
Deep Learning: Overview

Recap
• So far, we have focused primarily on linear models

• Perceptrons, logistic regression, linear regression, PCA. …

min
f:linear

𝔼data[ℓ(f(X), Y)]

Recap
• Strength. Easy to optimize, Low inference cost
• Weakness. Limited expressive power

• Requires the data to be linearly separable

Recap
• Solution. Use some nonlinear feature , and solve

• The features are typically handcrafted
• Example: Gaussian kernels, Polynomial kernels
• Requires much domain expertise

Φ(⋅)
min

f:linear
𝔼[ℓ(f(Φ(x)), y)]

Handcrafted Features

Handcrafted features
• Consider a high-dimensional and complicated data (e.g., text, images)

• Designing a good feature can be very challenging

• Ideally, we would want something like:
• 1 if ”round head”

• 1 if ”two triangular ears”

• 1 if ”oval tail”

• …

• : Average all, and apply threshold

ϕ1(x) =
ϕ2(x) =
ϕ3(x) =

f(⋅)

Handcrafted features
• Problem. Identifying useful is very difficult

• Data is too diverse!

• 1 if ”round head” ✅

• 1 if ”two triangular ears” ❌

• 1 if ”oval tail” ❌

• Furthermore, constructing each is challenging as well
• How do we construct an “oval tail detector”?

ϕ(⋅)

ϕ1(x) =
ϕ2(x) =
ϕ3(x) =

ϕ

Handcrafted features
• Example (text). Bag-of-Words

• Count the frequency of words in a sentence
• But. Ignores word ordering, e.g., “man bites dog” vs. “dog bites man”

Handcrafted features
• Example (text). n-grams

• Count the frequency of multi-word blocks
• But. Limited “window” — cannot cover, e.g., detective novels
• But. Dictionary size explodes — curse of dimensionality

Handcrafted features
• Example (vision). Sobel filters

• Apply patches edge-detecting kernels to extract “shape”
• But. Difficult to capture semantics
• But. Difficult to be processed by linear models

Historical Bits: ImageNet

ImageNet Challenge
• In 2010, computer vision folks turned this into a competition

• called “ImageNet”
• Training data. million+ images

• Using crowdsourced annotations, via Amazon Mechanical Turk
• Classes. 1000+ classes

ImageNet Challenge
• 2010

• 1st. NEC-UIUC 72% “SVM + SIFT features”
• 2nd. Xerox 66%

• 2011
• 1st. Xerox, 74% “SVM + Fisher Kernels”
• 2nd. U of Amsterdam 69%

• 2012
• 1st. SuperVision 84% “Deep Learning”
• 2nd. U of Tokyo 74% “SVM + Fisher Kernel + SIFT”
• 3rd. Oxford VGG 75% “SVM + Fisher Kernel + SIFT”

Deep Learning

Representation Learning
• Deep learning is one way to conduct representation learning

• Select the feature in a data-driven manner

• So far, we have been solving the following optimization problem

Φ(⋅)

min
Φ(⋅)

min
linear f(⋅)

𝔼data[ℓ(f(Φ(x)), y)]

Human trial-and-error 😢 Automated optimization, with data

Representation Learning
• Deep learning is a way to conduct representation learning

• Select the feature in a data-driven manner

• So far, we have been solving the following optimization problem

• Idea. Learn both from data
• Either jointly or separately

Φ(⋅)

min
Φ(⋅)

min
linear f(⋅)

𝔼data[ℓ(f(Φ(x)), y)]

Φ(⋅), f(⋅)

Automated optimization, with data

Key questions

• For a successful representation learning, we need three things:

• A good search space of
• Should be able to express wide range of (nonlinear) functions

• A good optimization algorithm to find optimal
• A global optimum should be discoverable with small compute

• A good generalizability of the discovered solution
• Hope to suffer from small “overfitting”

min
Φ(⋅)

min
linear f(⋅)

𝔼data[ℓ(f(Φ(x)), y)]

Φ(⋅)

Φ(⋅)

Deep Learning
• Starting from today, we will focus on deep learning
• Search space. Neural networks

• Repetition of simple operations
• Can approximate any continuous function, given sufficient size

• so-called “universal approximation property”

Deep Learning
• Optimizer. Gradient descent + Backpropagation

• The search space is highly nonconvex
• Mysteriously, however, GD finds a good minima

Deep Learning
• Generalization. Mysteriously, generalize well…

• Folk knowledge. Larger models generalize poorly
• Deep learning. Larger models tend to generalize better

Deep LearningTraditional ML

Deep Learning
• This week, we give a brief overview of these three aspects

• Search space
• Optimization
• Generalization

Deep Neural Networks

Neural Network
• Motivated by how human processes information

• Neurons. Unit of information processing
• Aggregates electrochemical signals

from other neurons
• Fire the output, if the aggregated signal is above threshold

• Brain. A network of neurons
• Can do complicated operations

(a living proof-of-concept)

Artificial Neural Network
• In 1950s, used for hard-coding functions

rather than machine learning
• Electric circuits, instead of biological

• Build elementary circuits
• Combine multiple circuits to

express a complicated function

Perceptrons
• Neurons with learnable weights

• Multi-dimensional input
• Take a weighted sum

• Fire if sum exceeds threshold
• Otherwise, output 0

• Combination of a linear operation
 a nonlinearity

y = 1 (
n

∑
i=1

wixi + b)

x ↦ w⊤x
x ↦ 1{x > 0}

Multilayer Perceptrons
• Idea. Build a network of perceptrons, by parallel & serial connections

• In the i-th, layer, do:

• Linear operation

• Nonlinear operation

z ↦ Wiz + bi

z ↦ σi(z)

weights biases

activation function (not necessarily)1

Multilayer Perceptrons
• Our overall predictor can be written as:

• Note. If we did not have activation functions, this is simply a linear model

f(x) = WLσL−1(WL−1σ(⋯σ(W1x + b1) + ⋯)

f(x) = WL(WL−1⋯(W1x + b1) + b2)⋯)
= W̃x + b̃

linear classifier feature

Multilayer Perceptrons
• As the layer gets deeper, the each neuron captures more and more

complicated patterns

• Example. Visualization of the pattern that maximally activates a neuron

“car”

Properties
• Computation. Very easy to compute

• Mostly linear operations
• We can do parellel processing w/ GPUs

• Flexibility. Modular, and thus very flexible
• Can replace the “building blocks”
• Can change the size — add or remove layers/neurons

Building blocks
• There are countless network architectures, employing:

• Other linear operations, instead of simple matrix multiplication
• e.g., convolution

• Other nonlinear operations, instead of
• e.g., ReLU, sigmoid

• Advanced. Many other operations
• Residual connection
• self-attention
• normalization, …

1{ ⋅ }

Building blocks
• Linear ops. Vanilla linear is bad, especially for high-dimensional data

• Example 1. For 4K images, a 2-layer net with 1000 hidden neurons
 need 7.5 billion parameters (30GB of memory)

• Example 2. For texts, the input can be of variable length

Building blocks
• A common solution is to develop customized modules for each data

domain
• recurrent module for text, convolutional module for vision
• will be discussed in later lectures

Building blocks
• Activation. Difficult to conduct gradient descent with

• Gradient is almost always
• Alternatives are:

• Saturating activations. Surrogates of
• Non-saturating activations. Modern pick

• Default: ReLU (Rectified linear unit)
• Better optimization properties (discussed later)
• Better computation: easy to compute the output &

gradients

1{ ⋅ }
0

1{ ⋅ }

Width and Depth
• Width. The number of neurons in each layer (typically the widest)
• Depth. The number of layers

• Exercise. How many layers does this network have?
• What is its width?

Width and Depth
• Larger the network, we typically have:

• High training accuracy on complicated dataset
• Less SGD steps needed to converge
• More per-step computation
• Higher inference cost

• Width: Memory, Depth: Latency

• In terms of generalization:
• Width: Training accuracy Generalization
• Depth: Training accuracy Generalization

Theoretical Properties:
Approximation

Universal Approximation
• A cool aspect of neural network is that they can represent any function

• These properties are called “universal approximation properties”

• Theorem. Given any function and ,
 one can find a two-layer ReLU neural network such that

g(⋅) ϵ > 0
f(⋅)

sup
x∈[0,1]

|g(x) − f(x) | ≤ ϵ

Proof idea
• A single ReLU neuron looks like this:

x
w1 a1

Proof idea
• Two parallel ReLU can make a hard sigmoid

=

x
w1 a1

w2 −a2

Proof idea
• Two hard sigmoid can make a bump

• i.e., four ReLU neurons x

=

Proof idea
• We can use many narrow bumps to approximate the target function:

• If we use N bumps, total 4N ReLU neurons needed

Next up
• Optimization aspects

• SGD
• Backpropagation

• Brainteaser

• Persuade yourself that width-2 depth-2 neural net with
activation can represent XOR

1{ ⋅ }

</lecture 11>

