
Optimizing neural nets: 
SGD & Backpropagation



Recap: Neural networks
• Consider the case of supervised learning with neural nets 
• We are performing the usual optimization 

 

• Predictor is the neural network 

 

• Parameters are weights & biases of each layer 

min
θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi)) =: min
θ

L(θ)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

θ = {(Wl, bl)}L
l=1



Today
• We focus on: How do we solve the optimization proble 

 

• This is very difficult 
• Critical point. Too complicated 
• Convexity. Does not hold 

• The loss landscape looks like —>

min
θ

L(θ), fθ(x) = WLσ(⋯σ(W1x + b1)⋯ + bL



Gradient Descent
• Solution. Gradient Descent 

• Iteratively update  in a direction that the loss decreases the fastest θ
θ(t+1) = θ(t) − η ⋅ ∇θL(θ)

Step size (a.k.a., learning rate) Direction of fastest increase



Gradient Descent
• Note that the gradient is the average of per-sample loss gradients: 

 

• Problem. Datasets for deep learning involves million—trillion-scale data 
• Examples. 

• ImageNet (Image).         1 million samples 
• Common Crawl (Text).  410 billion tokens 

• Thus, computing gradient of all data at each GD step is expensive

∇θL(θ) =
1
n

n

∑
i=1

∇θℓ(yi, fθ(xi))



Gradient Descent
• Solution. Stochastic Gradient Descent (broad) 

• Use gradients of only a few, randomly drawn samples at each step 

• Mini-batch GD. Draw a batch  of samples and compute 

 

• SGD (narrow). Mini-batch GD with a single example

ℬ

∇̂θL(θ) =
1

|ℬ | ∑
i∈ℬ

∇θℓ(yi, fθ(xi))



Gradient Descent
• Typically, we draw samples without replacement 

• i.e., never use a sample twice unless no sample has been never used



Gradient Descent
• Epoch. A set of iterations until every sample has been used once 

• Example. If we use the batch size of 64 for a dataset of size 32,000, 
                  we need 500 steps for a single epoch 

• Batch size and learning rate are key hyperparameters of SGD



Computing per-sample Gradients



Computing Gradients
• The sample-wise loss gradient is a product of 

(1) the derivative of the loss function, and 
(2) the gradient w.r.t. the predictor 

 

• Why? Recall the chain rule: 

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
( fθ(x)) ⋅ ∇θ fθ(x)

∂
∂x

g( f(x)) = g′￼( f(x)) ⋅ f′￼(x)

loss derivative, evaluated at prediction fθ(x) Predictor gradient



Computing Gradients

 

• The loss derivative is typically easy to compute 

• Example. For squared loss , the loss derivative will be: 

 
• Simply do (1) pass the data through the predictor 

                   (2) measure the error 
                   (3) multiply 2

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
( fθ(x)) ⋅ ∇θ fθ(x)

ℓ(y, z) = (y − z)2

2(y − fθ(x))



Computing Gradients

 

• The predictor gradient is much tricker to compute 

• The parameter  is high-dimensional 

 

• How do we compute this, for a very complicated function like…? 

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
( fθ(x)) ⋅ ∇θ fθ(x)

θ

∇θg(θ) = [ ∂
∂θ1

g(θ), …,
∂

∂θd
g(θ)]

g(θ) = WLσ(⋯σ(W1x + b1)⋯ + bL



Computing Gradients: Numerical Method

 

• One possible way is the numerical method 
• Note that  

 

• Make a very small perturbation on the current parameter 

• Do this for the first entry  

• Do this for the second entry  
• …

∇θg(θ) = [ ∂
∂θ1

g(θ), …,
∂

∂θd
g(θ)]

∂
∂x

g(x) = lim
ϵ→0

g(x + ϵ) − g(x)
ϵ

θ1
θ2



Computing Gradients: Numerical Method



Computing Gradients: Numerical Method



Computing Gradients: Numerical Method



Computing Gradients: Numerical Method
• Pros. 

• Easy to implement 
• Can use for black-box models 

• Cons. 
• Only gives you approximate 

• cannot take the limit , due to the finite precision 
• Very slow    <— 

• Requires at least  model inferences

ϵ → 0

d + 1



Computing Gradients: Analytic Method
• The most popular method is the analytic method 

• Example. Consider the function 

 
• Then, we know that the gradient will have the formula: 

 

 

• We can simply evaluate these functions

g(θ1, θ2) = sin(5 ⋅ exp(θ1) + 2 cos(θ2))

∇θ1
g(θ1, θ2) = 5 ⋅ cos(5 ⋅ exp(θ1) + 2 ⋅ cos(θ2)) ⋅ exp(θ1)

∇θ2
g(θ1, θ2) = − 2 ⋅ cos(5 ⋅ exp(θ1) + 2 ⋅ cos(θ2)) ⋅ sin(θ2)



Computing Gradients: Analytic Method
• Pros. 

• Exact 
• Cons. 

• Requires deriving the gradient formula for all parameters 
• Still needs computing the gradients for each parameters 

• Luckily, for neural nets, the cons become easy to solve 
• Derivation can be automatized 
• Computing the gradients can be grouped and simplified



Backpropagation



Analytic Form of Gradients
• Question. How do we derive an analytic form of , for…? ∇θ fθ(x)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL



Analytic Form of Gradients
• Idea. View this as a composition of elementary operations 

 

•  

•  

•  

• Then: 
• Derivatives of each elementary op can be hard-coded 
• Use chain rule to combine these

fθ(x) = fbL
∘ fWL

∘ fσL
∘ ⋯ ∘ fW1

(x)
fWi

(x) = Wix
fbi

(x) = x + bi

fσ(x) = σ(x)



Example
• Consider a function 

 
• This is a composition of two elementary operations 

 

• Addition:            

• Multiplication:  

g(x, y, z) = (x + y) ⋅ z

g(x, y, z) = g2(g1(x, y), z)

g1(a, b) = a + b
g2(a, b) = ab

g1

g2



Example
• Each elementary operation has an easy-to-write gradient 

• ,  

• , 

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Example
• Each elementary operation has an easy-to-write gradient 

• ,  

• ,  

• Chain rule tells you that: 

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

= z = 1

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Example
• Each elementary operation has an easy-to-write gradient 

• ,  

• ,  

• Chain rule tells you that: 

 

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

= z = 1



Example
• Each elementary operation has an easy-to-write gradient 

• ,  

• ,  

• Chain rule tells you that: 

 

   

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

= g1(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Example

 

    

• Observation 1. Computing gradients involves intermediate states of the 
                            composite function 

• Idea. Compute all intermediate 
          states and store them. 
          Later, we can combine these 
          intermediate values

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

g1

g2



Example

 

    

• Observation 2. The computed gradients themselves can be reused 
• In particular, the gradient of the 

later block is used for computing 
the gradients of earlier-block 
parameters

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

g1

g2



Example: Backpropagation
• Inspired by these, we can think of a three-step algorithm 
• 1. Forward Pass. Compute the output, storing all intermediate states 

                                in the memory 
• From input to output

g1

g2

5

3

2



Example: Backpropagation
• Inspired by these, we can think of a three-step algorithm 
• 1. Forward Pass. Compute the output, storing all intermediate states 

                                in the memory 
• From input to output

g1

g2

5

3

2

g1(5,3) = 8



Example: Backpropagation
• Inspired by these, we can think of a three-step algorithm 
• 1. Forward Pass. Compute the output, storing all intermediate states 

                                in the memory 
• From input to output

g1

g2

5

3

2

8

g2(8,2) = 16



Example: Backpropagation
• 2. Backward Pass. Compute the gradient using stored states 

• From output to input

g1

g2

5

3

2

8

16
∂g2

∂a
= b = 2

∂g
∂z

=
∂g2

∂b
= a = 8



Example: Backpropagation
• 2. Backward Pass. Compute the gradient using stored states 

• From output to input

g1

g2

5

3

2

8

16
2

8

∂g1

∂a
= 1

∂g1

∂b
= 1



Example: Backpropagation
• 2. Backward Pass. Compute the gradient using stored states 

• From output to input

16

g1

g2

5

3

2

8

16
2

8

∂g
∂x

=
∂g2

∂g1

∂g1

∂x
= 2 ⋅ 1 = 2

2 ⋅ 1 = 2



Example: Backpropagation
• 3. GD. Update the parameters 

 

• Then, repeat 1—3 over and over…

x ← x − η ⋅ 2, y ← y − η ⋅ 2, z ← z − η ⋅ 8

g1

g2

5

3

2

8

16
2

8

2

2



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))

∂(1/a)
∂a

= − 1/a2



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))

∂ exp
∂a

= exp(a)



Another example
• Consider a function 

fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Computational Graph
• For simple neural networks, the computation graph will look like:



Computational Graph
• For larger models, the computation graph will be like:



Computational Graph
• Fortunately, deep learning frameworks will automatically construct the 

computational graph for you 
• PyTorch 
• TensorFlow



Remarks
• Computation. Backpropagation requires a lot of memory! 

• Additional memory needed is typically twice the model size 
(keep the gradients & intermediate states) 

• Sometimes, we discard the intermediate states (activations) and 
rematerialize them whenever needed 

• Gradients of some activation functions are cheaper to compute/store 
• e.g., ReLU



Next up
• More about optimization 

• Advanced optimizers 
• Training strategies 
• Network initialization



</lecture 12>


