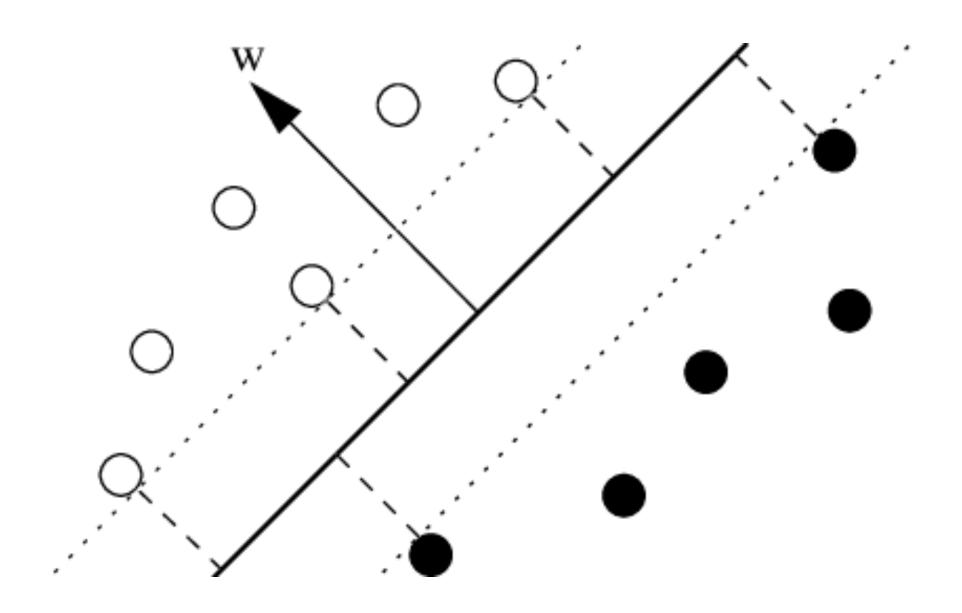
Deep Learning: Overview

Recap

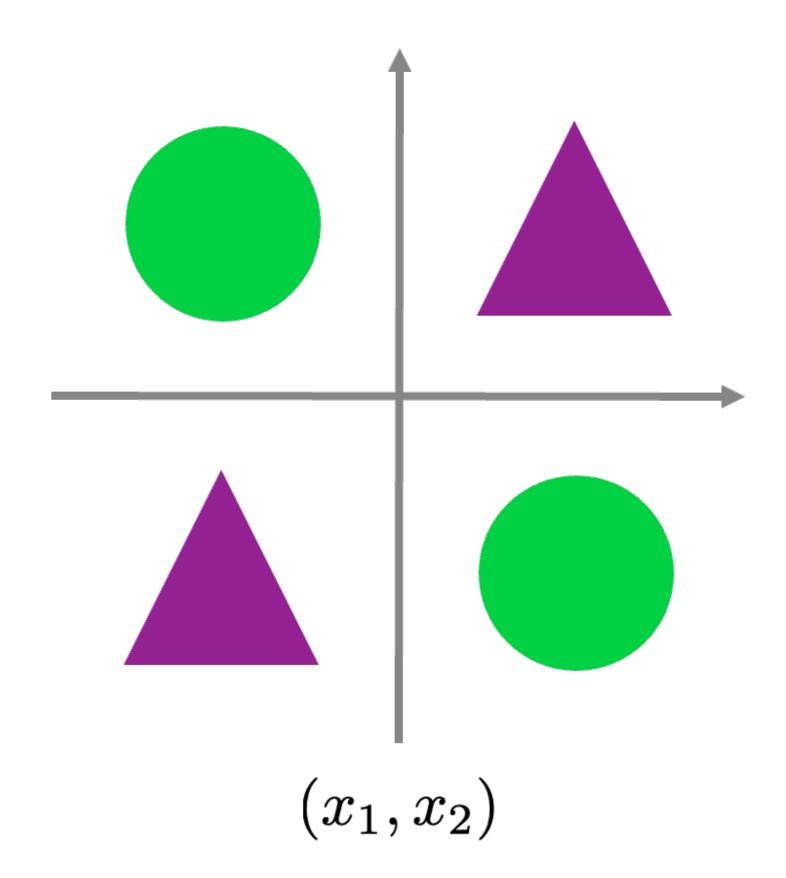
- So far, we have focused primarily on linear models
 - Perceptrons, logistic regression, linear regression, PCA. ...

$$\min_{f: \text{linear}} \mathbb{E}_{\text{data}}[\ell(f(X), Y)]$$



Recap

- Strength. Easy to optimize, Low inference cost
- Weakness. Limited expressive power
 - Requires the data to be linearly separable

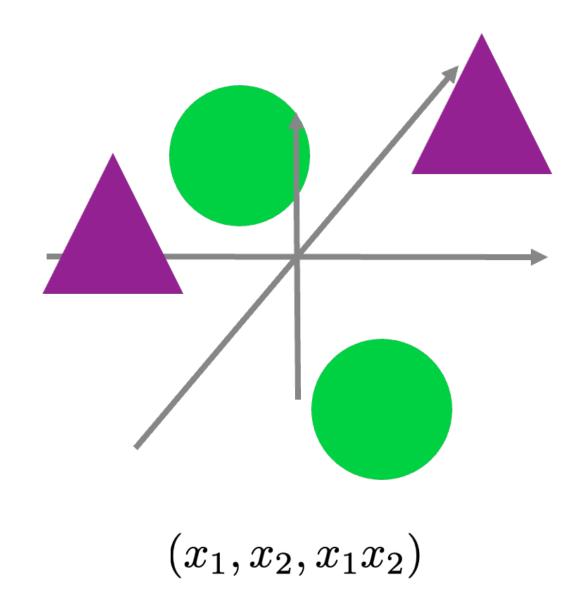


Recap

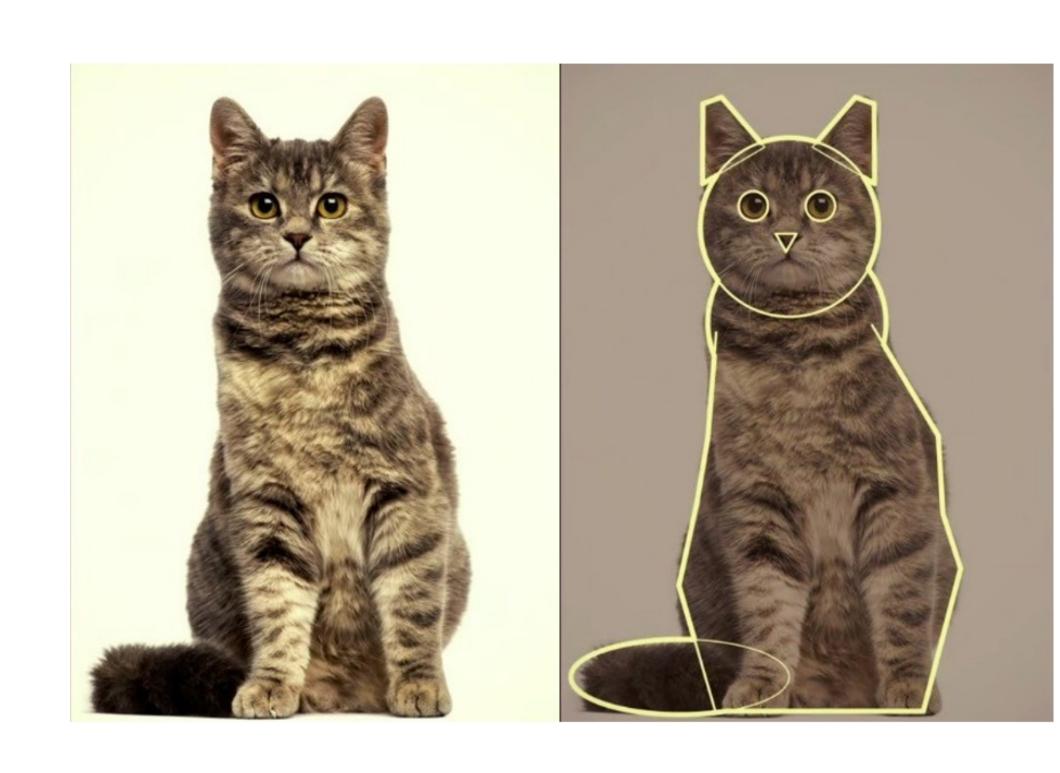
• Solution. Use some nonlinear feature $\Phi(\cdot)$, and solve

min
$$\mathbb{E}[\ell(f(\Phi(\mathbf{x})), y)]$$
 f:linear

- The features are typically handcrafted
 - Example: Gaussian kernels, Polynomial kernels
 - Requires much domain expertise



- Consider a high-dimensional and complicated data (e.g., text, images)
 - Designing a good feature can be very challenging
- Ideally, we would want something like:
 - $\phi_1(\mathbf{x}) = 1$ if "round head"
 - $\phi_2(\mathbf{x}) = 1$ if "two triangular ears"
 - $\phi_3(\mathbf{x}) = 1$ if "oval tail"
 - •
 - $f(\cdot)$: Average all, and apply threshold

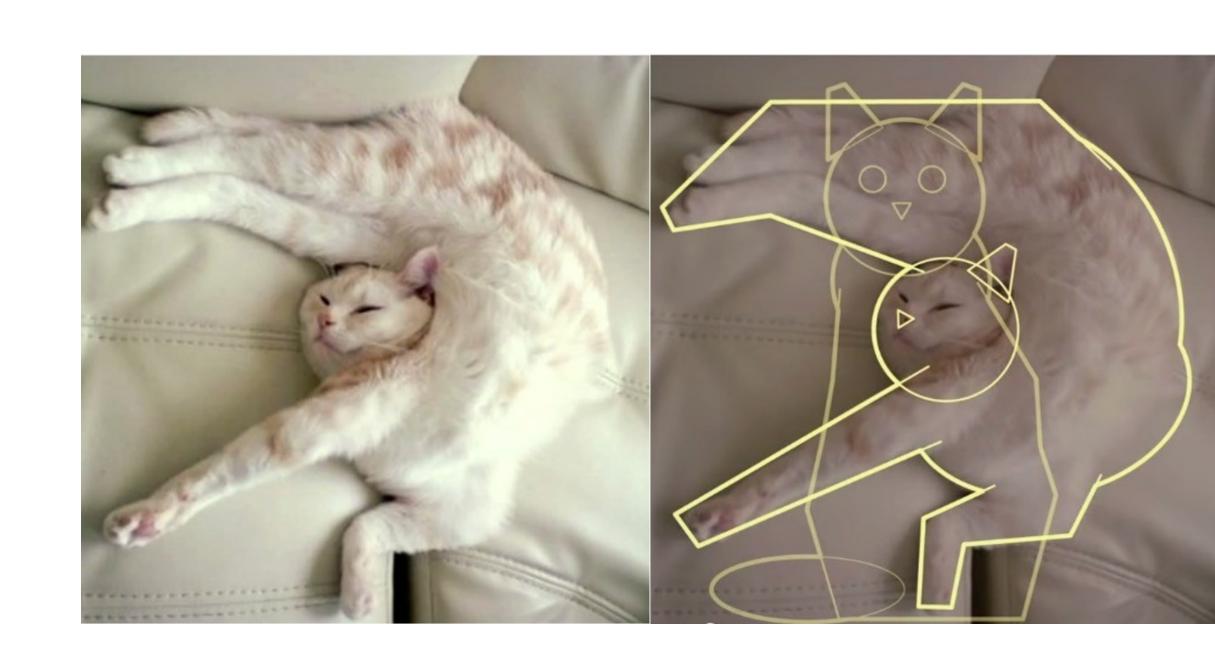


- **Problem.** Identifying useful $\phi(\cdot)$ is very difficult
 - Data is too diverse!

•
$$\phi_1(\mathbf{x}) = 1$$
 if "round head"

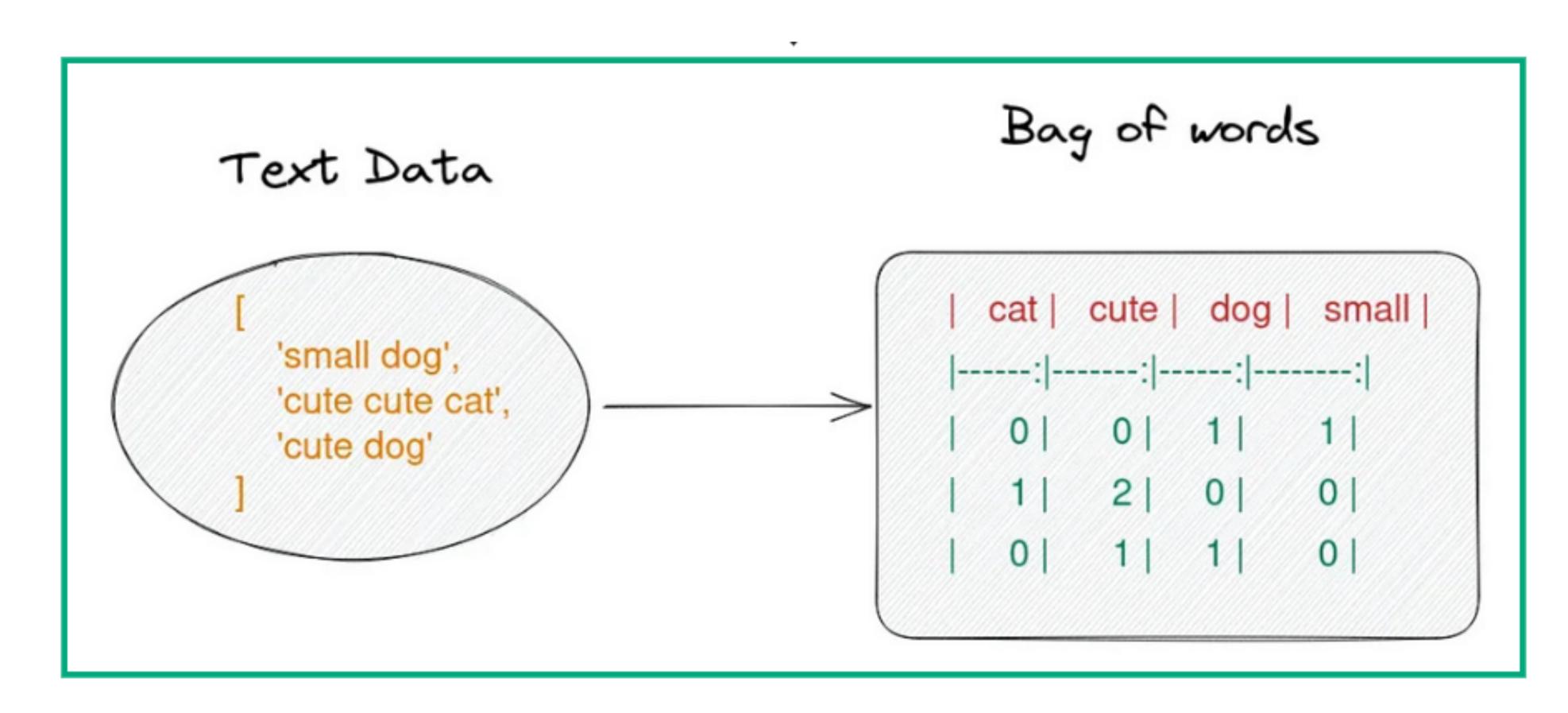
•
$$\phi_2(\mathbf{x}) = 1$$
 if "two triangular ears"

•
$$\phi_3(\mathbf{x}) = 1$$
 if "oval tail"



- Furthermore, constructing each ϕ is challenging as well
 - How do we construct an "oval tail detector"?

- Example (text). Bag-of-Words
 - Count the frequency of words in a sentence
 - But. Ignores word ordering, e.g., "man bites dog" vs. "dog bites man"



- Example (text). n-grams
 - Count the frequency of multi-word blocks
 - But. Limited "window" cannot cover, e.g., detective novels
 - But. Dictionary size explodes curse of dimensionality

1-Gram	2-Gram	3-Gram
The	The Margherita	The Margherita pizza
Margherita	Margherita pizza	Margherita pizza is
pizza	pizza is	pizza is not
is	is not	is not bad
not	not bad	not bad taste
bad	bad taste	
taste		

- Example (vision). Sobel filters
 - Apply patches edge-detecting kernels to extract "shape"
 - But. Difficult to capture semantics
 - But. Difficult to be processed by linear models

$$G_{x} = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_y = \frac{1}{2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Historical Bits: ImageNet

ImageNet Challenge

- In 2010, computer vision folks turned this into a competition
 - called "ImageNet"
- Training data. million+ images
 - Using crowdsourced annotations, via Amazon Mechanical Turk
- Classes. 1000+ classes

ImageNet Challenge

2010

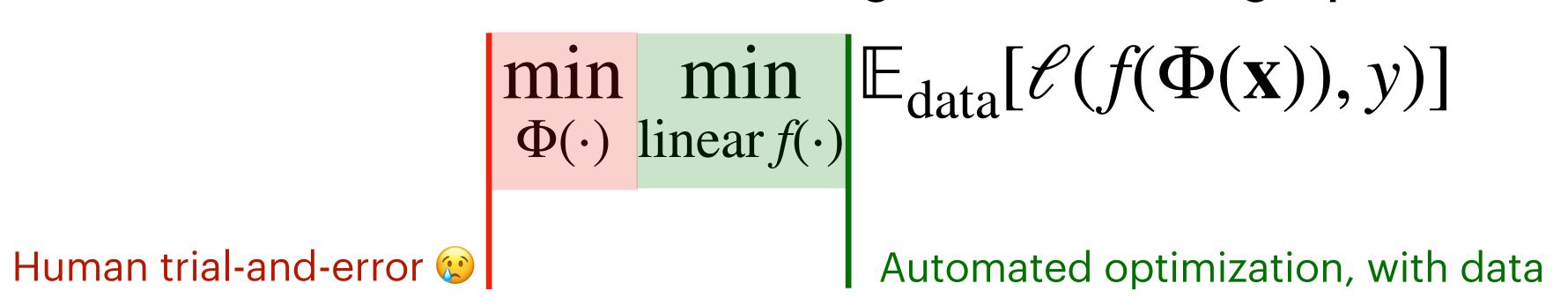
•	1st. NEC-UIUC	72%	"SVM + SIFT	features'
•	1st. NEC-UIUC	72%	"SVM + SIFT	features

- 2nd. Xerox 66%
- 2011
 - 1st. Xerox, 74% "SVM + Fisher Kernels"
 - 2nd. U of Amsterdam 69%
- 2012
 - 1st. SuperVision 84% "Deep Learning"
 - 2nd. U of Tokyo 74% "SVM + Fisher Kernel + SIFT"
 - 3rd. Oxford VGG 75% "SVM + Fisher Kernel + SIFT"

Representation Learning

- Deep learning is one way to conduct representation learning
 - Select the feature $\Phi(\cdot)$ in a data-driven manner

So far, we have been solving the following optimization problem



Representation Learning

- Deep learning is a way to conduct representation learning
 - Select the feature $\Phi(\cdot)$ in a data-driven manner

So far, we have been solving the following optimization problem

$$\min_{\Phi(\cdot) \text{ linear } f(\cdot)} \mathbb{E}_{\text{data}}[\ell(f(\Phi(\mathbf{x})), y)]$$

Automated optimization, with data

- Idea. Learn both $\Phi(\cdot), f(\cdot)$ from data
 - Either jointly or separately

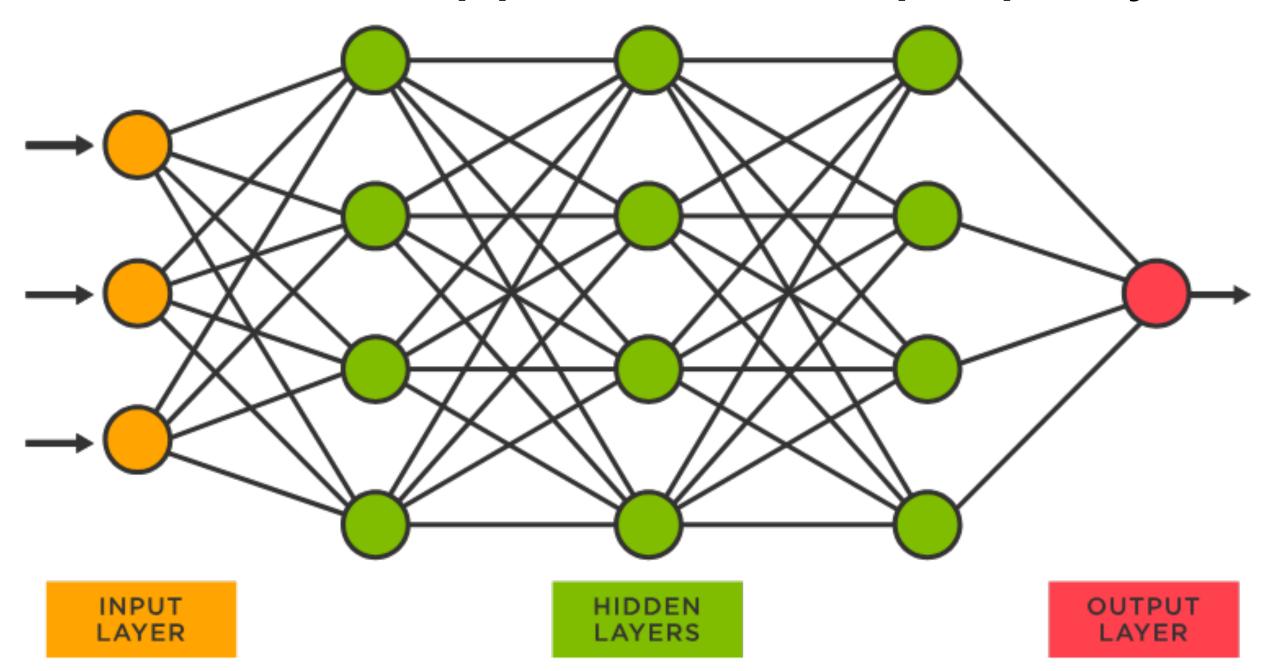
Key questions

min min
$$\mathbb{E}_{\text{data}}[\ell(f(\Phi(\mathbf{x})), y)]$$

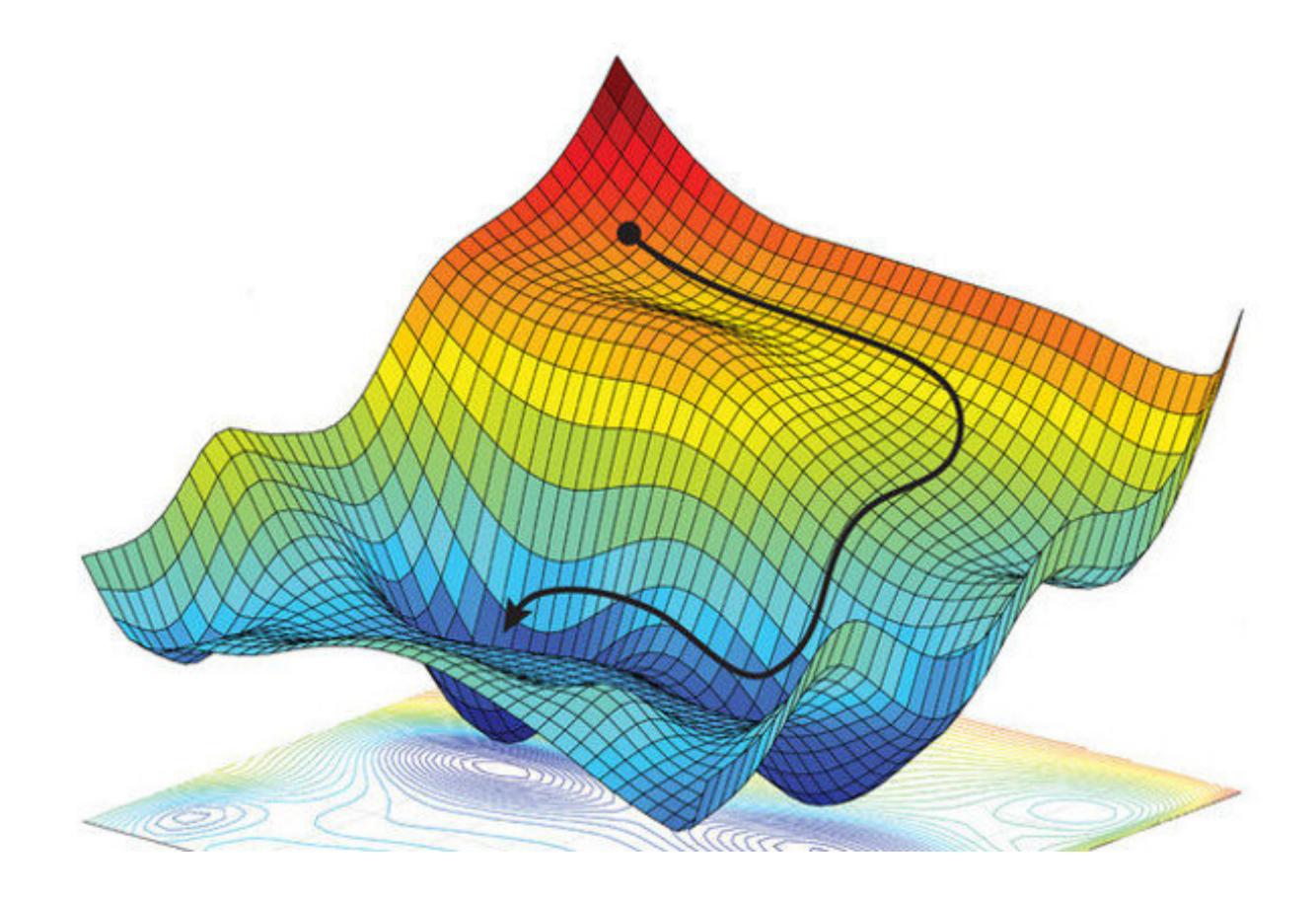
 $\Phi(\cdot)$ linear $f(\cdot)$

- For a successful representation learning, we need three things:
 - A good search space of $\Phi(\cdot)$
 - Should be able to express wide range of (nonlinear) functions
 - A good optimization algorithm to find optimal $\Phi(\,\cdot\,)$
 - A global optimum should be discoverable with small compute
 - A good generalizability of the discovered solution
 - Hope to suffer from small "overfitting"

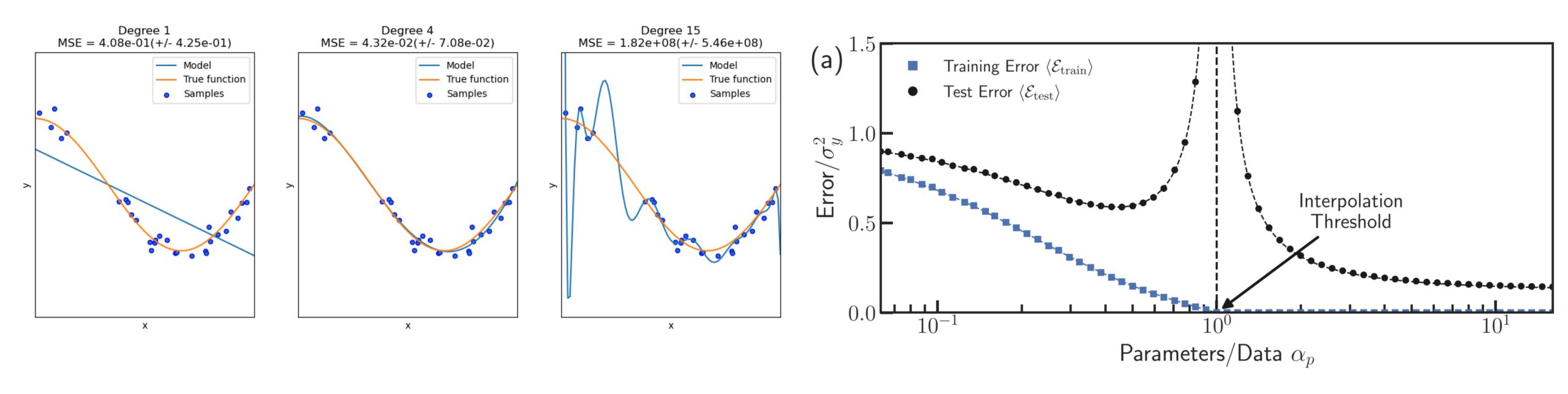
- Starting from today, we will focus on deep learning
- Search space. Neural networks
 - Repetition of simple operations
 - Can approximate any continuous function, given sufficient size
 - so-called "universal approximation property"



- Optimizer. Gradient descent + Backpropagation
 - The search space is highly nonconvex
 - Mysteriously, however, GD finds a good minima



- Generalization. Mysteriously, generalize well...
 - Folk knowledge. Larger models generalize poorly
 - Deep learning. Larger models tend to generalize better



Traditional ML

Deep Learning

- This week, we give a brief overview of these three aspects
 - Search space
 - Optimization
 - Generalization

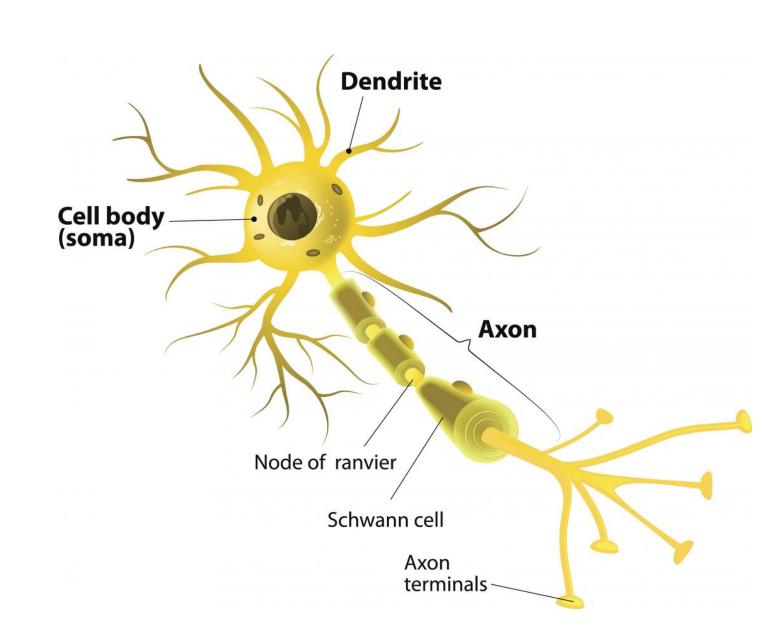
Deep Neural Networks

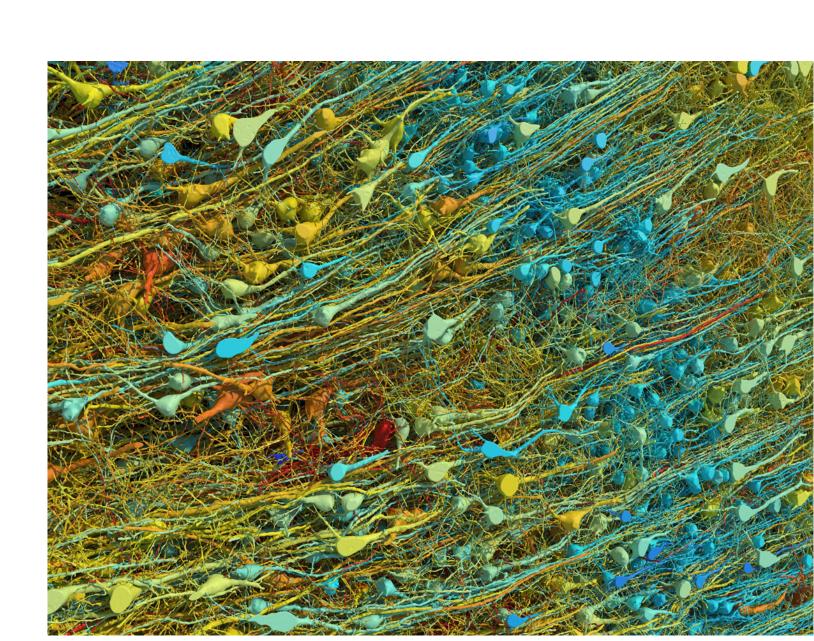
Neural Network

Motivated by how human processes information

- Neurons. Unit of information processing
 - Aggregates electrochemical signals from other neurons
 - Fire the output, if the aggregated signal is above threshold

- Brain. A network of neurons
 - Can do complicated operations (a living proof-of-concept)



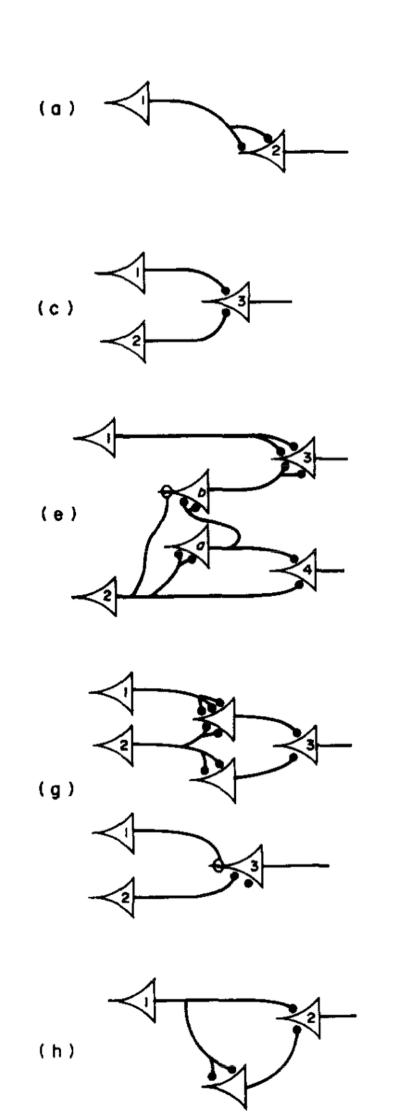


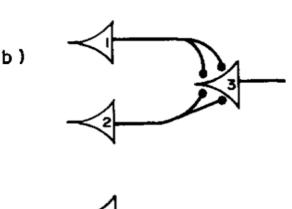
Artificial Neural Network

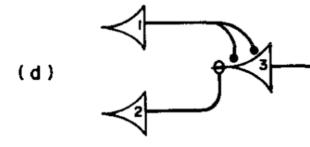
- In 1950s, used for hard-coding functions rather than machine learning
 - Electric circuits, instead of biological
 - Build elementary circuits
 - Combine multiple circuits to express a complicated function

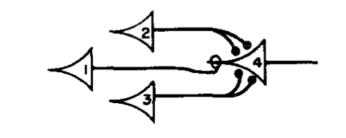
A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY*

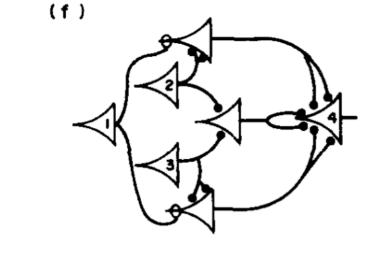
■ WARREN S. McCulloch and Walter Pitts
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

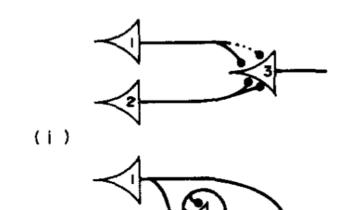


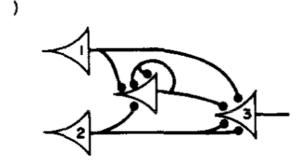










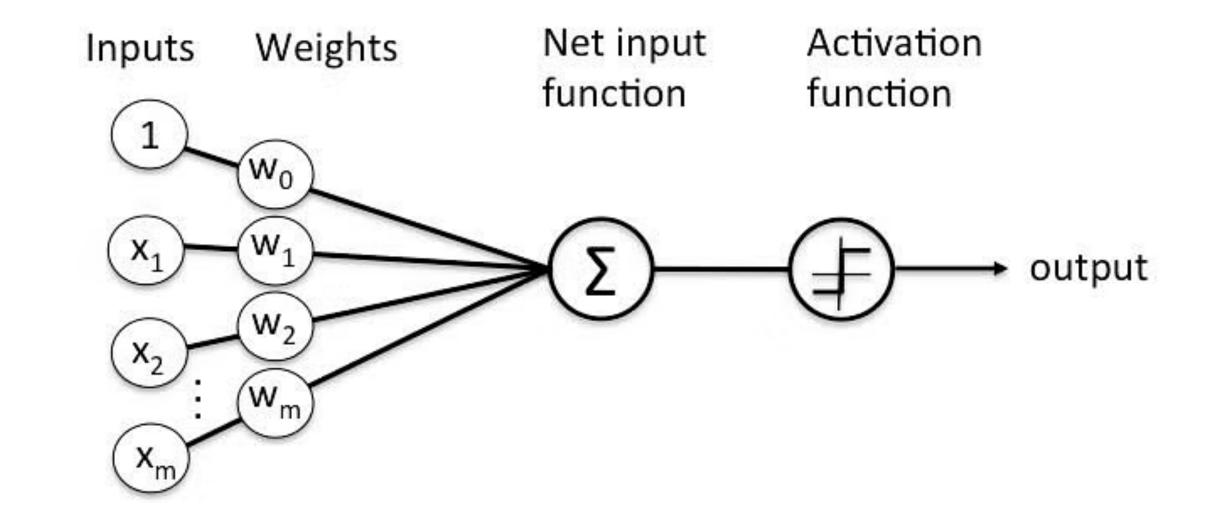


Perceptrons

Neurons with learnable weights

$$y = \mathbf{1} \left(\sum_{i=1}^{n} w_i x_i + b \right)$$

- Multi-dimensional input
- Take a weighted sum
 - Fire if sum exceeds threshold
 - Otherwise, output 0



Combination of a linear operation $x \mapsto w^{\top}x$ a nonlinearity

$$\mathbf{x} \mapsto \mathbf{w}'\mathbf{x}$$
 $\mathbf{x} \mapsto \mathbf{1}\{\mathbf{x} > 0\}$

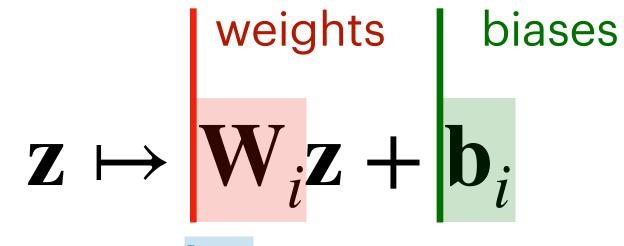
Multilayer Perceptrons

Idea. Build a network of perceptrons, by parallel & serial connections

• In the i-th, layer, do:

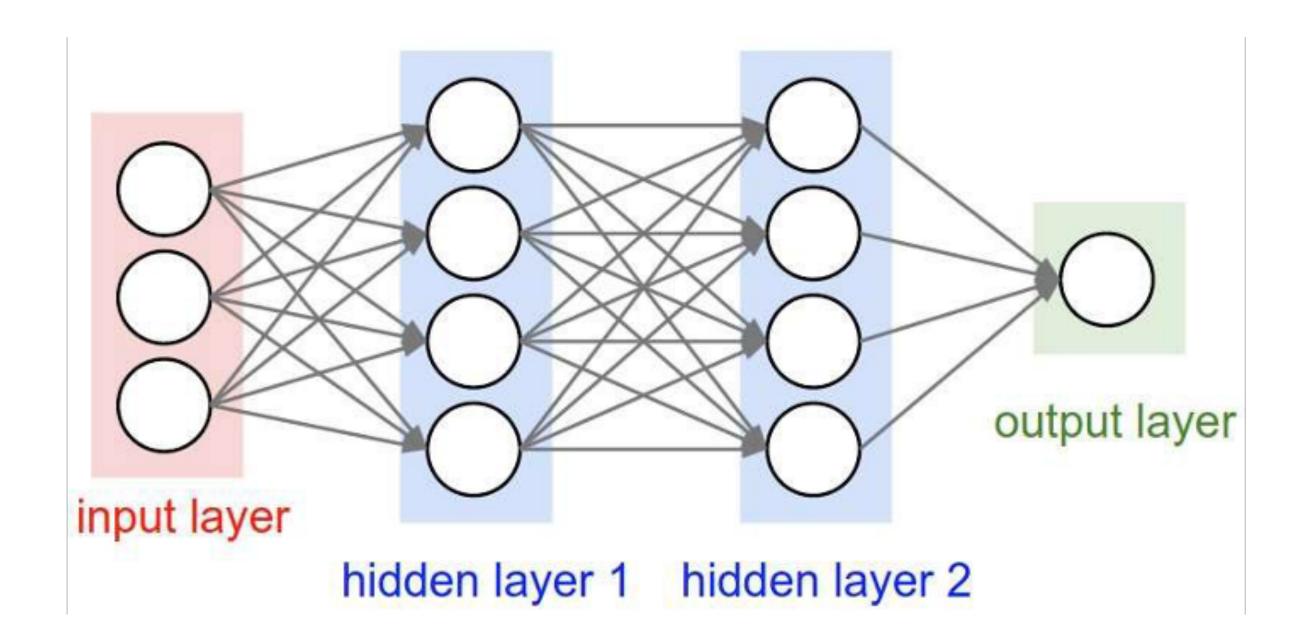
Linear operation

• Nonlinear operation $\mathbf{z} \mapsto \sigma_i(\mathbf{z})$



$$\mathbf{z}\mapsto \sigma_i(\mathbf{z})$$

activation function (not necessarily 1)



Multilayer Perceptrons

Our overall predictor can be written as:

$$f(\mathbf{x}) = \mathbf{W}_{L} \sigma_{L-1}(\mathbf{W}_{L-1} \sigma(\cdots \sigma(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) + \cdots)$$
linear classifier feature

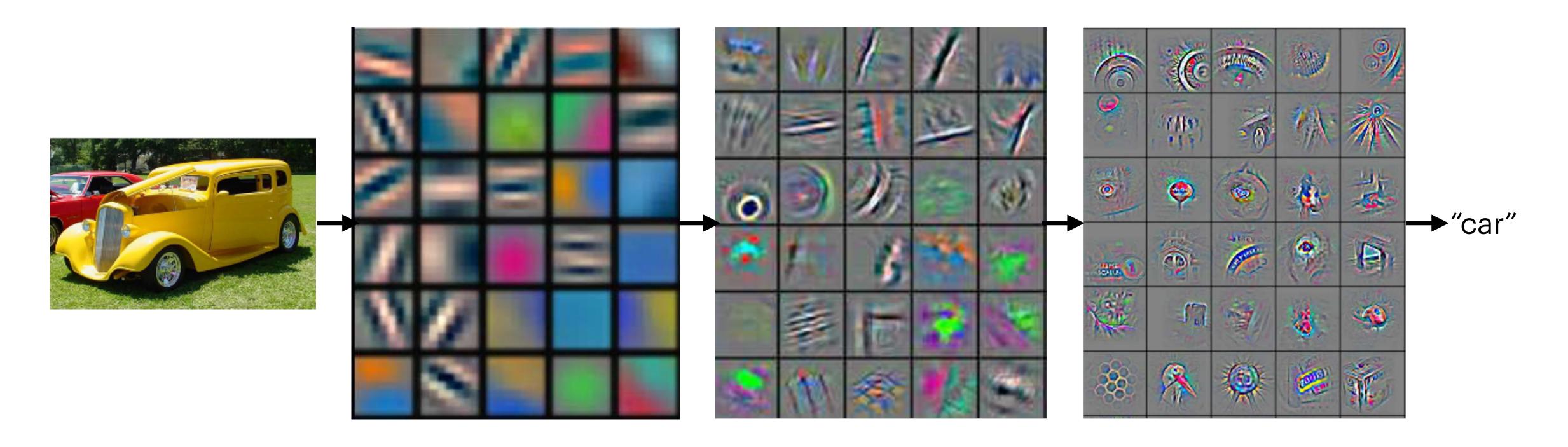
Note. If we did not have activation functions, this is simply a linear model

$$f(\mathbf{x}) = \mathbf{W}_L(\mathbf{W}_{L-1} \cdots (\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \cdots)$$
$$= \tilde{\mathbf{W}} \mathbf{x} + \tilde{\mathbf{b}}$$

Multilayer Perceptrons

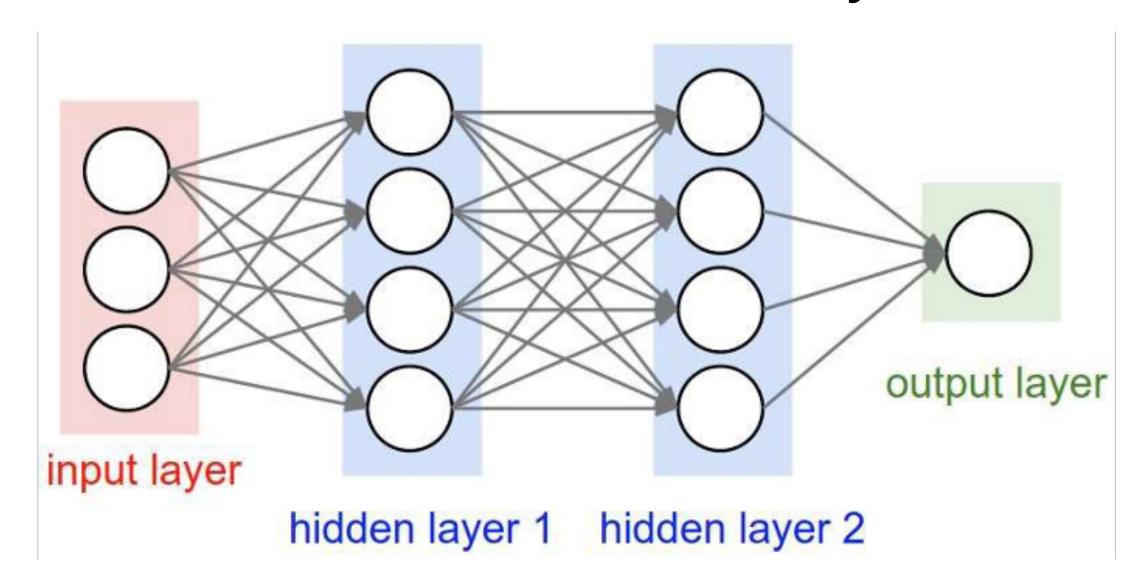
 As the layer gets deeper, the each neuron captures more and more complicated patterns

Example. Visualization of the pattern that maximally activates a neuron



Properties

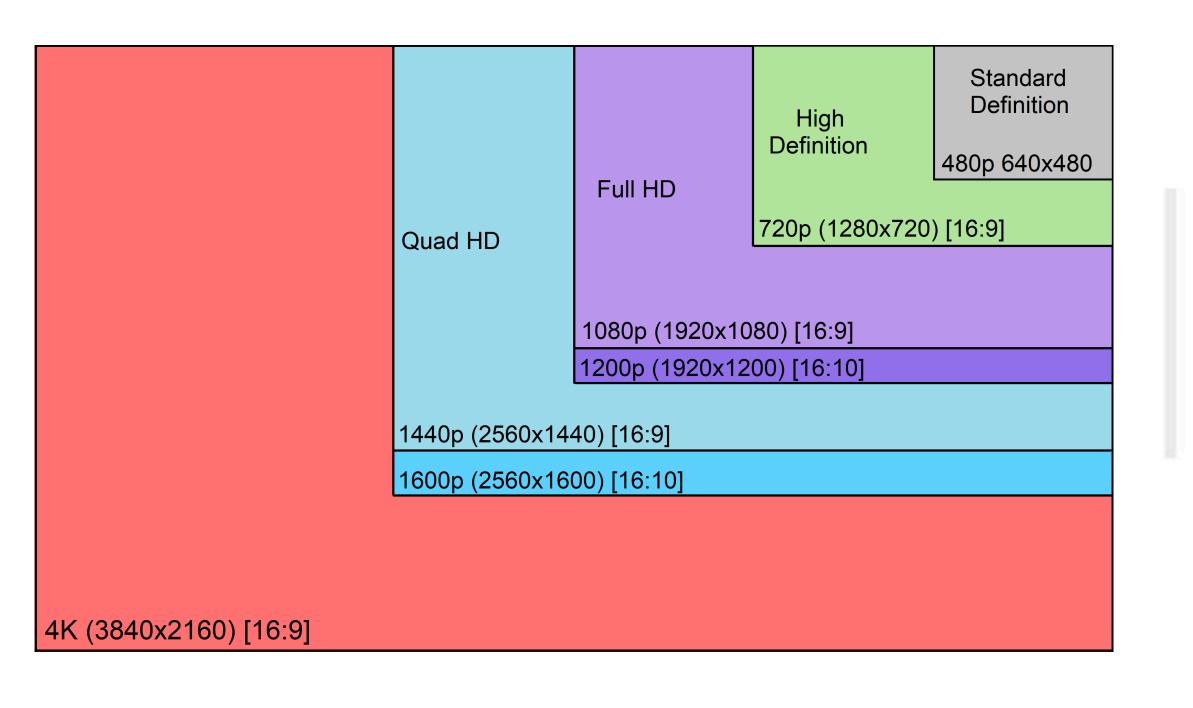
- Computation. Very easy to compute
 - Mostly linear operations
 - We can do parellel processing w/ GPUs
- Flexibility. Modular, and thus very flexible
 - Can replace the "building blocks"
 - Can change the size add or remove layers/neurons



- There are countless network architectures, employing:
 - Other linear operations, instead of simple matrix multiplication
 - e.g., convolution
 - Other nonlinear operations, instead of $\mathbf{1}\{\ \cdot\ \}$
 - e.g., ReLU, sigmoid

- Advanced. Many other operations
 - Residual connection
 - self-attention
 - normalization, ...

- Linear ops. Vanilla linear is bad, especially for high-dimensional data
 - <u>Example 1</u>. For 4K images, a 2-layer net with 1000 hidden neurons need 7.5 billion parameters (30GB of memory)
 - Example 2. For texts, the input can be of variable length



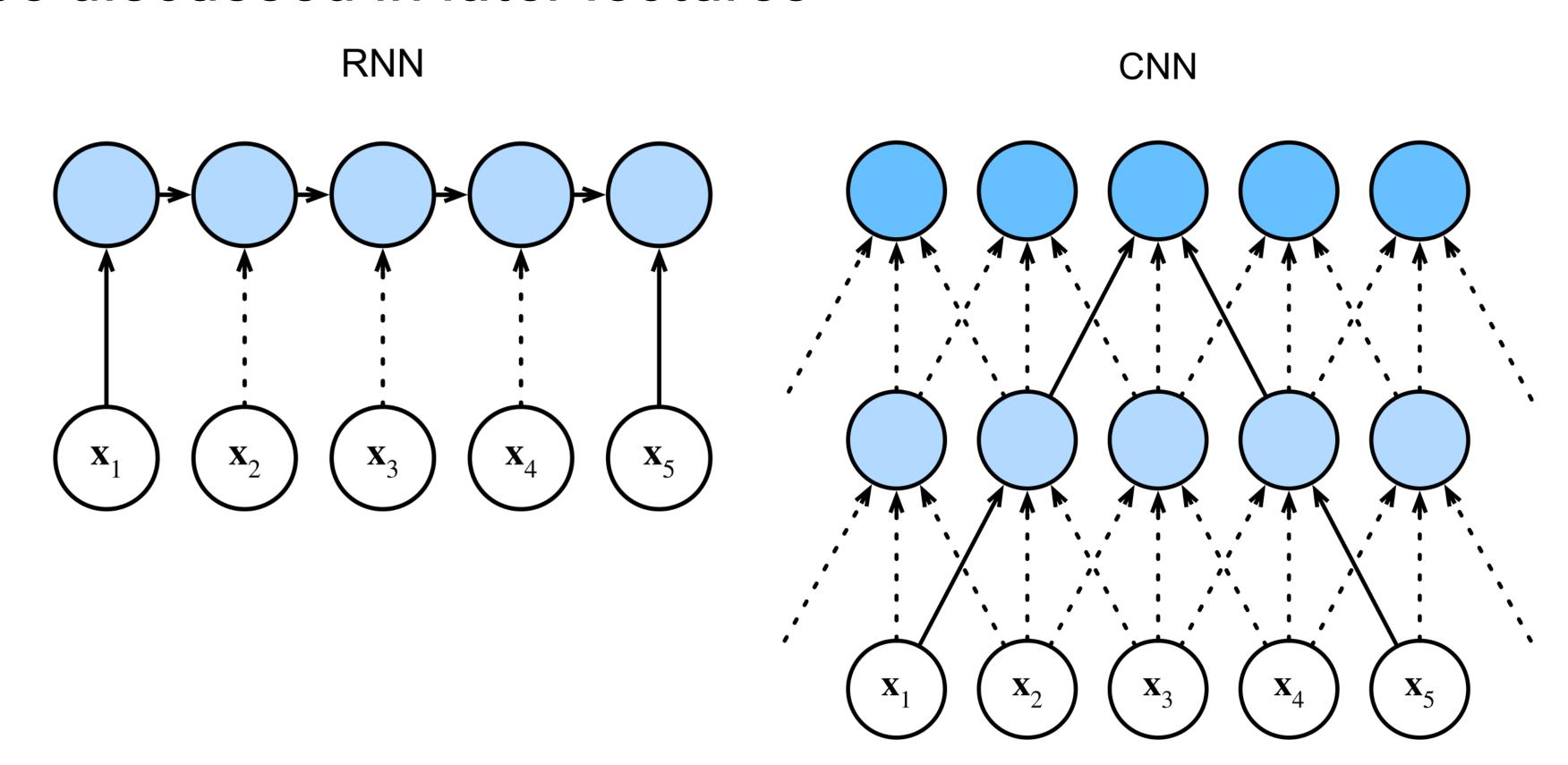
Până la mijlocul lui iulie, procentul a urcat la 40%. La începutul lui august, era 52%.

— Source

By mid-July, it was 40 percent. In early August, it was 52 percent.

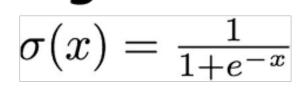
- Reference

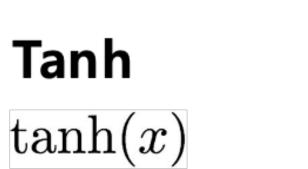
- A common solution is to develop customized modules for each data domain
 - recurrent module for text, convolutional module for vision
 - will be discussed in later lectures

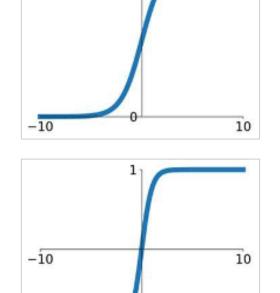


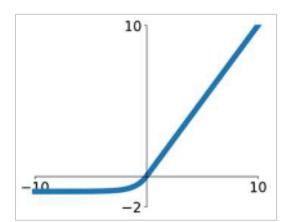
- **Activation.** Difficult to conduct gradient descent with $\mathbf{1}\{\cdot\}$
 - Gradient is almost always 0
 - Alternatives are:
 - Saturating activations. Surrogates of $\mathbf{1}\{\cdot\}$
 - Non-saturating activations. Modern pick
 - Default: ReLU (Rectified linear unit)
 - Better optimization properties (discussed later)
 - Better computation: easy to compute the output & gradients

$$\mathbf{ReLU}$$
 $\max(0, x)$



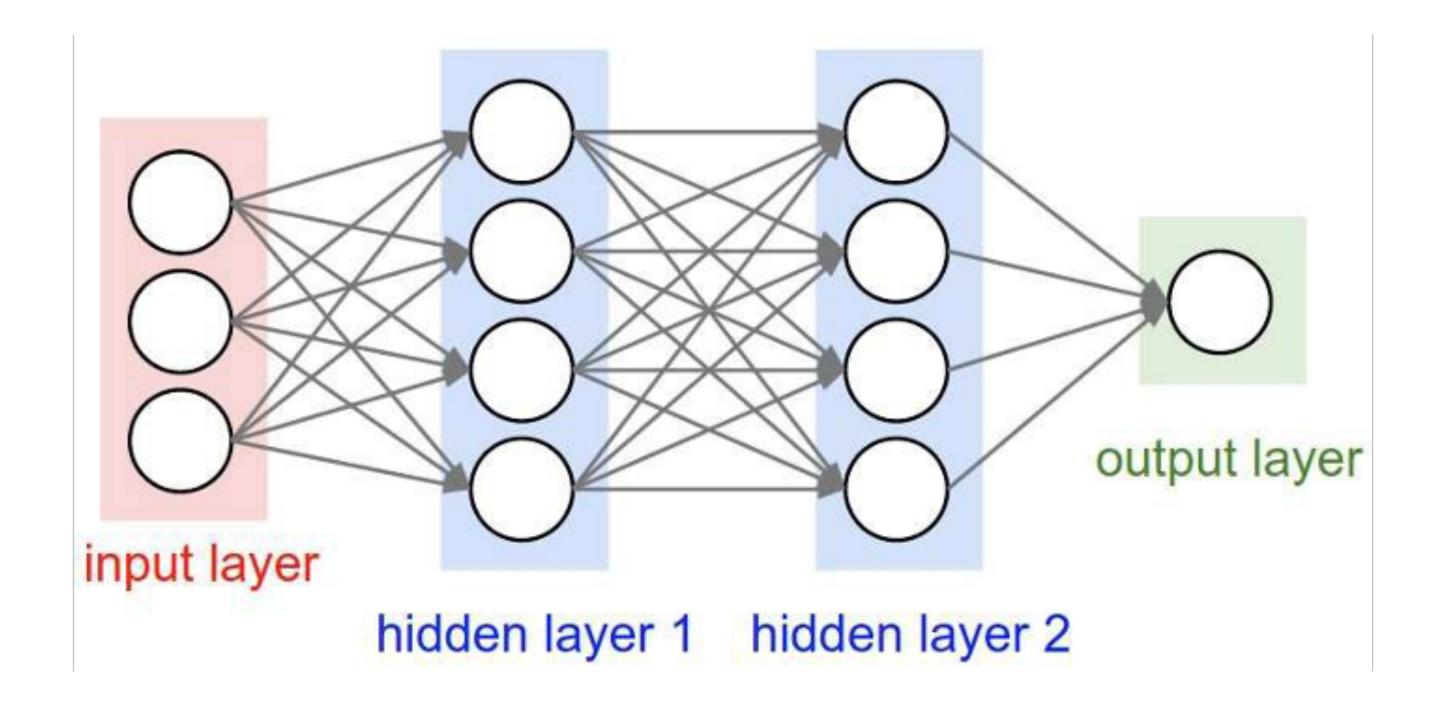






Width and Depth

- Width. The number of neurons in each layer (typically the widest)
- Depth. The number of layers
- <u>Exercise</u>. How many layers does this network have?
 - What is its width?



Width and Depth

- Larger the network, we typically have:
 - High training accuracy on complicated dataset
 - Less SGD steps needed to converge
 - More per-step computation
 - Higher inference cost
 - Width: Memory, Depth: Latency

- In terms of generalization:

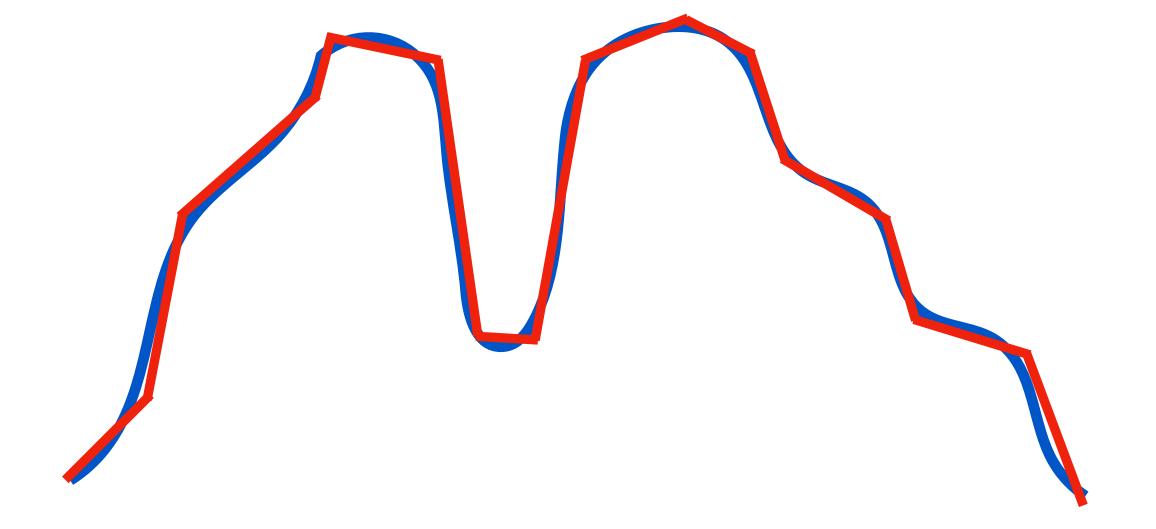
 - <u>Depth</u>: Training accuracy **↑ ↑** Generalization **↓**

Theoretical Properties: Approximation

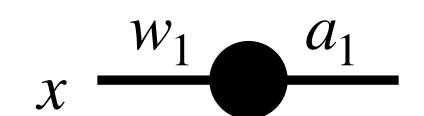
Universal Approximation

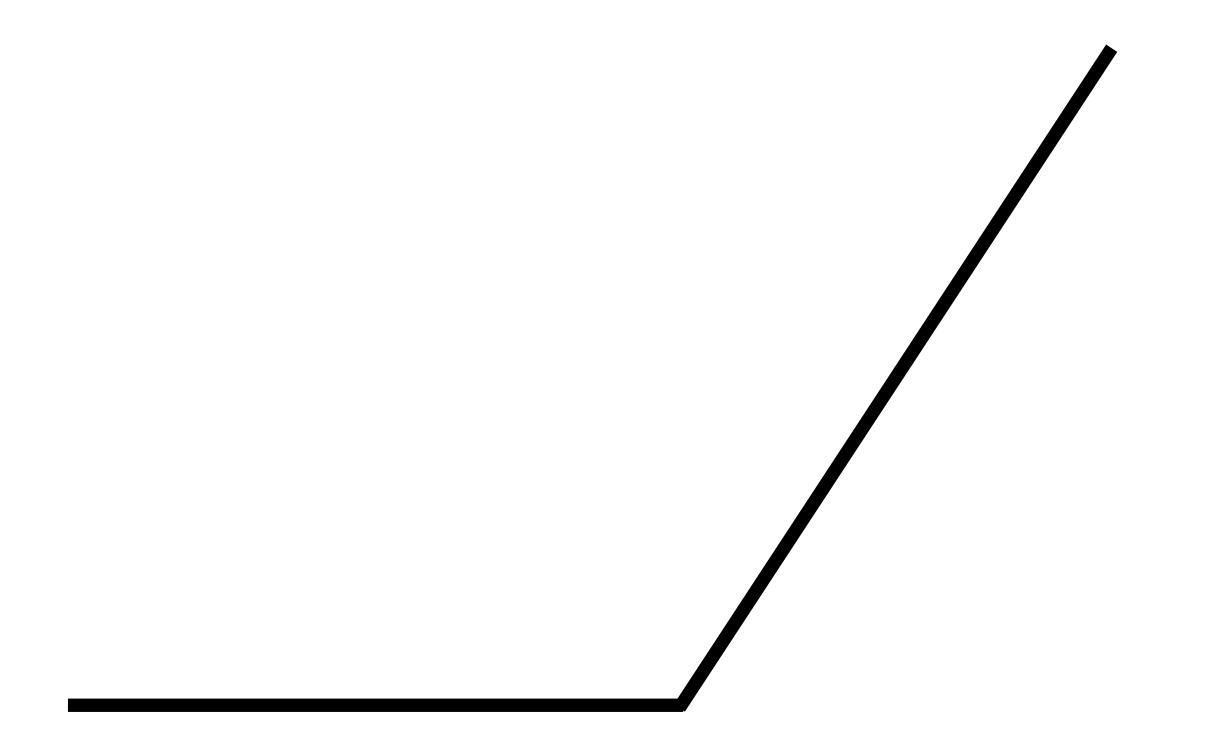
- A cool aspect of neural network is that they can represent any function
 - These properties are called "universal approximation properties"
- Theorem. Given any function $g(\cdot)$ and $\epsilon>0$, one can find a <u>two-layer</u> ReLU neural network $f(\cdot)$ such that

$$\sup_{x \in [0,1]} |g(x) - f(x)| \le \epsilon$$

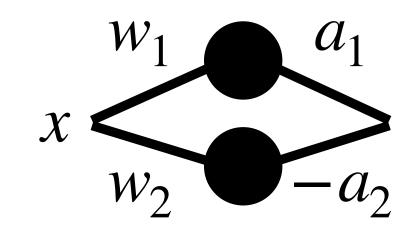


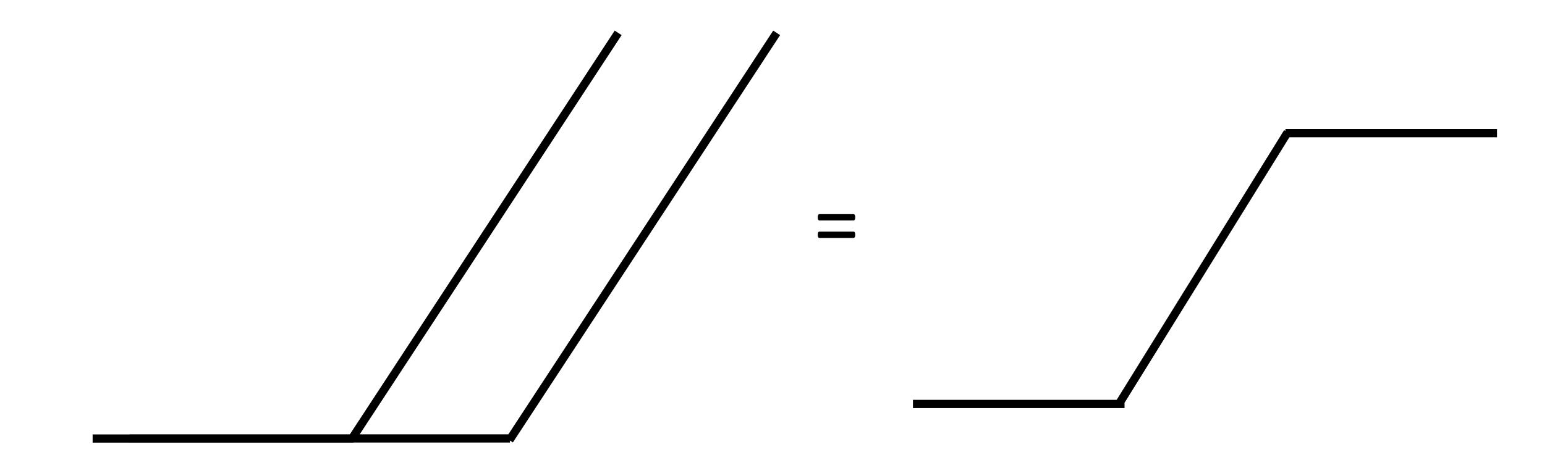
A single ReLU neuron looks like this:



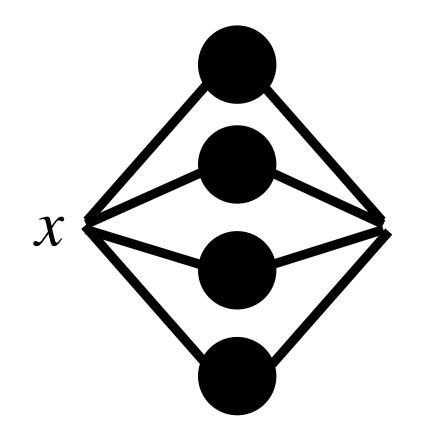


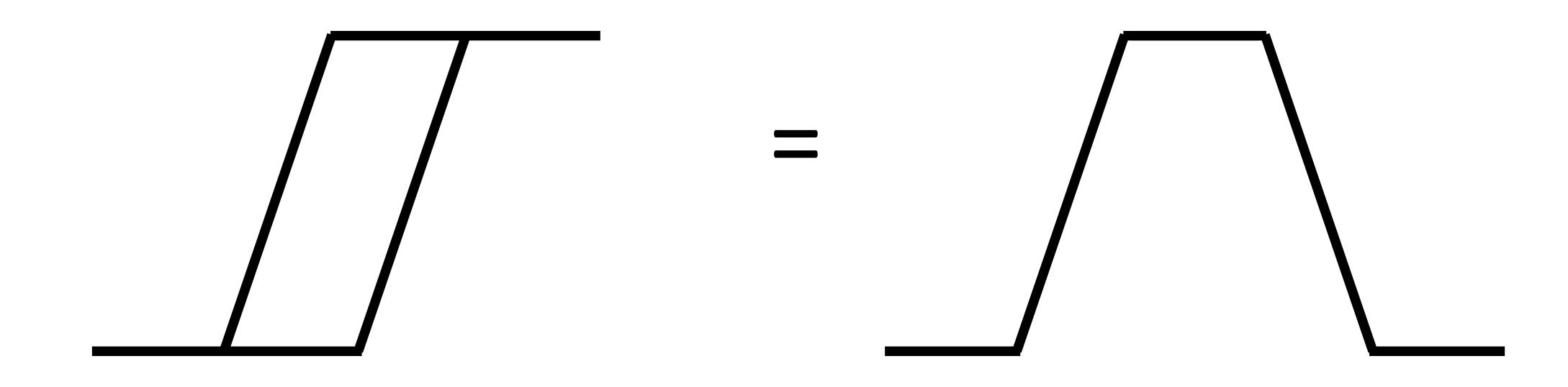
• Two parallel ReLU can make a hard sigmoid



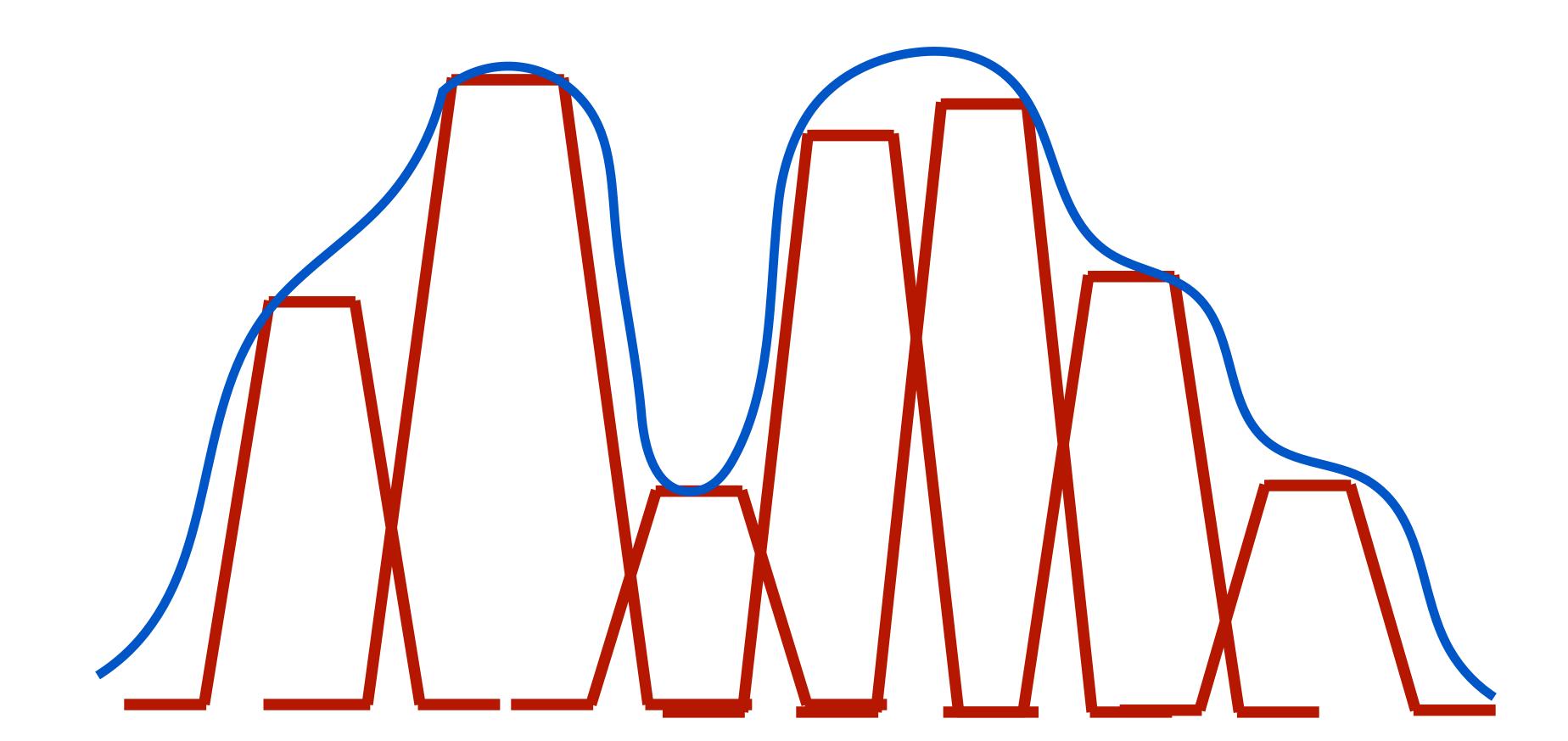


- Two hard sigmoid can make a bump
 - i.e., four ReLU neurons





- We can use many narrow bumps to approximate the target function:
 - If we use N bumps, total 4N ReLU neurons needed



Next up

- Optimization aspects
 - SGD
 - Backpropagation

- Brainteaser
 - Persuade yourself that width-2 depth-2 neural net with $\mathbf{1}\{\ \cdot\ \}$ activation can represent XOR

VOD	Α	В	Output
XOR	0	0	0
\mathcal{A}	1	0	1
	0	1	1
(0.574)	1	1	0

</le>