
Optimizing neural nets:
SGD & Backpropagation

Recap: Neural networks
• Consider the case of supervised learning with neural nets
• We are performing the usual optimization

• Predictor is the neural network

• Parameters are weights & biases of each layer

min
θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi)) =: min
θ

L(θ)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

θ = {(Wl, bl)}L
l=1

Today
• We focus on: How do we solve the optimization proble

• This is very difficult
• Critical point. Too complicated
• Convexity. Does not hold

• The loss landscape looks like —>

min
θ

L(θ), fθ(x) = WLσ(⋯σ(W1x + b1)⋯ + bL

Gradient Descent
• Solution. Gradient Descent

• Iteratively update in a direction that the loss decreases the fastest θ
θ(t+1) = θ(t) − η ⋅ ∇θL(θ)

Step size (a.k.a., learning rate) Direction of fastest increase

Gradient Descent
• Note that the gradient is the average of per-sample loss gradients:

• Problem. Datasets for deep learning involves million—trillion-scale data
• Examples.

• ImageNet (Image). 1 million samples
• Common Crawl (Text). 410 billion tokens

• Thus, computing gradient of all data at each GD step is expensive

∇θL(θ) =
1
n

n

∑
i=1

∇θℓ(yi, fθ(xi))

Gradient Descent
• Solution. Stochastic Gradient Descent (broad)

• Use gradients of only a few, randomly drawn samples at each step

• Mini-batch GD. Draw a batch of samples and compute

• SGD (narrow). Mini-batch GD with a single example

ℬ

∇̂θL(θ) =
1

|ℬ | ∑
i∈ℬ

∇θℓ(yi, fθ(xi))

Gradient Descent
• Typically, we draw samples without replacement

• i.e., never use a sample twice unless no sample has been never used

Gradient Descent
• Epoch. A set of iterations until every sample has been used once

• Example. If we use the batch size of 64 for a dataset of size 32,000,
 we need 500 steps for a single epoch

• Batch size and learning rate are key hyperparameters of SGD

Computing per-sample Gradients

Computing Gradients
• The sample-wise loss gradient is a product of

(1) the derivative of the loss function, and
(2) the gradient w.r.t. the predictor

• Why? Recall the chain rule:

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
(fθ(x)) ⋅ ∇θ fθ(x)

∂
∂x

g(f(x)) = g′￼(f(x)) ⋅ f′￼(x)

loss derivative, evaluated at prediction fθ(x) Predictor gradient

Computing Gradients

• The loss derivative is typically easy to compute

• Example. For squared loss , the loss derivative will be:

• Simply do (1) pass the data through the predictor

 (2) measure the error
 (3) multiply 2

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
(fθ(x)) ⋅ ∇θ fθ(x)

ℓ(y, z) = (y − z)2

2(y − fθ(x))

Computing Gradients

• The predictor gradient is much tricker to compute

• The parameter is high-dimensional

• How do we compute this, for a very complicated function like…?

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
(fθ(x)) ⋅ ∇θ fθ(x)

θ

∇θg(θ) = [∂
∂θ1

g(θ), …,
∂

∂θd
g(θ)]

g(θ) = WLσ(⋯σ(W1x + b1)⋯ + bL

Computing Gradients: Numerical Method

• One possible way is the numerical method
• Note that

• Make a very small perturbation on the current parameter

• Do this for the first entry

• Do this for the second entry
• …

∇θg(θ) = [∂
∂θ1

g(θ), …,
∂

∂θd
g(θ)]

∂
∂x

g(x) = lim
ϵ→0

g(x + ϵ) − g(x)
ϵ

θ1
θ2

Computing Gradients: Numerical Method

Computing Gradients: Numerical Method

Computing Gradients: Numerical Method

Computing Gradients: Numerical Method
• Pros.

• Easy to implement
• Can use for black-box models

• Cons.
• Only gives you approximate

• cannot take the limit , due to the finite precision
• Very slow <—

• Requires at least model inferences

ϵ → 0

d + 1

Computing Gradients: Analytic Method
• The most popular method is the analytic method

• Example. Consider the function

• Then, we know that the gradient will have the formula:

• We can simply evaluate these functions

g(θ1, θ2) = sin(5 ⋅ exp(θ1) + 2 cos(θ2))

∇θ1
g(θ1, θ2) = 5 ⋅ cos(5 ⋅ exp(θ1) + 2 ⋅ cos(θ2)) ⋅ exp(θ1)

∇θ2
g(θ1, θ2) = − 2 ⋅ cos(5 ⋅ exp(θ1) + 2 ⋅ cos(θ2)) ⋅ sin(θ2)

Computing Gradients: Analytic Method
• Pros.

• Exact
• Cons.

• Requires deriving the gradient formula for all parameters
• Still needs computing the gradients for each parameters

• Luckily, for neural nets, the cons become easy to solve
• Derivation can be automatized
• Computing the gradients can be grouped and simplified

Backpropagation

Analytic Form of Gradients
• Question. How do we derive an analytic form of , for…? ∇θ fθ(x)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

Analytic Form of Gradients
• Idea. View this as a composition of elementary operations

•

•

•

• Then:
• Derivatives of each elementary op can be hard-coded
• Use chain rule to combine these

fθ(x) = fbL
∘ fWL

∘ fσL
∘ ⋯ ∘ fW1

(x)
fWi

(x) = Wix
fbi

(x) = x + bi

fσ(x) = σ(x)

Example
• Consider a function

• This is a composition of two elementary operations

• Addition:

• Multiplication:

g(x, y, z) = (x + y) ⋅ z

g(x, y, z) = g2(g1(x, y), z)

g1(a, b) = a + b
g2(a, b) = ab

g1

g2

Example
• Each elementary operation has an easy-to-write gradient

• ,

• ,

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Example
• Each elementary operation has an easy-to-write gradient

• ,

• ,

• Chain rule tells you that:

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

= z = 1

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Example
• Each elementary operation has an easy-to-write gradient

• ,

• ,

• Chain rule tells you that:

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

= z = 1

Example
• Each elementary operation has an easy-to-write gradient

• ,

• ,

• Chain rule tells you that:

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

= g1(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Example

• Observation 1. Computing gradients involves intermediate states of the
 composite function

• Idea. Compute all intermediate
 states and store them.
 Later, we can combine these
 intermediate values

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

g1

g2

Example

• Observation 2. The computed gradients themselves can be reused
• In particular, the gradient of the

later block is used for computing
the gradients of earlier-block
parameters

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

g1

g2

Example: Backpropagation
• Inspired by these, we can think of a three-step algorithm
• 1. Forward Pass. Compute the output, storing all intermediate states

 in the memory
• From input to output

g1

g2

5

3

2

Example: Backpropagation
• Inspired by these, we can think of a three-step algorithm
• 1. Forward Pass. Compute the output, storing all intermediate states

 in the memory
• From input to output

g1

g2

5

3

2

g1(5,3) = 8

Example: Backpropagation
• Inspired by these, we can think of a three-step algorithm
• 1. Forward Pass. Compute the output, storing all intermediate states

 in the memory
• From input to output

g1

g2

5

3

2

8

g2(8,2) = 16

Example: Backpropagation
• 2. Backward Pass. Compute the gradient using stored states

• From output to input

g1

g2

5

3

2

8

16
∂g2

∂a
= b = 2

∂g
∂z

=
∂g2

∂b
= a = 8

Example: Backpropagation
• 2. Backward Pass. Compute the gradient using stored states

• From output to input

g1

g2

5

3

2

8

16
2

8

∂g1

∂a
= 1

∂g1

∂b
= 1

Example: Backpropagation
• 2. Backward Pass. Compute the gradient using stored states

• From output to input

16

g1

g2

5

3

2

8

16
2

8

∂g
∂x

=
∂g2

∂g1

∂g1

∂x
= 2 ⋅ 1 = 2

2 ⋅ 1 = 2

Example: Backpropagation
• 3. GD. Update the parameters

• Then, repeat 1—3 over and over…

x ← x − η ⋅ 2, y ← y − η ⋅ 2, z ← z − η ⋅ 8

g1

g2

5

3

2

8

16
2

8

2

2

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

∂(1/a)
∂a

= − 1/a2

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

∂ exp
∂a

= exp(a)

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Computational Graph
• For simple neural networks, the computation graph will look like:

Computational Graph
• For larger models, the computation graph will be like:

Computational Graph
• Fortunately, deep learning frameworks will automatically construct the

computational graph for you
• PyTorch
• TensorFlow

Remarks
• Computation. Backpropagation requires a lot of memory!

• Additional memory needed is typically twice the model size
(keep the gradients & intermediate states)

• Sometimes, we discard the intermediate states (activations) and
rematerialize them whenever needed

• Gradients of some activation functions are cheaper to compute/store
• e.g., ReLU

Next up
• More about optimization

• Advanced optimizers
• Training strategies
• Network initialization

</lecture 12>

