
Training neural networks - 1



Recap
• What deep neural networks are 
• How to train deep neural networks 

• Algorithm: Stochastic Gradient Descent (SGD) 

 
• Trick: Backpropagation for efficient gradient evaluation 

• Forward. Compute intermediate activations & store in memory 

 
• Backward. Combine modular derivative to compute the gradient 

θ(t+1) = θ(t) − η ⋅ ∇̂θL(θ)

z = f1(x; W1), f(x) = f2(z; W2)

∂f
∂W1

=
∂f2
∂z

∂f1
∂W1



This week
• Neural net training is actually quite difficult: 

• Fail to converge to a solution with low training loss 
• Fail to converge to a well-generalizing solution 
• Even when converging, excessive time & computation needed



Source: Meta AI, “OPT: Open Pre-trained Transformer Language Models,” 2022



https://github.com/google-research/tuning_playbook

https://github.com/google-research/tuning_playbook


This week
• Fortunately, people tend to agree on basic principles 

• Today. Setting up the training 
• Activation functions 
• Data Pre-processing 
• Normalization layers 
• Parameter initialization 

• Next class. Tuning the optimization 
• Learning rate, Batch size, Regularizers, Optimizers, HP tuning, …



Activation functions



Fall of sigmoids
• In the past, sigmoidal activation functions were quite popular 

• Similar to  — quite accurate surrogate 
• Biological interpretation — firing rate of neurons 

• Easy to compute the gradient — 

1{ ⋅ }

σ′￼(x) = σ(x) ⋅ (1 − σ(x))



Fall of sigmoids
• However, these became less popular for deep learning 

• Vanishing gradient problem 
• Not zero-centered 
• Computational inefficiency 

• Let’s take a look at each issue more carefully…



1. Vanishing gradients
• Problem. If we make networks deeper, then sigmoids make the 

                 gradient vanish at certain layers 

• To see this, first consider a 1-layer net:       

• The gradient will be                                

• The maximum scale will be           

f(x) = σ(wx)
∇w f(x) = σ′￼(wx) ⋅ x
x/4



1. Vanishing gradients
• What about deep nets? 

 
• The 1st layer gradient will be: 

 

• Thus the maximum scale will be:   
• If the network is deep, the 1st layer gradient is almost zero! 

• On the other hand, the L-th layer gradient is: 

f(x) = σ(wL ⋅ σ(⋯σ(w1 ⋅ x)⋯)

∇w1
f(x) = σ′￼(wL ⋅ zL) ⋅ σ′￼(wL−1zL−1) ⋅ ⋯ ⋅ σ′￼(w1 ⋅ x) ⋅ x

x/4L

∇wL
f(x) = σ′￼(wL ⋅ zL) ⋅ zL



1. Vanishing gradients
• This results in a severe imbalance in the layerwise gradients 

• Parameters in the early layers are not utilized well



2. Not zero-centered
• Problem. Gradients of sigmoid nets are either all-positive or all-negative 

• To see this, consider a sigmoid neuron in a deep network 

  

• Gradient for the i-th weight will be: 

f(x) = σ (w⊤x)

∇wi
f(x) = σ′￼(w⊤x) ⋅ xi

positive, if also sigmoid outputs

positive



2. Not zero-centered
 

• If the loss derivative is positive   all gradients are positive 

• If the loss derivative is negative  all gradients are negative 

• Results in a suboptimal zig-zag path 
• Less problematic when we use 

multiple samples 

• Can be mitigated if inputs  were 
zero-centered (not all-positive)

∇wi
f(x) = σ′￼(w⊤x) ⋅ xi

→
→

{xi}



3. Efficiency
• Problem. Sigmoid is computationally tricky! 

• Inference. Need to compute the function  
• Complicated to implement with hardwares 

• Divide into intervals and approximate with polynomials 
• Use lookup tables 

• Training. Need to compute the derivative  
• Requires an extra floating point multiplications

σ(t) = 1/(1 + exp(−t))

σ′￼(t) = σ(t)(1 − σ(t))



Better activations
• Noticing these problems, alternative activations have been used 

• Tanh. 

  

• Zero-centered                      V 
• Non-vanishing gradient      X 
• Computational efficiency   X 

f(x) = tanh(x) =
ex − e−x

ex + e−x



Better activations
• ReLU. 

                      
• Zero-centered                      X/V 
• Non-vanishing gradient      X/V 
• Computational efficiency    V 

• Converges faster, empirically 
• Can be made zero-centered (later) 
• With careful initialization, can avoid 

vanishing gradients (later)

f(x) = max{0,x}



Dying ReLU
• Sadly, ReLU experiences dying ReLU problem 

• Some neurons never activate (i.e., have non-zero output) 

• Suppose that we have a ReLU neuron 

 
• Gradient for i-th connection:     

 

• Problem. Some neurons have  for most , thus outputting 0 

• e.g., most weights are negative and  is also a ReLU output

f(x) = σ(w⊤x + b)

1[w⊤x + b ≥ 0] ⋅ xi

w⊤x < − b x
x



Dying ReLU
• Solution.  

• Initialize the bias  as a small-but-positive value 
• Use variants 

• “leaky” ReLU / ELU / …

b



Modern choices
• Practitioners training giant models love GeLU / Swish / … 

• Quantization people love ReLU6 
• Recommendation. Try ReLU as a default 

• Then try variants for squeezing out maximum performance



Data preprocessing



Data preprocessing
• Recall that zig-zag path happened when the neuron input is all-positive 

• Gradient for i-th weight:    ∇wi
f(x) = σ′￼(w⊤x) ⋅ xi

positive?
positive



Data preprocessing
• Idea. Force the data to have different signs 

• Centering. Shift the data to have a zero-mean 
• subtract the mean



Data preprocessing
• For classic ML, it is also typical to do: 
• Decorrelation. Make the axes have no correlation 

• Find the principal component, subtract, and repeat, …



Data preprocessing
• For classic ML, it is also typical to do: 
• Standardization. Make each dimension have unit variance or range 

• Avoids being biased by the data scale 
• (advanced; provably better convergence of GD)



Data preprocessing
• In some cases, we perform dimensionality reduction 

• e.g., PCA, information-theoretic tests, … 
• Many of these are not effective for some data, such as images 

• Don’t make too much sense to decorrelate the pixels 
• For CIFAR-10: 

• AlexNet: Simply subtract the mean image           ([32,32,3] tensor) 
• VGG:       Subtract the mean along RGB channels (3-dim values)



Normalization layers



Normalization layers
• Idea. Perform centering + scaling in intermediate layers 

• Many different styles
unit variancezero-mean



Batch Normalization
• Consider a batch of activations at some layer: 

 

• Here,  is the batch size 

• Each activation has  channels 

• BatchNorm. For each dimension, apply 

 

• This is differentiable, so we can have it as a module in neural net

z1, …, zB ∈ ℝd

B
d

̂z( j) =
̂z( j) − 𝔼[z( j)]

Var(z( j))



Where to add BatchNorms?
• Mostly placed at… 

• After each linear operation, e.g., linear / convolution 
• Before activation function



Where to add BatchNorms?
• Problem. May be harmful to put 

                  BN after all layers 
• Normalizing pre-sigmoids 

makes it behave like linear 
functions 

• Solution. Add a trainable linear layer: 

 
• Allows us to scale back and negate the BN whenever needed

ŷ( j) = γ( j)x̂( j) + β( j), j ∈ [d]



Inference phase
• Problem. At the test time (i.e., inference phase), 

                 data does not come in as a batch 

• Solution. Take a running average of the mean & variance 
                  during the training 

• Use these values to normalize at the test time! 
• Can be merged into linear layers for a speedup



Considerations
• Problem. Often, there are undesired side effects 

• Training instability 
• Sensitive to distribution shifts & batch sizes 

• Solution. Many variants 
• LayerNorm, RMSNorm, …



Advantages
• However, in most cases, the pros outweigh the cons 

• Improve the gradient flow during training 
• Allows higher learning rate 
• Reduces the initialization sensitivity



Weight Initializations



Initializing the weights
• Similar to most iterative optimizations (e.g., K-Means), 

SGD-based optimization of neural net is also sensitive to initialization 

• Question. What happens, if all weights are initialized 
                   as the same constant?



Initializing the weights
• Idea. Randomly initialize all weights: 

 ,      for some  

• Shallow nets. Any  works reasonably well 

• Deep nets.      Very sensitive to the choice of 

w ∼ N(0,a2) a > 0

a > 0
a



Initializing the weights
• Small . The activation  becomes very small for deep layers 

• Thus, the gradient also becomes very small: 
a σ(w⊤x)

∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x



Initializing the weights
• Large . Depends on the activation function 

• : Gradients becomes very small 

• Function output:    

• Gradients               

a
tanh

σ(a ⋅ w⊤x) → {±1}
∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x

small if a is large



Initializing the weights
• Large . Depends on the activation function 

• ReLU: Exploding gradients as the layer gets deeper 

• Function output:     

• Gradients:               

a

σ(a ⋅ w⊤x) = a ⋅ σ(w⊤x)
∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x

accumulates the scaling factor a



Weight-scaled initialization
• Idea. Choose  so that the activation scale is similar over the layers 

• Glorot init (2010). Use the scaling factor 

 

• He init (2015). Use the scaling factor 

 

• Question. Why 1/ ?

a

a =
2

(input dim) + (output dim)

a =
2

(input dim)
neurons



Weight-scaled initialization
• Suppose that we have a layer with  inputs and output neurons. 

• The input activation is  
• The weight that connects the i-th input neuron to j-th output neuron is 

denoted by  

• Drawn independently from  

• Goal. Make the activation scale similar, i.e., 

d
x = (x1, …, xd)

wij

N(0,a2)

∥x∥2 ≈ 𝔼∥Wx∥2



Weight-scaled initialization
 

• Inspecting the weights connected to j-th output neuron, we have: 

 

• Then, we have: 

 

• Thus, we need to let 

∥x∥2 ≈ 𝔼∥Wx∥2

w⊤
j x ∼ N (0, a2∥x∥2)

𝔼∥Wx∥2 =
d

∑
j=1

𝔼(w⊤
j x)2 = d ⋅ a2 ⋅ ∥x∥2

a = 1/ d

should be 1



Remarks
• There are many research on how to initialize: 

• Orthogonal initialization 
• Identity initialization 
• Zero initialization 

• Has been mostly okay with BNs 
• But BNs are being less used nowadays



</lecture 13>


