
Deep Learning: Overview



Recap
• So far, we have focused primarily on linear models 

• Perceptrons, logistic regression, linear regression, PCA. … 

min
f:linear

𝔼data[ℓ( f(X), Y)]



Recap
• Strength. Easy to optimize, Low inference cost  
• Weakness. Limited expressive power 

• Requires the data to be linearly separable



Recap
• Solution. Use some nonlinear feature , and solve 

 

• The features are typically handcrafted 
• Example: Gaussian kernels, Polynomial kernels 
• Requires much domain expertise

Φ( ⋅ )
min

f:linear
𝔼[ℓ( f(Φ(x)), y)]



Handcrafted Features



Handcrafted features
• Consider a high-dimensional and complicated data (e.g., text, images) 

• Designing a good feature can be very challenging 

• Ideally, we would want something like: 
• 1 if ”round head” 

• 1 if ”two triangular ears” 

• 1 if ”oval tail” 

• … 

• : Average all, and apply threshold

ϕ1(x) =
ϕ2(x) =
ϕ3(x) =

f( ⋅ )



Handcrafted features
• Problem. Identifying useful  is very difficult 

• Data is too diverse! 

• 1 if ”round head”                 ✅ 

• 1 if ”two triangular ears”    ❌ 

• 1 if ”oval tail”                        ❌ 

• Furthermore, constructing each  is challenging as well 
• How do we construct an “oval tail detector”?

ϕ( ⋅ )

ϕ1(x) =
ϕ2(x) =
ϕ3(x) =

ϕ



Handcrafted features
• Example (text). Bag-of-Words 

• Count the frequency of words in a sentence 
• But. Ignores word ordering, e.g., “man bites dog” vs. “dog bites man”



Handcrafted features
• Example (text). n-grams 

• Count the frequency of multi-word blocks 
• But. Limited “window” — cannot cover, e.g., detective novels 
• But. Dictionary size explodes — curse of dimensionality



Handcrafted features
• Example (vision). Sobel filters 

• Apply patches edge-detecting kernels to extract “shape” 
• But. Difficult to capture semantics 
• But. Difficult to be processed by linear models



Historical Bits: ImageNet



ImageNet Challenge
• In 2010, computer vision folks turned this into a competition 

• called “ImageNet” 
• Training data. million+ images 

• Using crowdsourced annotations, via Amazon Mechanical Turk 
• Classes. 1000+ classes



ImageNet Challenge
• 2010 

• 1st. NEC-UIUC                 72%       “SVM + SIFT features” 
• 2nd. Xerox                        66% 

• 2011 
• 1st.  Xerox,                       74%      “SVM + Fisher Kernels” 
• 2nd. U of Amsterdam     69% 

• 2012 
• 1st. SuperVision              84%      “Deep Learning” 
• 2nd. U of Tokyo               74%      “SVM + Fisher Kernel + SIFT” 
• 3rd. Oxford VGG              75%       “SVM + Fisher Kernel + SIFT”



Deep Learning



Representation Learning
• Deep learning is one way to conduct representation learning 

• Select the feature  in a data-driven manner 

• So far, we have been solving the following optimization problem 

Φ( ⋅ )

min
Φ(⋅)

min
linear f(⋅)

𝔼data[ℓ( f(Φ(x)), y)]

Human trial-and-error 😢 Automated optimization, with data



Representation Learning
• Deep learning is a way to conduct representation learning 

• Select the feature  in a data-driven manner 

• So far, we have been solving the following optimization problem 

 

• Idea. Learn both  from data 
• Either jointly or separately

Φ( ⋅ )

min
Φ(⋅)

min
linear f(⋅)

𝔼data[ℓ( f(Φ(x)), y)]

Φ( ⋅ ), f( ⋅ )

Automated optimization, with data



Key questions
 

• For a successful representation learning, we need three things: 

• A good search space of  
• Should be able to express wide range of (nonlinear) functions 

• A good optimization algorithm to find optimal  
• A global optimum should be discoverable with small compute 

• A good generalizability of the discovered solution 
• Hope to suffer from small “overfitting”

min
Φ(⋅)

min
linear f(⋅)

𝔼data[ℓ( f(Φ(x)), y)]

Φ( ⋅ )

Φ( ⋅ )



Deep Learning
• Starting from today, we will focus on deep learning 
• Search space. Neural networks 

• Repetition of simple operations 
• Can approximate any continuous function, given sufficient size 

• so-called “universal approximation property”



Deep Learning
• Optimizer. Gradient descent + Backpropagation 

• The search space is highly nonconvex 
• Mysteriously, however, GD finds a good minima



Deep Learning
• Generalization. Mysteriously, generalize well… 

• Folk knowledge. Larger models generalize poorly 
• Deep learning.    Larger models tend to generalize better

Deep LearningTraditional ML



Deep Learning
• This week, we give a brief overview of these three aspects 

• Search space 
• Optimization 
• Generalization



Deep Neural Networks



Neural Network
• Motivated by how human processes information 

• Neurons. Unit of information processing 
• Aggregates electrochemical signals 

from other neurons 
• Fire the output, if the aggregated signal is above threshold 

• Brain. A network of neurons 
• Can do complicated operations 

(a living proof-of-concept)



Artificial Neural Network
• In 1950s, used for hard-coding functions 

rather than machine learning 
• Electric circuits, instead of biological 

• Build elementary circuits 
• Combine multiple circuits to 

express a complicated function



Perceptrons
• Neurons with learnable weights 

 

• Multi-dimensional input 
• Take a weighted sum 

• Fire if sum exceeds threshold 
• Otherwise, output 0 

• Combination of a linear operation    
                             a nonlinearity          

y = 1 (
n

∑
i=1

wixi + b)

x ↦ w⊤x
x ↦ 1{x > 0}



Multilayer Perceptrons
• Idea. Build a network of perceptrons, by parallel & serial connections 

• In the i-th, layer, do: 

• Linear operation             

• Nonlinear operation      

z ↦ Wiz + bi

z ↦ σi(z)

weights biases

activation function   (not necessarily )1



Multilayer Perceptrons
• Our overall predictor can be written as: 

 

• Note. If we did not have activation functions, this is simply a linear model 

 

              

f(x) = WLσL−1(WL−1σ(⋯σ(W1x + b1) + ⋯)

f(x) = WL(WL−1⋯(W1x + b1) + b2)⋯)
= W̃x + b̃

linear classifier feature



Multilayer Perceptrons
• As the layer gets deeper, the each neuron captures more and more 

complicated patterns 

• Example. Visualization of the pattern that maximally activates a neuron

“car”



Properties
• Computation. Very easy to compute 

• Mostly linear operations 
• We can do parellel processing w/ GPUs 

• Flexibility. Modular, and thus very flexible 
• Can replace the “building blocks” 
• Can change the size — add or remove layers/neurons



Building blocks
• There are countless network architectures, employing: 

• Other linear operations, instead of simple matrix multiplication 
• e.g., convolution 

• Other nonlinear operations, instead of  
• e.g., ReLU, sigmoid 

• Advanced. Many other operations 
• Residual connection 
• self-attention 
• normalization, …

1{ ⋅ }



Building blocks
• Linear ops. Vanilla linear is bad, especially for high-dimensional data 

• Example 1. For 4K images, a 2-layer net with 1000 hidden neurons 
                      need 7.5 billion parameters (30GB of memory) 

• Example 2. For texts, the input can be of variable length



Building blocks
• A common solution is to develop customized modules for each data 

domain 
• recurrent module for text, convolutional module for vision 
• will be discussed in later lectures



Building blocks
• Activation. Difficult to conduct gradient descent with  

• Gradient is almost always  
• Alternatives are: 

• Saturating activations.  Surrogates of  
• Non-saturating activations. Modern pick 

• Default: ReLU (Rectified linear unit) 
• Better optimization properties (discussed later) 
• Better computation: easy to compute the output & 

gradients

1{ ⋅ }
0

1{ ⋅ }



Width and Depth
• Width. The number of neurons in each layer (typically the widest) 
• Depth. The number of layers 

• Exercise. How many layers does this network have? 
• What is its width?



Width and Depth
• Larger the network, we typically have: 

• High training accuracy on complicated dataset 
• Less SGD steps needed to converge 
• More per-step computation 
• Higher inference cost 

• Width: Memory, Depth: Latency 

• In terms of generalization: 
• Width: Training accuracy         Generalization  
• Depth: Training accuracy     Generalization 



Theoretical Properties: 
Approximation



Universal Approximation
• A cool aspect of neural network is that they can represent any function 

• These properties are called “universal approximation properties” 

• Theorem. Given any function  and , 
                   one can find a two-layer ReLU neural network  such that 

g( ⋅ ) ϵ > 0
f( ⋅ )

sup
x∈[0,1]

|g(x) − f(x) | ≤ ϵ



Proof idea
• A single ReLU neuron looks like this:

x
w1 a1



Proof idea
• Two parallel ReLU can make a hard sigmoid

=

x
w1 a1

w2 −a2



Proof idea
• Two hard sigmoid can make a bump 

• i.e., four ReLU neurons x

=



Proof idea
• We can use many narrow bumps to approximate the target function: 

• If we use N bumps, total 4N ReLU neurons needed



Next up
• Optimization aspects 

• SGD 
• Backpropagation 

• Brainteaser 

• Persuade yourself that width-2 depth-2 neural net with  
activation can represent XOR

1{ ⋅ }



</lecture 11>


