
Bits of Vision:
Convolution and CNNs

Agenda
• So far. Neural network basics

• Multi-layer perceptrons
• Training neural networks

• Backprop
• Optimizers & Initializations

• Today. Topics in computer vision
• Convolution
• Advanced CNNs

Convolution

Recap: MLPs
• MLPs take a simple form

• Alternatingly applies two operations

• Linear operation:

• Nonlinear activation:

f(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

x ↦ Wx + b
x ↦ σ(x)

Recap: MLPs
• Matmuls on visual signals require too many params & compute
• Example. Suppose that we train an image denoising model

• Process a 1080p image to another 1080p image
 (1920 x 1080 pixels)

• If it is a linear model (i.e., 1-layer MLP), then we need:
• 38.7 trillion parameters = 155TB in FP32
• 77.4 trillion inference FLOPs

1-Layer MLP

Recap: MLPs
• Example. Suppose that we have a similar denoising model

• Furthermore, assume that:
• we have 10 layers
• train for 100 epochs
• 1 million training images

• Then we need FLOPs
• = 70 years of training on H100

1.5 × 1023

NVIDIA H100
67 TFLOPS

Convolution
• Idea. Mitigate this issue with two ideas: locality and weight sharing

• Definition. A convolution of two functions is:

• The response of a system, which has impulse
response , when given an input signal

(f * g) (t) = ∫
+∞

−∞
f(τ) ⋅ g(t − τ) dτ

f(t) g(t)

Unit Pulse System f(t)

System (f * g)(t)g(t)

Image source: 1D convolution for neural networks, part 1: Sliding dot product, Brandon Rohrer

Weight sharing. Same “weights” are
used for all input signals

Locality. To generate output for time
, use only the input at

(reasonable for images, but not for other data?)
t [t − c, t + c]

Image source: wikipedia “convolution”

Convolution
• In classic computer vision, different handcrafted “filters” has been used

for different purposes

Image source: https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf

Convolution

Convolution
• In modern AI, filters are learned from data

• Replaces linear layers
• Apply multiple parallel filters

• Properties. Learned operations are translation-equivariant
• applies same operation to patches at different locations

f(shift(x)) = shift(f(x))

? ?
???

?
? ? ?

Building a convolutional network

Convolutional layer
• Begin with a 32x32 image with 3 channels (RGB)

Height

Width

(Channel) Depth

Convolutional layer
• Convolve with a convolution filter

• Dot product with a sliding “receptive field”

• Classic. Filters have full channel depth
• i.e., uses all input channels

• Modern. Apply depth-1 convolution for
 each input channel,
 for efficiency

• called “depthwise convolution”

Convolutional layer
• Convolving generates a single entry of the layer output

• Compute. Dot product of two tensors
 with 5x5x3 =75 dimensions,
 plus a bias addition

Convolutional layer
• Convolving generates a single entry of the layer output

Convolutional layer
• Do the same for the second filter

Convolutional layer
• Generate the pre-activation with multiple depths

• also called “channels”

Convolutional layer
• Stack the layers, with activation functions in between

Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters

Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters

Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters

Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters

Spatial dimension: Stride
• Consider a 7x7 image with 3x3 filters = 5x5 output

Spatial dimension: Stride
• It is common to apply strides:

• With stride 2

Spatial dimension: Stride
• It is common to apply strides:

• With stride 2

Spatial dimension: Stride
• It is common to apply strides:

• With stride 2 = 3x3 output

• Output size. will be:

• Stride 1: (7-3)/1 + 1 = 5
• Stride 2: (7-3)/2 + 1 = 3
• Stride 4: (7-3)/4 + 1 = 2

• Note. The stride 3 does not fit for this case

(img length − filter length)
stride

+ 1

Spatial dimension: Padding
• Zero-padding. Adding zeros to the side, before applying convolution

• Image size does not reduce, and thus can use more layers

Spatial dimension: 1x1
• Sometimes, we use 1x1 convolutions

• Increase or decrease the number of channels via linear combination
• Often used together with depthwise convolution

Pooling layer
• Pooling. Reduces the spatial dimension by taking max/mean/else of

 multiple adjacent pixels
• Gets smaller resolution without losing information

(e.g., the activation represents a specific feature)

Final layer — Fully-connected
• In the final layer, we typically use fully-connected (i.e., linear) layer to

perform classification/regression
• To do this, we “flatten” the 2D/3D features into a vector form

Additional Remarks
• Each convolutional layer can handle images of any size

• Unlike a fully-connected layer, which can only handle fixed dimension
• For denoising/segmentation tasks, we can use all-convolutional

networks to process images of any size

Popular network architectures

Architectures
• Now let’s take a look at some popular CNN architectures

• Basic. LeNet, AlexNet
• Deep. VGG, GoogLeNet, ResNet
• Tiny. MobileNets
• Scalable. EfficientNets / NFNets

• Others. U-Net

Basic models

LeNet-5 (1998)
• First practically useful ConvNet

• Convolutional layers followed by fully-connected layers
• Pooling after convolution

LeCun et al., “Gradient-based learning applied to document recognition,” ACM DAES 2022

https://www.youtube.com/watch?v=FwFduRA_L6Q

AlexNet (2012)
• Bigger and deeper LeNet — 2012 ImageNet challenge winner

• 7 hidden layers, 60 million parameters, and dropout

Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS 2012

AlexNet (2012)
• Bigger and deeper LeNet — 2012 ImageNet challenge winner

• 7 hidden layers, 60 million parameters, and dropout
Conv-Pool-Norm.-Conv-Pool-Norm.-Conv-Conv-Conv-Pool-FC-FC-FC

AlexNet (2012)
• How did they succeed in training bigger and deeper networks?

• Dataset. Large-scale, high-quality dataset
• ImageNet

• Optimization. Better activation
• ReLU

• Generalization. Better regularization
• DropOut

• Computation. Faster hardware
• Distributed GPU training (two GTX 580)

• And thus the scale race began

AlexNet (2012)

AlexNet (2012)
SuperVision

(Krizhevsky, Sutskever, Hinton)
VGG

(Simonyan, Aytar, Vedaldi, Zisserman)

Deep models

VGG (2014)
• Deeper network

• up to 19 layers

• Simpler architecture
• Only 3x3 convolution

• vs 5x5. Less params
 but deeper

• Only 2x2 pooling
• No “local response

normalization”

Simonyan and Zisserman, “Very deep convolutional networks for large-scale image recognition,” ICLR 2015

Stacking Deeper
• Key obstacles

• Gradient vanishing and exploding (no batchnorm back then)
• Too many parameters

\

Stacking Deeper
\He et al., “Deep residual learning for image recognition,” CVPR 2016

GoogLeNet (2014)
\Szegedy et al., “Going deeper with convolutions,” arXiv 2014

• Two notable differences
• Inception module. Works as a bottleneck to reduce #channels

GoogLeNet (2014)
\

• Auxiliary Classifier. Resolves vanishing gradient by adding more sources
of the backpropagation signal
• Note. Only one FC layer for classification (reduces #params)

ResNet (2016)
• A more elegant solution to the vanishing gradient

• Residual learning. Outputs , not

• represents an update that
each layer contribute to the
features

• Example. Suppose that
• Then, we have

x + fθ(x) fθ(x)
fθ

y = x + σ(wx)

∂y
∂x

= 1 + σ′￼(wx)w

He et al., “Deep residual learning for image recognition,” CVPR 2016

ResNet (2016)
• In ResNets, gradients come from shorter paths

• Similar to ensembling with many shortcus predictors

ResNet (2016)
• Also introduces bottleneck blocks

• Accelerates training
• Utilizes higher channel dimension, but 3x3 convolution is done in

bottlenecks

ResNet (2016)
• Up to over 150 layers in total

• Better initialization (He init.)
• Batch normalization after each convolution

• Dotted line. Doubles #channels and downsample by 2

Tiny / Scalable models

MobileNets (2017~2019)
• Motivation. Less number of parameters for inference on mobile devices
• Innovations.

• v1. Depthwise convolution
• v2. Inverted residuals
• v3. Architecture search

Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017

EfficientNets (2019~2021)
• Question. If we have more budget, how should we increase #params?

• Increase depth / width / resolution (i.e., less downsampling)
• Answer. All of them jointly, with some scaling factors

Tan and Le, “Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019

NFNets (2021~2023)
• People observed that removing batch norms is a key to build very big

ConvNets
• Before this, people thought large ConvNets cannot work as good as

transformer-based models

Brock et al., “High-performance large-scale image recognition without normalization,” ICML 2021

Other models

U-Nets (2015)
• One of the most popular models for biomedical applications

• Image-to-image tasks: Segmentation, denoising, …
• All-convolutional network, with residuals

Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI 2015

</lecture 15>

