
Bits of Vision: 
Convolution and CNNs



Agenda
• So far. Neural network basics 

• Multi-layer perceptrons 
• Training neural networks 

• Backprop 
• Optimizers & Initializations 

• Today. Topics in computer vision 
• Convolution 
• Advanced CNNs



Convolution



Recap: MLPs
• MLPs take a simple form 

 

• Alternatingly applies two operations 

• Linear operation:           

• Nonlinear activation:   

f(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

x ↦ Wx + b
x ↦ σ(x)



Recap: MLPs
• Matmuls on visual signals require too many params & compute 
• Example. Suppose that we train an image denoising model 

• Process a 1080p image to another 1080p image 
                   (1920 x 1080 pixels) 

• If it is a linear model (i.e., 1-layer MLP), then we need: 
• 38.7 trillion parameters = 155TB in FP32 
• 77.4 trillion inference FLOPs

1-Layer MLP



Recap: MLPs
• Example. Suppose that we have a similar denoising model 

• Furthermore, assume that: 
• we have 10 layers 
• train for 100 epochs 
• 1 million training images 

• Then we need  FLOPs 
• = 70 years of training on H100

1.5 × 1023

NVIDIA H100 
67 TFLOPS



Convolution
• Idea. Mitigate this issue with two ideas: locality and weight sharing 

• Definition. A convolution of two functions is: 

 

• The response of a system, which has impulse 
response , when given an input signal 

( f * g) (t) = ∫
+∞

−∞
f(τ) ⋅ g(t − τ) dτ

f(t) g(t)

Unit Pulse System f(t)

System ( f * g)(t)g(t)



Image source: 1D convolution for neural networks, part 1: Sliding dot product, Brandon Rohrer



Weight sharing. Same “weights” are 
used for all input signals 

Locality. To generate output for time 
, use only the input at  

(reasonable for images, but not for other data?)
t [t − c, t + c]



Image source: wikipedia “convolution”



Convolution
• In classic computer vision, different handcrafted “filters” has been used 

for different purposes

Image source: https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf



Convolution



Convolution
• In modern AI, filters are learned from data 

• Replaces linear layers 
• Apply multiple parallel filters 

• Properties. Learned operations are translation-equivariant 
• applies same operation to patches at different locations 

f(shift(x)) = shift( f(x))

? ?
???

?
? ? ?



Building a convolutional network



Convolutional layer
• Begin with a 32x32 image with 3 channels (RGB)

Height

Width

(Channel) Depth



Convolutional layer
• Convolve with a convolution filter 

• Dot product with a sliding “receptive field”

• Classic. Filters have full channel depth 
• i.e., uses all input channels 

• Modern. Apply depth-1 convolution for 
                each input channel, 
                for efficiency 

• called “depthwise convolution”



Convolutional layer
• Convolving generates a single entry of the layer output

• Compute. Dot product of two tensors 
                   with 5x5x3 =75 dimensions, 
                   plus a bias addition



Convolutional layer
• Convolving generates a single entry of the layer output



Convolutional layer
• Do the same for the second filter



Convolutional layer
• Generate the pre-activation with multiple depths 

• also called “channels”



Convolutional layer
• Stack the layers, with activation functions in between



Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters
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Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters = 5x5 output



Spatial dimension: Stride
• It is common to apply strides: 

• With stride 2
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Spatial dimension: Stride
• It is common to apply strides: 

• With stride 2 = 3x3 output

• Output size. will be: 

 

• Stride 1: (7-3)/1 + 1 = 5 
• Stride 2: (7-3)/2 + 1 = 3 
• Stride 4: (7-3)/4 + 1 = 2 

• Note. The stride 3 does not fit for this case

(img length − filter length)
stride

+ 1



Spatial dimension: Padding
• Zero-padding. Adding zeros to the side, before applying convolution 

• Image size does not reduce, and thus can use more layers



Spatial dimension: 1x1
• Sometimes, we use 1x1 convolutions 

• Increase or decrease the number of channels via linear combination 
• Often used together with depthwise convolution



Pooling layer
• Pooling. Reduces the spatial dimension by taking max/mean/else of 

                multiple adjacent pixels 
• Gets smaller resolution without losing information 

(e.g., the activation represents a specific feature)



Final layer — Fully-connected
• In the final layer, we typically use fully-connected (i.e., linear) layer to 

perform classification/regression 
• To do this, we “flatten” the 2D/3D features into a vector form



Additional Remarks
• Each convolutional layer can handle images of any size 

• Unlike a fully-connected layer, which can only handle fixed dimension 
• For denoising/segmentation tasks, we can use all-convolutional 

networks to process images of any size



Popular network architectures



Architectures
• Now let’s take a look at some popular CNN architectures 

• Basic. LeNet, AlexNet 
• Deep. VGG, GoogLeNet, ResNet 
• Tiny. MobileNets 
• Scalable. EfficientNets / NFNets 

• Others. U-Net



Basic models



LeNet-5 (1998)
• First practically useful ConvNet 

• Convolutional layers followed by fully-connected layers 
• Pooling after convolution

LeCun et al., “Gradient-based learning applied to document recognition,” ACM DAES 2022



https://www.youtube.com/watch?v=FwFduRA_L6Q


AlexNet (2012)
• Bigger and deeper LeNet — 2012 ImageNet challenge winner 

• 7 hidden layers, 60 million parameters, and dropout

Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS 2012



AlexNet (2012)
• Bigger and deeper LeNet — 2012 ImageNet challenge winner 

• 7 hidden layers, 60 million parameters, and dropout
Conv-Pool-Norm.-Conv-Pool-Norm.-Conv-Conv-Conv-Pool-FC-FC-FC



AlexNet (2012)
• How did they succeed in training bigger and deeper networks? 

• Dataset. Large-scale, high-quality dataset 
• ImageNet 

• Optimization. Better activation 
• ReLU 

• Generalization. Better regularization 
• DropOut 

• Computation. Faster hardware 
• Distributed GPU training (two GTX 580) 

• And thus the scale race began



AlexNet (2012)



AlexNet (2012)
SuperVision 

(Krizhevsky, Sutskever, Hinton)
VGG 

(Simonyan, Aytar, Vedaldi, Zisserman)



Deep models



VGG (2014)
• Deeper network 

• up to 19 layers 

• Simpler architecture 
• Only 3x3 convolution 

• vs 5x5. Less params 
              but deeper 

• Only 2x2 pooling 
• No “local response 

normalization”

Simonyan and Zisserman, “Very deep convolutional networks for large-scale image recognition,” ICLR 2015



Stacking Deeper
• Key obstacles 

• Gradient vanishing and exploding (no batchnorm back then) 
• Too many parameters

\



Stacking Deeper
\He et al., “Deep residual learning for image recognition,” CVPR 2016



GoogLeNet (2014)
\Szegedy et al., “Going deeper with convolutions,” arXiv 2014

• Two notable differences 
• Inception module. Works as a bottleneck to reduce #channels



GoogLeNet (2014)
\

• Auxiliary Classifier. Resolves vanishing gradient by adding more sources 
of the backpropagation signal 
• Note. Only one FC layer for classification (reduces #params)



ResNet (2016)
• A more elegant solution to the vanishing gradient 

• Residual learning. Outputs , not  

•  represents an update that 
each layer contribute to the 
features 

• Example. Suppose that  
• Then, we have 

x + fθ(x) fθ(x)
fθ

y = x + σ(wx)

∂y
∂x

= 1 + σ′￼(wx)w

He et al., “Deep residual learning for image recognition,” CVPR 2016



ResNet (2016)
• In ResNets, gradients come from shorter paths 

• Similar to ensembling with many shortcus predictors



ResNet (2016)
• Also introduces bottleneck blocks 

• Accelerates training 
• Utilizes higher channel dimension, but 3x3 convolution is done in 

bottlenecks



ResNet (2016)
• Up to over 150 layers in total 

• Better initialization (He init.) 
• Batch normalization after each convolution 

• Dotted line. Doubles #channels and downsample by 2



Tiny / Scalable models



MobileNets (2017~2019)
• Motivation. Less number of parameters for inference on mobile devices 
• Innovations. 

• v1. Depthwise convolution 
• v2. Inverted residuals 
• v3. Architecture search

Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017



EfficientNets (2019~2021)
• Question. If we have more budget, how should we increase #params? 

• Increase depth / width / resolution (i.e., less downsampling) 
• Answer. All of them jointly, with some scaling factors

Tan and Le, “Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019



NFNets (2021~2023)
• People observed that removing batch norms is a key to build very big 

ConvNets 
• Before this, people thought large ConvNets cannot work as good as 

transformer-based models

Brock et al., “High-performance large-scale image recognition without normalization,” ICML 2021



Other models



U-Nets (2015)
• One of the most popular models for biomedical applications 

• Image-to-image tasks: Segmentation, denoising, … 
• All-convolutional network, with residuals

Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI 2015
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