Deep Learning: Overview




Recap

» So far, we have focused primarily on linear models
» Perceptrons, logistic regression, linear regression, PCA. ...

min k.. [2(f(X), V)]

f:linear




Recap

» Strength. Easy to optimize, Low inference cost
* Weakness. Limited expressive power
* Requires the data to be linearly separable




Recap

» Solution. Use some nonlinear feature ®( - ), and solve

min E[Z(AD(x)), )]

f:linear
* The features are typically handcrafted
* Example: Gaussian kernels, Polynomial kernels

* Requires much domain expertise

A

(xh L2, C61332)



Handcrafted Features



Handcrafted features

* Consider a high-dimensional and complicated data (e.g., text, images)
» Designing a good feature can be very challenging

* |deally, we would want something like:
* ¢{(x) = 1if "round head”

* ¢,(X) = 1 if "two triangular ears”

* P5(X) = 1 if "oval tail”

* f( - ): Average all, and apply threshold




Handcrafted features

* Problem. Identifying useful ¢( - ) is very difficult
 Datais too diverse!

* ¢;(x) = 1if "round head”

* ,(X) = 1if "two triangular ears” X

* Px(x) = 1if "oval tail” X

» Furthermore, constructing each ¢ is challenging as well
* How do we construct an “oval tail detector™?



Handcrafted features

» Example (text). Bag-of-Words
* Count the frequency of words in a sentence
» But. Ignores word ordering, e.g., “man bites dog” vs. “dog bites man”
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Handcrafted features

» Example (text). n-grams
» Count the frequency of multi-word blocks
» But. Limited “window” — cannot cover, e.q., detective novels
* But. Dictionary size explodes — curse of dimensionality

1-Gram 2-Gram 3-Gram
The The Margherita The Margherita pizza
Margherita | Margherita pizza Margherita pizza is
pizza pizza is pizza is not
1S 1S not 1s not bad

not not bad not bad taste

bad bad taste

taste




Handcrafted features

» Example (vision). Sobel filters
» Apply patches edge-detecting kernels to extract “shape”
» But. Difficult to capture semantics
» But. Difficult to be processed by linear models




Historical Bits: ImageNet



ImageNet Challenge

* |n 2010, computer vision folks turned this into a competition
» called “ImageNet”

* Training data. million+ images

» Using crowdsourced annotations, via Amazon Mechanical Turk
* Classes. 1000+ classes
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ImageNet Challenge

« 2010
» 1st. NEC-UIUC 72%  “SVM + SIFT features”
* 2nd. Xerox 66%
e 2011
e 1st. Xerox, 74%  “SVM + Fisher Kernels”
e 2nd. U of Amsterdam 69%
e 2012
» 1st. SuperVision 84%  "Deep Learning”
* 2nd. U of Tokyo /4%  “SVM + Fisher Kernel + SIFT”

* 3rd. Oxford VGG 75%  "SVM + Fisher Kernel + SIFT”



Deep Learning




Representation Learning

e Deep learning is one way to conduct representation learning

o Select the feature ®( - ) in a data-driven manner

e So far, we have been solving the following optimization problem

min_ min |E g, [£(AOX)), y)]
®d(-) linear f(-)

Human trial-and-error @ Automated optimization, with data



Representation Learning

min_ min |E g, [£(A@X)), y)]
®(-) linear f(-)

Automated optimization, with data

e Idea. Learn both ®( - ), f( - ) from data
e Either jointly or separately



Key questions

min min Eg, [£(APX)), )]
®d(-) linear f(-)

* For a successful representation learning, we need three things:

e A good search space of ©( - )
* Should be able to express wide range of (nonlinear) functions

» A good optimization algorithm to find optimal ®( - )

e A global optimum should be discoverable with small compute
* A good generalizability of the discovered solution

 Hope to suffer from small “overfitting”



Deep Learning

e Starting from today, we will focus on deep learning
o Search space. Neural networks
e Repetition of simple operations
e (Can approximate any continuous function, given sufficient size

e so-called “universal approximation property”
~O e\
~@EXX XRE KK —

O e s




Deep Learning

e Optimizer. Gradient descent + Backpropagation

 The search space is highly nonconvex
e Moysteriously, however, GD finds a good minima
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Deep Learning

* Generalization. Mysteriously, generalize well...
 Folk knowledge. Larger models generalize poorly
e Deep learning. Larger models tend to generalize better

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.46e+08)
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Deep Learning

 This week, we give a brief overview of these three aspects
e Search space
 Optimization
* (Generalization



Deep Neural Networks




Neural Network o

=

* Motivated by how human processes information

(soma)

 Neurons. Unit of information processing

 Aggregates electrochemical signals
from other neurons

e Fire the output, if the aggregated signal is above threshold

e Brain. A network of neurons

e Can do complicated operations
(a living proof-of-concept)




Artificial Neural Network

In 1950s, used for hard-coding functions
rather than machine learning

» Electric circuits, instead of biological
* Build elementary circuits

* Combine multiple circuits to
express a complicated function

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCCULLOCH AND WALTER PITTS
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.
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Perceptrons

Neurons with learnable weights Inputs ~ Weights Netinput ~ Activation
o function function

L (o)
y — 1 Z Wlxl + b o @ o 9 » output
i=1 O, g
* Multi-dimensional input (%)

* Take a weighted sum
* Fire if sum exceeds threshold
* QOtherwise, output O

Combination of a linear operation X — w'x

a nonlinearity X~ 1{x> 0}



Multilayer Perceptrons

 |dea. Build a network of perceptrons, by parallel & serial connections
* |nthe i-th, layer, do: weights

W.z +
0/(2)

activation function (not necessarily 1)

biases

b,

e Linear operation 7 —

« Nonlinear operation Z —

Input layer

hidden layer 1 hidden layer 2



Multilayer Perceptrons

* QOur overall predictor can be written as:

fx)=|W;o0;, _(W;_0(-:0c(Wx+Db)+ )

linear classifier feature

* Note. If we did not have activation functions, this is simply a linear model
fx) =W, (W, _---(Wx+b)+ b))
= Wx+Db



Multilayer Perceptrons

* As the layer gets deeper, the each neuron captures more and more
complicated patterns

« Example. Visualization of the pattern that maximally activates a neuron




Properties

* Computation. Very easy to compute
* Mostly linear operations
* We can do parellel processing w/ GPUs
* Flexibility. Modular, and thus very flexible
» Canreplace the “building blocks”
* (Can change the size — add or remove layers/neurons

Input layer

hidden layer 1 hidden layer 2



Building blocks

* There are countless network architectures, employing:
e Other linear operations, instead of simple matrix multiplication
e e.g., convolution

e Other nonlinear operations, instead of 1{ - }
* e.g. RelLU, sigmoid

 Advanced. Many other operations
 Residual connection
e gself-attention
e normalization, ...



Building blocks

* Linear ops. Vanilla linear is bad, especially for high-dimensional data

 Example 1. For 4K images, a 2-layer net with 1000 hidden neurons
need 7.5 billion parameters (30GB of memory)

* Example 2. For texts, the input can be of variable length

Standard

High Definition

Definition

480p 640x480

720p (1280x720) [16:9] Pana la mijlocul lui iulie,

procentul a urcat la 40%. La
inceputul lui august, era 52%.

Quad HD

— Source
1440p (2560x1440) [16:9]

By mid-July, it was 40
percent. In early August, it
was 52 percent.

— Reference



Building blocks
* A common solution is to develop customized modules for each data
domain
e recurrent module for text, convolutional module for vision
 will be discussed in later lectures

RNN CNN




Building blocks

» Activation. Difficult to conduct gradient descent with 1{ - }

» Gradient is almost always () Sigmoid I

o Alternatives are: o(x) = 1

1+e— =

» Saturating activations. Surrogates of 1{ - } ::r'l‘hh(x) [
» Non-saturating activations. Modern pick —
 Default: ReLU (Rectified linear unit)
 Better optimization properties (discussed later)

» Better computation: easy to compute the output &

gradients - m
RelLU
max (0, z) {fc >0
% : " ae®—-1) <0 -=—F o




Width and Depth

* Width. The number of neurons in each layer (typically the widest)
* Depth. The number of layers

» Exercise. How many layers does this network have?
* Whatis its width?

I/.\\// @
SO
AN O
.)‘\“'//\\ ‘ output layer

Input layer
hidden layer 1 hidden layer 2



Width and Depth

» Larger the network, we typically have:
* High training accuracy on complicated dataset
» |Less SGD steps needed to converge
* More per-step computation
* Higher inference cost
» Width: Memory, Depth: Latency

* |nterms of generalization:
» Width: Training accuracy #  Generalization 4

» Depth: Training accuracy * ® Generalization 4




Theoretical Properties:
Approximation




Universal Approximation

e A cool aspect of neural network is that they can represent any function
 These properties are called “universal approximation properties”

e Theorem. Given any function g( - ) and ¢ > 0,
one can find a two-layer ReLU neural network /( - ) such that

sup |g(x) —f(0)| < e
xe|0,1]




Proof idea

* A single ReLU neuron looks like this:




Proof idea

 Two parallel ReLU can make a hard sigmoid




Proof idea

 Two hard sigmoid can make a bump
e j.e., four ReLU neurons X




Proof idea

 We can use many narrow bumps to approximate the target function:
e |f we use N bumps, total 4N ReLU neurons needed

I




Next up

* (Optimization aspects
¢ SGD
» Backpropagation

e Brainteaser

» Persuade yourself that width-2 depth-2 neural net with 1{ - }
activation can represent XOR

Output

XOR

)

= IO|IR|O|P>
== OO |0
Ol |F
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