downstream tasks

» Helps evaluating how likely each
data point is — anomaly detection

L

0 05 {1 0 05

I 1
AR
Ovo i.:
; “‘~ .k:o ‘

. RERR X Tk
0.5 . .t’r.(".o:.:t‘%‘.‘ 1 05
",;r';n s :Q.} e o}
N ™

Generative Modeling

* |n modern contexts, generative modeling is being used as-is.
« Example. Suppose that we have a good model on the joint distribution:

pH(Xa y) ~ pdata(Xa y)
from the image-text pairs {(X, y)}._, crawled from the web

 Treating z = (X, y) as the unlabeled data

shakeshack # + Follow

shakeshack ©& We're proud to show

@ our true colors. POur last #Pride
Month feature spotlights Kevin Rabell,
Recruiting Manager at the Shack Home
Office, and is all about authenticity.
Check it out on our Story + stay tuned
as our team hits the streets for the NYC
Pride March! &S#shakeshack
#shackpride

OpenAl “CLIP”

Generative Modeling

» With a good generative model, we can do the following things:
» Generative Image Classification. We can use the Bayes rule to do:

pH(X9 y)

Po(y [X) = (%)

Food101
guacamole (90.1%) Ranked 1 out of 101 labels

v aphoto of guacamole, a type of food.

X a photo of ceviche, a type of food.

X a photo of edamame, a type of food.

X a photo of tuna tartare, a type of food.

X a photo of hummus, a type of food.

Generative Modeling

 Text-conditioned Generation.
Use the Bayes rule the other way,
to generate an image from a text
description Output

p H(Xa y)
Po(y)

Input

An astronaut riding a horse in photorealistic style.

Po(X|y) =

Generative Modeling

* |Image Inpainting. Generate missing pixels of the image in a way that
they are well-aligned with the observed pixels

Po X | Xy ooy Xi (s X1y o e e X)

Generative Modeling

» Text Generation. Generate the next word that is most likely to follow the
given text prompt

pg(yn_|_1 ‘yla RS yn)

pub struct tncodedMessageQueue
pub queue: Vec<(EncodedMessage, ClientFilter)>,

: Arc<Sender<Vec<(EncodedMessage, ClientFilter)>>>,
't Arc<Receilver<Vec<(EncodedMessage, ClientFilter)>>>,

Today

* Focus on the generative modeling for images

 Comparison with Language.
* Need to generate many pixels for high-resolution images
* Thus challenging to generate “realistic” ones
» Pixels have mostly continuous values, not discrete
* More locality involved, with 2D/3D geometry

Autoencoders

Autoencoder

* Originally an approach for representation learning

 |dea. Train a neural network that can do
dimensionality reduction x U

* Replace the linear model with neural nets
» Use SGD to optimize the reconstruction loss

min E,||x — f(g(x))]|*
/.8

Input X Representation g(X) Output f(g(X))

Encoder [= | Decoder|™
g(+) J(+)

C1C

z U;. Xx

Autoencoder

* Problem. As NNs are too powerful, AEs end up learning trivial solutions

» Overfits to learning an identity function f(g(x)) = x,
without making the encoder g(-) meaningful

Naive. Reduce the dimension of g(X) further — extreme hourglass
* Not very effective in many cases...

Input X Representation g(X) Output f(g(X))

Encoder [= | Decoder|™
g(+) J(+)

Denoising Autoencoder

* |dea. Add noise to the input image, and train to recover the clean image
* Never solved by identity function
* Requires understanding our real images look like
» Tells apart from random noise
» QOther examples. Sparse autoencoders...

Encoder Decoder

Original Image Noisy Input Code Output

Variational Autoencoder

 Structurally similar to autoencoders, but very different in goals
* Goal. Train a decoder and a distribution such that

» Input. Send in a distribution py(Z)

» Output. Get a data-generating distribution py(X) & pg.¢.(X)

/\ = | Decoder|™

Po(Z) Po(X) X Piara(X)

Variational Autoencoder
* Training. Optimize the log probability
max Z} log py(x,)

» Note. Equivalent to minimizing some distance between the empirical
distribution p, and the modeled distribution p,

» The “"Kullback-Leibler divergence”

min D(H(x)[py(x)

where D(p || g) = E,log(p/q) IR

Po(X) = p(X)

Variational Autoencoder

Problem. Computing the marginal distribution is intractible

Po(X;) = J'Pe(Xi |Z2)py(z) dz

» We can try drawing many samples from p,(z) to approximate this
with samples (i.e., Monte Carlo approach)

* ... butthisis too costly

ldea. Maximize some lower bound of log p,(X)
 Evidence lower bound (ELBO)

Recap: ELBO

* Recap: Jensen's inequality.
» For concave function f(-), we have E| f(X)] < f(E[X])

» For convex function f(-), we have E| f(X)] > f(E[X])

g(-) q(-)

- , [
Conves Concave

Recap: ELBO

» For some arbitrary q¢(z), we have

log p,(x) = log Jm(z)p@(x 2) dz

Po(Z)
q4(Z)

> [%(Z) - log [pH(Z)

= log Jq¢(z) Py(X|2z) dz

q4(Z)
= — D(q,(2)||py(z)) + £, [10g pp(X | Z)]

Po(X | z)] dz

Recap: ELBO
log py(x) = — D(q4(2)||py(2)) + ':ZN%[lOgPe(X |2)]

» We can sample from q¢(z) and measure the loss

» We can choose q¢(z) dependently on X — thus q¢(z | X)

* Choose the option that maximizes the RHS

* |n other words, we can solve:

max log py(x;) 2 max m;tx (— D(q,(z|x)llps(2)) + £, |x)l10g Po(X;] Z)])

+ We train both g ,(z | X) and py(x | z)

Variational Autoencoders

* Question. How do we model g (Z | X)?

. Answer. Jointly train a probabilistic encoder that expresses q¢(z | X)

» But how do we implement a probabilistic encoder?

Variational Autoencoders

* |dea: Reparametrization Trick.
Model q¢(z | X) as a conditional Gaussian A/ (u,, G)%)

* U,, 0, are the outputs of a neural network encoder

Reconstructed
Input <--------oooooeoooooo o Ideally they are identical. ~------=------=------- - _
, iInput
X ~ X
Probabilistic Encoder
qe(2]X)
Mean Sampled
MK latent vector
Probabilistic
. Decoder X,
po(x|2z)

Std. dev EI
An compressed low dimensional

Z=p+0o0OE representation of the input.

e ~N(0,I)

Variational Autoencoders

* Now, look at the optimization problem:

max mq?x (— D(qy(z|x)llpg(2)) + Ey . 1x)[10g Po(X;| z)])

* First, take a look at the second term
» By using the model py(X;|z) = N (f(Z),n - 1)), it becomes

I 2
 Egylx) Z_nHXi _fH(Zi)H

* Thatis, simply use the squared loss
* A bit more complicated if variances are also trained

+ const.

Variational Autoencoders

max max (— D(q¢(Z | X;)|[pg(2)) +

0 ¢

e |f we use the Gaussian encoder

qdp = */V(/’txlﬁ Oy Ik)
then this simply becomes
£ regularizers on u, o

* Check by yourself

* Thus, a squared loss
& £ regularizer

T~

neural network
encoder

/

_Q¢("Xz’) [lOg pQ(Xi ‘ Z)])

/

neural network
decoder

T

loss = ||

-X|]? + KL

,N(O,D] = ||

-d(2) || + KLI

,N(O,)]

Properties

» Advantages. Known to enjoy nice disentanglements

e Each dimension of Z correspond to clear semantic concepts

data manifold for 2-d z

DAY SNANANANAAANNNNNSNNNNNS
QAR LLLLLLVNYNNN~
QUAVYIYNININRLLLLLLVYY Y NN~
QAUAVVHININLNLELE VWOV Y @~~~
QOO HLHNNKNWBVIYIVIYY W W —-—
QAODOHINININMHEBPBDIOII D W - - —
QOQODOMIMMMMNo MBI ID D W@ - —
QOO MMMMMN))WY DD WD e e
OO0DMMMM M) NN 0D DD e e
OO0 DOMNMMMMMIMO WD e e
QONMMM " 000000 o oo
OIS 0% 0200000000 o on o o~ D~ P~ o~ =
N e N N N Nl ol ol Rl R S
SR R L LG A ko R R Sl S S N
i ogorororororrrTTaonnN~
SddadadadogorororrrrrTITIINN
SddddgoorororrrdTIIIRNN
A dTTTToTTrrsrrrrdrr222NN
S I g gl gl e ol ool ol ol ol ol ol O N NI N NN N

< >

vary

vary

Properties

» Advantages. Known to enjoy nice disentanglements

« Each dimension of Z correspond to clear semantic concepts

man man woman
with glasses without glasses without glasses

woman with glasses

Properties

* Limitations. Generate rather blurry images

» Clearly distinguishable from real images
(at least back then... as technologies advance fast)

Generative Adversarial Nets

Generative Adversarial Nets

* |dea. Train explicitly for the “hard-to-distinguish” propety
* View generative process as a two-player game
» Discriminator. Tries to distinguish the real / fake
» Generator. Tries to fool the discriminator

Z% Generator

== Fake Data &~ -
Fake?

Discriminator Real?

1 - 1ffake
D —
/%) {0 .. ifreal

* . random code (latent vector)

Real Data *

Gy(z) =X

Generative Adversarial Nets

* Training. Jointly train the generator and the discriminator
* Solve the minimax optimization

ném m@ax [-ZXNp log D@d(x) + &, log(1 — D@d o G@g(z))]
> d Discriminator declares Discriminator declares
real image to be real fake image to be fake

. Discriminator outputs the likelihood of being real: Ded(X) e |0,1]

* Note. Equivalent to the Jensen-Shannon divergence

h + h +
D(pg P Pe)_I_D(ﬁ P Pe)

2 2

Latent
Space

Generative Adversarial Nets

Noise

Real
Samples
|
|
Learn data
distribution
~ ™ "
Generated
Generator
Fake
- ‘ / Samples

v

Learn how to tell apart
fake data from true data

/

-

D

Discriminator

\

J

H

Fine Tune Training

Is D .
. Correct? -

Generative Adversarial Nets

* Architecture. Generator uses convolutional layers as well:

100 z -

—

Stride 2 16

Project and reshape

CONV 2

Generative Adversarial Nets

» Advantages. GAN can give very sharp images

Conditional GAN

* |dea. Add class / text information to the latent code
* (Generate realistic images under specific conditions

True/False True/False
Real Fake Real Fake
G ' G
VA z (optional) C
GAN '

Conditional GAN

Conditional GAN

Monet Van Gogh Cezanne

Limitations

* GAN training is known to be very unstable
* |f the discriminator works too well, the generator gives up learning
* |f the generator works too well, the discriminator cannot find any

meaningful patterns

16 -
14 -

12 -
10 -

Loss

QN BB O O

0 2000 4000 6000 8000 10000
Epoch

tations

Imi

L

» As aresult, generators tend to overfit to few good solutions

» called "mode collapse”

s RALEVAL NI QUNS o
- & %YM A O,
~REP= N D

DX~ % o

100k steps

DA DDD
DO ~RAFr-POAIIIIIIDS
MO PITAQIUMIIJIIIIIID

50K steps

20k steps

L

FY NI IZAr R,
YOO MINE AR R]
PO ol G PR BN B S S T T T
33 N0 FJor]
DO DA SIAT O R R R R W)
M Ir3 = NF V3[R R YRR R
S o Fo Rl BO UL L S S0 S S B 1
MY AN U RY

10k steps

Next class

o Diffusion models

</lecture 17>

