Bits of Vision:
Convolution and CNNs



Agenda

» So far. Neural network basics
* Multi-layer perceptrons
* Training neural networks
» Backprop
* Optimizers & Initializations

» Today. Topics in computer vision
 Convolution
 Advanced CNNs



Convolution



Recap: MLPs

* MLPs take a simple form

fx) =W,6(W;_,0(:-:c(Wx+Db):--+b,_)+Db;

» Alternatingly applies two operations
* Linear operation: X Wx+Db

* Nonlinear activation: X — o(X)



Recap: MLPs

* Matmuls on visual signals require too many params & compute
« Example. Suppose that we train an image denoising model

* Process a 1080p image to another 1080p image
(1920 x 1080 pixels)

 |fitisalinear model (i.e., 1-layer MLP), then we need:
» 38.7 trillion parameters = 155TB in FP32
o 77.4trillion inference FLOPs
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Recap: MLPs

« Example. Suppose that we have a similar denoising model
* Furthermore, assume that:
» we have 10 layers
 train for 100 epochs
* 1 million training images EEE

 Then we need 1.5 X 10%° FLOPs

e =70 years of training on H100 NVIDIA H100
67 TFLOPS



Convolution

* |dea. Mitigate this issue with two ideas: locality and weight sharing
A
9N

o Definition. A convolution of two functions is:

(f*g) () = J flr)-g(t—1)dr

f*Q
* The response of a system, which has impulse s A
response f(7), when given an input signal g(¢) .
_ld
Unit Pulse == System =P £(1) g I

g(t) =% System = (f*g)(1) D N
Al



Image source: 1D convolution for neural networks, part 1: Sliding dot product, Brandon Rohrer

(@]

J_f_ J:
-

b

Q

R

()

©
—Q—LQ—Q—Q—Q——Q—Q—Q—Q——Q—Q—Q—Q—Q— -
Aol

N

la]

-

O

o

=

-

>

c

®)

(

result



Weight sharing. Same “weights” are
used for all input signals

Locality. To generate output for time
t,use only the input at [t — ¢, f + C]

(reasonable for images, but not for other data?)

convolution signal kernel

result






Image source: https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf

Convolution

* |n classic computer vision, different handcrafted “filters” has been used
for different purposes

Original Identical 1mage

Original

Blur (with a mean filter)



Convolution
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Sharpening filter

Original (accentuates edges)



Convolution

* |n modern Al filters are learned from data
* Replaces linear layers
* Apply multiple parallel filters

* Properties. Learned operations are translation-equivariant
* applies same operation to patches at different locations

f(shift(x)) = shift((x))




Building a convolutional network



Convolutional layer
» Begin with a 32x32 image with 3 channels (RGB)

32x32x3 Image

32
Height

32 Width

3
(Channel) Depth



Convolutional layer

Convolve with a convolution filter
» Dot product with a sliding “receptive field”

32x32x3 Image

32

32

5x5x3 filter

[

* Classic. Filters have full channel depth
* j.e, uses all input channels

* Modern. Apply depth-1 convolution for
each input channel,
for efficiency

 called “depthwise convolution®



Convolutional layer

» Convolving generates a single entry of the layer output

- 32x32x3 Image
5x5x3 filter

32

* Compute. Dot product of two tensors
with 5x5x3 =75 dimensions,
plus a bias addition

32



Convolutional layer

» Convolving generates a single entry of the layer output

Activation maps

- 32x32x$ Image
5x5x3 filter

32

28

>

Convolve (slide) over

all spatial locations
32 28



Convolutional layer

Do the same for the second filter

Activation maps

- 32x32x3 Image
5x5x3 filter

32

28

>

Convolve (slide) over

all spatial locations
32 28



Convolutional layer

* (Generate the pre-activation with multiple depths
 also called “channels”

32

28



Convolutional layer

» Stack the layers, with activation functions in between

32 28 24
> >
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
eg. O eg. 10
5x5x3 5x5x6
32 filters 28 filters 24



Spatial dimension: Stride

* Consider a 7x7 image with 3x3 filters
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Spatial dimension: Stride

* Consider a 7x7 image with 3x3 filters




Spatial dimension: Stride

» Consider a 7x7 image with 3x3 filters = 5x5 output




Spatial dimension: Stride

* [tis common to apply strides:
e  With stride 2

v




Spatial dimension: Stride

* [tis common to apply strides:
e  With stride 2

v




Spatial dimension: Stride

* [tis common to apply strides:
» With stride 2 = 3x3 output

v

* Output size. will be:

(1mg length — filter length) o

stride
e Stride 1: (7-3)/1+1=5

o Stride 2: (7-3)/2+1 =3
o Stride 4: (7-3)/4+1=2
 Note. The stride 3 does not fit for this case




Spatial dimension: Padding

» Zero-padding. Adding zeros to the side, before applying convolution
* |mage size does not reduce, and thus can use more layers
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Spatial dimension: 1x1

¢ Sometimes, we use 1x1 convolutions
 |ncrease or decrease the number of channels via linear combination
» Often used together with depthwise convolution
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Pooling layer

* Pooling. Reduces the spatial dimension by taking max/mean/else of
multiple adjacent pixels

» (Gets smaller resolution without losing information

224x224x64
I 112x112x64 Single depth slice
00
Max pool with 2x2
/ 516 |78 filters and stride 2
>
1 I 312(1]0
11213 | 4
224 downsampli 3 12 Y
—r pling
112 dim 2

224




Final layer — Fully-connected

* |n the final layer, we typically use fully-connected (i.e., linear) layer to
perform classification/regression

 To do this, we “flatten” the 2D/3D features into a vector form

111)]0

! - Flattening
4 | 2 | 1 >
0| 2|1

Pooled Feature Map
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Additional Remarks

» Each convolutional layer can handle images of any size
* Unlike a fully-connected layer, which can only handle fixed dimension

* For denoising/segmentation tasks, we can use all-convolutional
networks to process images of any size




Popular network architectures



Architectures

* Now let’'s take a look at some popular CNN architectures
 Basic. LeNet, AlexNet
* Deep. VGG, GooglLeNet, ResNet
* Tiny. MobileNets
» Scalable. EfficientNets / NFNets

 Others. U-Net



Basic models



LeCun et al., “Gradient-based learning applied to document recognition,” ACM DAES 2022

LeNet-5 (1998)

* First practically useful ConvNet
» Convolutional layers followed by fully-connected layers
* Pooling after convolution

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16 @5x5

6@28x28
rr C5: layer pg. layer OUTPUT

32x32 S2: f. maps
6@14x14 120 84 10

‘ | Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.





https://www.youtube.com/watch?v=FwFduRA_L6Q

Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” NeurlPS 2012

AlexNet (2012)

* Bigger and deeper LeNet — 2012 ImageNet challenge winner
» 7/ hidden layers, 60 million parameters, and dropout

3\
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AlexNet (2012)

* Bigger and deeper LeNet — 2012 ImageNet challenge winner
» 7/ hidden layers, 60 million parameters, and dropout

-FC-FC-FC
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N | :
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27 N[ 3 13 13 ense ense
AL\ 1000
192 192 128 Max
- 2048
Max 128 Max pooling 2048
pooling pooling




AlexNet (2012)

* How did they succeed in training bigger and deeper networks?
» Dataset. Large-scale, high-quality dataset
* |mageNet
* Optimization. Better activation
 RelU
» Generalization. Better regularization
* DropOut
* Computation. Faster hardware
 Distributed GPU training (two GTX 580)
* And thus the scale race began



AlexNet (2012)

Image (3x224x224)
nn.Conv2d(3, 96, kernel size=11, stride=4, padding=2),
11x11 Conv (96), stride 4 nn.ReLU(inplace=True),
3x3 MaxPool. stride 2 nn.MaxPool2d(kernel size=3, stride=2),
’
nn.Conv2d(96, 256, kernel size=5, padding=2),
5x5 Conv (256), stride 2 nn.ReLU(inplace=True),
3x3 MaxPool, stride 2 nn.MaxPool2d(kernel size=3, stride=2),
nn.Conv2d(256, 384, kernel size=3, padding=1),
3x3 Conv (384), pad1l nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
3x3 Conv (384), pad1l nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel size=3, padding=1),
3x3 Conv (384), padl nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel size=3, stride=2),
3x3 MaxPool, stride 2 =
nn.Dropout(),
5 (4096) nn.Linear(256 x 6 x 6, 4096),
ense .
.RelL L =T " ,
nn-RelUlinplace=True) nn.AdaptiveAvgPool2d((6, 6))
nn.Dropout(),
Dense (4096) nn.Linear(4096, 4096), torch. flatten(x, 1)
nn.ReLU(inplace=True),
Dense (1000) nn.Linear (4096, 1000),




AlexNet (2012)

SuperVision
(Krizhevsky, Sutskever, Hinton)

VGG
(Simonyan, Aytar, Vedaldi, Zisserman)

Our model is a large, deep convolutional neural network
trained on raw RGB pixel values. The neural network, which
has 60 million parameters and 650,000 neurons, consists of
five convolutional layers, some of which are followed by
max-pooling layers, and three globally-connected layers with
a final 1000-way softmax. It was trained on two NVIDIA
GPUs for about a week. To make training faster, we used
non-saturating neurons and a very efficient GPU
Implementation of convolutional nets. To reduce overfitting in
the globally-connected layers we employed hidden-unit
"dropout”, a recently-developed regularization method that
proved to be very effective.

In this submission, image classification was performed using
a conventional pipeline based on Fisher vector image
representation and one-vs-rest linear SVM classifiers. In
more detail, two types of local patch features were densely
extracted over multiple scales: SIFT and colour statistics.
The features were then augmented with patch spatial
coordinates and aggregated into two Fisher vectors
corresponding to the two feature types. Fisher vectors were
computed using GMMs with 1024 Gaussians, resulting in
135K-dimensional representations. To obtain a single feature
vector per image, the two Fisher vectors were then stacked.
We did not use spatial pyramid representation. To be able to
deal with large amounts of training data, product
guantisation was employed to compress the image features.
Finally, an ensemble of one-vs-rest linear SVMs was trained
over stacked features using stochastic sub-gradient method

| (Pegasos).




Deep models



Simonyan and Zisserman, “Very deep convolutional networks for large-scale image recognition,” ICLR 2015

VGG (2014)

e Deeper network —
* upto 19 layers
|
* Simpler architecture — |
*  Only 3x3 convolution = —
[ Softmax___ ] conv4-3 | |
* vs 5x5. Less params ek 1
bUt deeper fc7 conv4-1 |

tcs

* Only 2x2 pooling N Bl {
o° convd | - | —_P(_x,)! ——P(-)ol

* No "local response I |

. . n conv3 conv2-1 | |
normalization —— e

conv2 convi-2 | | |

conv1 1 convi-1 | | [

AlexNet VGG16 VGG19




Stacking Deeper

 Key obstacles
* Gradient vanishing and exploding (no batchnorm back then)
* [OO many parameters

Input Layer € R® Hidden Layer € R* Hidden Layer € R* Hidden Layer € R* Hidden Layer € R* Hidden Layer € R® Hidden Lavyer € R* Hidden Layer € R®



He et al., “Deep residual learning for image recognition,” CVPR 2016

Stacking Deeper

20 \/\/\/\/\/ 20:
S ~
\g Q\i 56-13}’61’
d.t:) 10} g 1o 20-13}’61‘
,%D 56-layer o
k= O
e N
= 20-layer

% ! 2 3 4 5 6 % ! 2 3 4 5 6

iter. (1e4) iter. (1e4)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.



 Two notable differences

Szegedy et al.,, “Going deeper with convolutions,” arXiv 2014

GooglLeNet (2014)

* Inception module. Works as a bottleneck to reduce #channels

Filter
concatenation

Pl

1x1 convolutions

3x3 convolutions

A

5x5 convolutions

Previous layer

3x3 max pooling

(a) Inception module, naive version

Figure 2: Inception module

Filter
concatenation

N

1x1 convolutions

3x3 convolutions

3

5x5 convolutions

A

1x1 convolutions

1x1 convolutions 1x1 convolutions

A

3x3 max pooling

—p-

Previous layer

(b) Inception module with dimension reductions



GooglLeNet (2014)

» Auxiliary Classifier. Resolves vanishing gradient by adding more sources
of the backpropagation signal

* Note. Only one FC layer for classification (reduces #params)




He et al., “Deep residual learning for image recognition,” CVPR 2016

ResNet (2016)

* A more elegant solution to the vanishing gradient

» Residual learning. Outputs X 4 f,(X), not f,(X)

+ fyrepresents an update that

X |

each layer contribute to the v
featu res weight layer
F(x) lrelu N
+ Example. Suppose thaty = x + o(wx) weight 'ayer identity
* Then, we have )+ x eét.m
ay Figure 2. Residual learning: a building block.

— =14+ c(wx)w
0x



ResNet (2016)

* |n ResNets, gradients come from shorter paths
* Similar to ensembling with many shortcus predictors

Building block

SKip
connection

LTI LTy~

Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)



ResNet (2016)

o Also introduces bottleneck blocks
» Accelerates training

» Utilizes higher channel dimension, but 3x3 convolution is done in
bottlenecks

64-d 256-d

v v
3x3, 64 1x1, 64
—= lrdu
l 3x3, 64
3x3, 64 y relu

1x1, 256

;rehl ;rehj

Figure 5. A deeper residual function JF for ImageNet. Left: a
building block (on 56 x 56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck™ building block for ResNet-50/101/152.




ResNet (2016)

» Up to over 150 layers in total
 Better initialization (He init.)
» Batch normalization after each convolution
» Dotted line. Doubles #channels and downsample by 2
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Tiny / Scalable models



Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017

MobileNets (2017~2019)

» Motivation. Less number of parameters for inference on mobile devices
* |nnovations.

* v1. Depthwise convolution

» V2. Inverted residuals

e v3. Architecture search

(a) Residual block (b) Inverted residual block

'u 'u
_|_




Tan and Le, “Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019

EfficientNets (2019~2021)

* Question. If we have more budget, how should we increase #params?
* |Increase depth / width / resolution (i.e., less downsampling)
 Answer. All of them jointly, with some scaling factors

------ wider ------»
S ;
A I I : l |
#channels | , i | 7
jm———h i —— | D wider SRR $ : | 1
/ i f
. . [ | deeper i
“ “ . deeper
7 higher: | _,higher
[ } resolution HXW T I N T . resolution e 1 _resolution
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.



Brock et al., “High-performance large-scale image recognition without normalization,” ICML 2021

NFNets (2021~2023)

People observed that removing batch norms is a key to build very big
ConvNets

» Before this, people thought large ConvNets cannot work as good as
transformer-based models
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Other models



Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI 2015

U-Nets (2015)

* One of the most popular models for biomedical applications
* |[mage-to-image tasks: Segmentation, denoising, ...
» All-convolutional network, with residuals

' 128 64 64 2
Contraction network Expansion network l
NEEN
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g o o0 | _
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~ ~ o
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