Training neural hetworks - 1

Recap

* What deep neural networks are
» How to train deep neural networks
 Algorithm: Stochastic Gradient Descent (SGD)

Pu+h = g0 _ . @QL(H)
* Trick: Backpropagation for efficient gradient evaluation
* Forward. Compute intermediate activations & store in memory

z = f1(x; W), J(X) = f(z; W»)

« Backward. Combine modular derivative to compute the gradient

0% 0
6W1 0Z 8W1

This week

* Neural net training is actually quite difficult:
* Fail to converge to a solution with low training loss
* Fail to converge to a well-generalizing solution
* Even when converging, excessive time & computation needed

0.5 -

055 SingleModel o Snapshot Ensemble =/
04 Standard LR Schedulem\j o044 Cyclic LR Schedule = /A//}\

n

034 A 03
02\ 0.2
o 01d T _aNa
-0.1 4 " |

l |
|
q i‘
| \ |
| " ‘ ‘.\‘ ‘
AANW\ |

-0.3 - L ==

—0.2\ -

50 50

Source: Meta Al, “OPT: Open Pre-trained Transformer Language Models,” 2022

2.5 Training Processes

Here we describe significant training process ad-
justments that arose during OPT-175B pre-training.

Hardware Failures We faced a significant num-

ber of hardware failures in our compute cluster

while training OPT-175B. In total, hardware fail-
ures contributed to at least 35 manual restarts and
the cycling of over 100 hosts over the course of 2
months. During manual restarts, the training run
was paused, and a series of diagnostics tests were
conducted to detect problematic nodes. Flagged
nodes were then cordoned off and training was re-
sumed from the last saved checkpoint. Given the
difference between the number of hosts cycled out
and the number of manual restarts, we estimate 70+
automatic restarts due to hardware failures.

Loss Divergences Loss divergences were also an
i1ssue in our training run. When the loss diverged,
we found that lowering the learning rate and restart-
ing from an earlier checkpoint allowed for the job
to recover and continue training. We noticed a cor-
relation between loss divergence, our dynamic loss

scalar crashing to 0, and the /*-norm of the activa-
tions of the final layer spiking. These observations
led us to pick restart points for which our dynamic
loss scalar was still in a “healthy” state (> 1.0),
and after which our activation norms would trend
downward instead of growing unboundedly. Our
empirical LR schedule 1s shown in Figure 1. Early
in training, we also noticed that lowering gradient
clipping from 1.0 to 0.3 helped with stability; see
our released logbook for exact details. Figure 2
shows our validation loss with respect to training
iterations.

Other Mid-flight Changes We conducted a
number of other experimental mid-flight changes
to handle loss divergences. These included: switch-
ing to vanilla SGD (optimization plateaued quickly,
and we reverted back to AdamW); resetting the dy-
namic loss scalar (this helped recover some but not
all divergences); and switching to a newer version
of Megatron (this reduced pressure on activation
norms and improved throughput).

https://github.com/google-research/tuning_playbook

[0 README [License

Deep Learning Tuning Playbook

This is not an officially supported Google product.
Varun Godbole”, George E. Dahl’, Justin Gilmer', Christopher J. Shallue®, Zachary Nado"
T Google Research, Brain Team

* Harvard University

Table of Contents

e Who is this document for?

e Why a tuning playbook?

e Guide for starting a new project

o Choosing the model architecture

o Choosing the optimizer

https://github.com/google-research/tuning_playbook

This week

* Fortunately, people tend to agree on basic principles

* Today. Setting up the training
» Activation functions
* Data Pre-processing
* Normalization layers
e Parameter initialization

* Next class. Tuning the optimization
» Learning rate, Batch size, Reqgularizers, Optimizers, HP tuning, ...

Activation functions

Fall of sigmoids

* In the past, sigmoidal activation functions were quite popular

» Similarto 1{ - } — quite accurate surrogate
 Biological interpretation — firing rate of neurons

» Easy to compute the gradient — 6'(x) = o(x) - (1 — o(x))

Fall of sigmoids

* However, these became less popular for deep learning
* Vanishing gradient problem
* Not zero-centered
e Computational inefficiency

» Let's take a look at each issue more carefully...

1. Vanishing gradients

* Problem. If we make networks deeper, then sigmoids make the
gradient vanish at certain layers

» To see this, first consider a 1-layer net: f(x) = o(wx)
 The gradient will be V., f(x) =0c(wx) - x

¢ The maximum scale will be x/4

1. Vanishing gradients
What about deep nets?

f(X) — G(WL : 0("-6(\/\/1 : X))
The 1st layer gradient will be:

Vo JX)=0cwp-z)-ocwp 127 1) - -0 (W - x) - x

Thus the maximum scale will be: x/4"
* If the network is deep, the 1st layer gradient is almost zero!

On the other hand, the L-th layer gradient is:

V., f0)=cw, -2) 7

1. Vanishing gradients

* This results in a severe imbalance in the layerwise gradients
* Parameters in the early layers are not utilized well

Gradient

=
o=
(—--"

Input Layer1 Layer2 Layer3 Output

Layer

2. Not zero-centered

* Problem. Gradients of sigmoid nets are either all-positive or all-negative

* To see this, consider a sigmoid neuron in a deep network

f(x) = o (W'x)

4

XL

A/
V “4

\\%/
X
r/’\\
o
\/

()
7
{/
\
i3
S
?.

)
}.ﬁ
\
ﬂ
(
B
S s
,\\»\:"}
N
Y/
)

olelo
\\N

’
X

) C
o
55
X

» Gradient for the i-th weight will be:

v, f(x) =

positive

T

positive, if also sigmoid outputs

2. Not zero-centered
V,, J(X) = o'(W'X) - x.
If the loss derivative is positive — all gradients are positive

If the loss derivative is negative — all gradients are negatjyg

allowed
gradient

update
directions

Results in a suboptimal zig-zag path

» Less problematic when we use Wy
multiple samples zig zag path
allowed
Can be mitigated if inputs {x;} were gradient
zero-centered upcate

hypothetical

optimal w
vector

3. Efficiency

* Problem. Sigmoid is computationally tricky!

» Inference. Need to compute the function 6(¢) = 1/(1 4+ exp(—1))
* Complicated to implement with hardwares

* Divide into intervals and approximate with polynomials

» Use lookup tables

» Training. Need to compute the derivative o'(#) = o(?)(1 — o(?))
* Requires an extra floating point multiplications

Better activations

* Noticing these problems, alternative activations have been used

 Tanh.
X _ =X
f(‘x) — tanh(‘x) — m : ziaer;ir:/ative
« Zero-centered Vv

* Non-vanishing gradient X
e Computational efficiency X

—1.0%

Better activations

¢« RelU. 5 ReLU activation function
f(x) = max{0,x})

» /Zero-centered X/V
* Non-vanishing gradient X/V .

e Computational efficiency V =

Derivative

» Converges faster, empirically .
e Can be made zero-centered .

e With careful initialization, can avoid 21
vanishing gradients y

Dying RelL.U

» Sadly, RelLU experiences dying RelLU problem
» Some neurons never activate (i.e., have non-zero output)

e Suppose that we have a RelLU neuron

fX) = o(w'x + b)

 Gradient for i-th connection:
1[w'x+b>0]-x

T

» Problem. Some neurons have w'X < — b for most X, thus outputting O

e e.g., most weights are negative and X is also a ReLU output

Dying RelL.U
* Solution.

» |nitialize the bias b as a small-but-positive value

e Use variants
“leaky” ReLU / ELU / ...

/ V=X
Leaky RelLU: y=0.01x /

Modern choices

* Practitioners training giant models love GelLU / Swish / ...
* (Quantization people love ReLU6
* Recommendation. Try ReLU as a default
* Then try variants for squeezing out maximum performance

Nonlinearities

ReLU6()

- 2 - 1 0 1 2 Input

Data preprocessing

Data preprocessing

* Recall that zig-zag path happened when the neuron input is all-positive
. Gradient for i-th weight: Vwif(x) =

positive

T
GI(W X) *)Cl

positive?

allowed
gradient
update
directions

zig zag path
allowed
gradient
update
directions
hypothetical
optimal w

vector

Data preprocessing

* |ldea. Force the data to have different signs

» Centering. Shift the data to have a zero-mean
* subtract the mean

A Y
Original Data
Centered Data
+ ny : ":. .
iy l Centering >
:g ! ;f ol b 'Z"‘:—i._- S G " ‘ #
* 4 T : 0 ' i g S #‘¢ i TR
++4 A ++ i +
¢+ 1 +##7L ++fE ¢+i Vo
+ F +
T +
A AR, i
£ TR i + £ #
£ +# £ + ot e
4+ T+ * %
X
>

Data preprocessing

* For classic ML, it is also typical to do:
» Decorrelation. Make the axes have no correlation
* Find the principal component, subtract, and repeat, ...

Centered Data
Red:Eigen Vectors

Decorrelated Data

%
Ky
p ¢
X X Xy X
X WX X AKX
+ X | x%xx Z}&W X
"‘L@‘; » Decorrelation T Vel
* IR R X‘w% X
#‘i x)%%)g(X 3O XX
+4 +§ﬁ+## TR X% % ?%«
+ X
@*‘*i Vug X x
+ :
R
*¢+#+#$
Fah

Data preprocessing

* For classic ML, it is also typical to do:

» Standardization. Make each dimension have unit variance or range
» Avoids being biased by the data scale
 (advanced; provably better convergence of GD)

Decorrelated Data |

. L Sl S

Wh.t d D t X g % -:-:
R R ’) .v 4 ' “~
lene dalad =< 5 R T N
: Mo \-' ™ : o ..' *'-.
" P a o) ’c . ; .“ "
. . . 1{ v ‘-‘ ~
/ - x\ ."l " . x .

- - N b F ".-
\\-". - . " \." . . :‘. , " .‘{’ »
x Py . 5 w .
° ° o o R . ™
- - S ’ - ey
Whitening A . i
’ .' X . - "I v ’ » s
- » . . .:. \x "
: N % g - N »

Data preprocessing

* In some cases, we perform dimensionality reduction
» e.g., PCA, information-theoretic tests, ...
* Many of these are not effective for some data, such as images
* Dont make too much sense to decorrelate the pixels
* For CIFAR-10:
 AlexNet: Simply subtract the mean image (132,32,3] tensor)
* VGG: Subtract the mean along RGB channels (3-dim values)

deer

.
4 ‘

airplane automobile bird

cat
i b '
A .] B
PN 3 4
d0g 0g orse ship
. - i
. A,

Normalization layers

Normalization layers

 |ldea. Performicentering + scaling in intermediate layers

Zero-mean unit variance

» Many different styles

Hidden Hidden
Hidden
- Z <7 'z 0z
=
3 ' / 3 V“/ 3 Output
> REEL 2K B
N LR/ N "’\,»’, N ‘
© KX ® 3L ®
— ’\\ /)“V’”Q —~+ ‘(\V.'V ~
=3 1‘?50‘ = ONOKXN -3
® RNIX ® '/"‘.*‘.’ @ ‘
0 NN O AR 0
- \‘)‘\"\ - ’V“ -
S O 547X =
T XX TS, T
DN e/ > ¢
7 y @ 7

Batch Normalization
» Consider a batch of activations at some layer:
Z,...,2 € R?
» Here, B is the batch size

« Each activation has d channels

» BatchNorm. For each dimension, apply
7)) _ [[z(j)]

\/ Var(z\)

 This is differentiable, so we can have it as a module in neural net

7)) —

Where to add BatchNorms?

* Mostly placed at...

» After each linear operation, e.g., linear / convolution
» Before activation function

tanh
tanh

Where to add BatchNorms?

* Problem. May be harmful to put e e~
BN after all layers

* Normalizing pre-sigmoids
makes it behave like linear
functions

0.8 1

0.0 |

» Solution. Add a trainable linear layer:
)A,(j) — J,(J'))A((j) n ﬁ(j), je[d]
* Allows us to scale back and negate the BN whenever needed

Inference phase

* Problem. At the test time (i.e., inference phase),
data does not come in as a batch

» Solution. Take a running average of the mean & variance
during the training

* Use these values to normalize at the test time!
* Can be merged into linear layers for a speedup

Considerations

* Problem. Often, there are undesired side effects
* Training instability
e Sensitive to distribution shifts & batch sizes

» Solution. Many variants
* |LayerNorm, RMSNorm, ...

Batch Norm Layer Norm Instance Norm Group Norm

H, W
VA

() AN

H, W

RN RN
LT T
AR N

NS NT

L VI O T
LA A
N R
VAN R

Advantages

* However, in most cases, the pros outweigh the cons
» Improve the gradient flow during training
» Allows higher learning rate
* Reduces the initialization sensitivity

Weight Initializations

Initializing the weights

 Similar to most iterative optimizations (e.qg., K-Means),
SGD-based optimization of neural net is also sensitive to initialization

* Question. What happens, if all weights are initialized
as the same constant?

7
!
N\

I L7 X
NSIK X B XSS
RSB RIS\

® LXK XX\ ® XK XA
SRS ISK?
g)

Initializing the weights
* ldea. Randomly initialize all weights:
w ~ N(0,a®), forsomea > 0

+ Shallow nets. Any a > () works reasonably well

« Deep nets. Very sensitive to the choice of a

Initializing the weights

« Small a. The activation G(WTX) becomes very small for deep layers
* Thus, the gradient also becomes very small:

V. o(w'x) =6 (W'x) - x

W W R A A A A A A A A A A A A A A s AT T Y A A A AN

Initializing the weights

« Large a. Depends on the activation function

e tanh: Gradients becomes very small

. Function output: o(a - w'x) — {*1}

- T N Iy
» Gradients V,,6(W X) =[c'(W'X) - X
small if a is large

P— = 1 S " P - .

Initializing the weights

« Large a. Depends on the activation function
* RelU: Exploding gradients as the layer gets deeper
. Function output: o(a - w'x) = a - o(wW'x)
» Gradients: VWG(WTX) = o' (W'X) - X

accumulates the scaling factor a

Weight-scaled initialization

« |ldea. Choose a so that the activation scale is similar over the layers
* Glorot init (2070). Use the scaling factor

2
(input dim) + (output dim)
* He init (2075). Use the scaling factor

a _ # Input Layer ‘I?dden Laye\rs Output Layer
(input dim) W
* Question. Why 1/4/neurons? : W

Weight-scaled initialization

» Suppose that we have a layer with d inputs and output neurons.

* The input activationis X = (x;, ..., X,)

* The weight that connects the i-th input neuron to j-th output neuron is
denoted by w;;

. Drawn independently from N(0,a?)

 Goal. Make the activation scale similar, i.e.,
2 p)
Ix||“ ~ E||WX||

Weight-scaled initialization

2 2
x| ~ E||Wx|
* |nspecting the weights connected to j-th output neuron, we have:

T 2 2
w/x ~ N (0, a’||x]|*)
 Then, we have:

d
E|IWx||? = Z E(w/x)?=d - a°

j=1 should be 1

2
- Ix|

» Thus, we needtoleta = 1/\@

Remarks

* There are many research on how to initialize:
* Orthogonal initialization
* |dentity initialization
» Zero initialization

* Has been mostly okay with BNs
* But BNs are being less used nowadays

</lecture 13>

