
Decision Trees

Motivation
• Kaggle. A competition platform for ML and data science

• People upload data and put bounty to it
• You solve it

Kaggle Survey (2021)

Historical Bits

Historical bits
• Use in modern ML traces back to Morgan & Sonquist (1963)

• Analyzing survey data on income & savings
• Data included many demographic subgroups

• Turned out that the trend was highly nonlinear

Historical bits
• Case 1. Multi-collinearity

• Correlation between income & education, but no interaction

Historical bits
• Case 2. Interaction between features

• No correlation between income & self-employment

Historical bits
• Case 3. Both

Historical bits
• In each of these examples, having a single linear model doesn’t work well

• Idea. Take a sequential approach
• Divide. Partition the data into many subgroups
• Conquer. Have a simple model for each subgroup (e.g., linear)

• Example. High asset?

• Yes use curve 1

• No use curve 2

→
→

Key question
• How do we know if a subgroup needs division?

• If we know, exactly how do we divide?

Decision Trees

Overview
• Basically a nested if-else statement
• A binary tree which recursively partitions and refines the input space

• Leaf. Associated with some
 label
• If discrete, classification
• If continuous, regression

• Tree. Associated with some
 splitting rule

̂y

g : 𝒳 → {0,1}

Inference
• Given , recurse down the tree until a leaf is reached

• Then, output the label of the leaf
x

while(true):
if(node == leaf): output label(node)
else:

if(condition == true): node = right_child(node)
else: node = left_child(node)

Inference
• When , it is typical to consider

only the axis-aligned splits

• Computationally efficient
• Single index lookup

• Human-interpretable decisions

𝒳 = ℝd

g(x) = 1[xi ≥ t]

Training
• Constructing a decision tree requires specifying three elements

• Prediction rule
• Stopping rule
• Splitting rule

until all leaf node is stopped:

visit a leaf node

if(stopping_rule(node) = True):

apply prediction rule to label the node
stop the node

else:

split the node, using the splitting rule

Example: Iris Classification
• For example, consider an iris classification task

• Input features

• : length-width ratio of sepal

• : length-width ratio of petal

• Output labels

𝒳 = ℝ2

x1
x2

𝒴 = {1, 2, 3}

Example: Iris Classification
• First, construct a single leaf node,

using a prediction rule that applies to
the whole set

Example: Iris Classification
• See if the stopping rule is met

• Very unhomogeneous; continue

Example: Iris Classification
• According to the splitting rule, split

the leaf to partition the input
space for the node

Example: Iris Classification
• According to the prediction rule,

determine the prediction of new
leaf nodes

Example: Iris Classification
• Continue until some stopping rule

is satisfied for all leaf nodes

Elements

Training: Prediction Rule
• Generating a label for a partitioned set

• Typically very simple
• Classification. Majority voting
• Regression. Average, Median, …

Training: Splitting Rule
• Generating how to partition a set

• Which axis?
• Which line?

Training: Splitting Rule
• Idea. Minimize some notion of uncertainty (a.k.a. impurities)

 after partitioning the set

• In other words, by dividing some set into , we want to solve:

• Here, is some measure of uncertainty

S S1, S2

min
S1,S2: S1∪S2=S,S1∩S2=ϕ (|S1 | ⋅ u(S1) + |S2 | ⋅ u(S2))

u(⋅)

Training: Splitting Rule
Example (Binary Classification)

• Suppose that we are given a set , with samples labeled as
• Classification Error

• Gini Index

• Entropy

(G, E are concave upper bounds on C)

S p |S | +1

u(S) = min{p,1 − p}

u(S) = 2p(1 − p)

u(S) = p log
1
p

+ (1 − p)log
1

1 − p

Training: Splitting Rule
Example (Regression)
• We can simply use variance

• the minimum mean squared error

• i.e., the error of the mean

• Similarly, we can use the minimum mean absolute error, …

ℓ2

Training: Stopping Rule
• Determining when to stop growing a tree

• Many criteria:
• If splitting does not reduce

the uncertainty
• Reaches some pre-specified

size of the tree
• Every leaf is “pure”

• Very prone to overfitting

Pruning
• It is typical to prune the tree after growing

• i.e., remove unnecessary split after training

Pruning
• Algorithm.

• Pick a bottom-level split
• Remove it

• If the validation error is improved, leave it pruned
• Else, restore the subtree

• Repeat

Pruning
• Note that the iterative algorithm is a “greedy” way to minimize the total

uncertainty

• Prone to falling in local minima:
• Fails on XOR (indifferent to splits)

• Solution.
• Do “random” splits occasionally
• Then, prune the unnecessary splits

u(𝒯) :=
1
n ∑

leaf S∈𝒯

|S | ⋅ u(S)

Properties
• Advantages.

• Easy to interpret
• Fast to execute

• Limitations.
• Difficult to scale up

• Easy to overfit, if the tree is big

Properties
• Nonparametric
• Based on local regularity

• Simple locally, complicated globally

• In these senses, similar with nearest neighbors

Forests

Forests
• Scaling up decision trees can be done by growing multiple trees

Bagging
• Stands for “Bootstrapped Aggregating”

• Idea. Split the data to multiple subsets
• Generate a tree for each subset
• Predictions of the trees are

aggregate via
• Majority voting
• Averaging

Random Forest
• Problem. Bagging leads to highly correlated trees

• That is, resulting trees look similar to each other

• Idea. Decorrelate the trees by using only a subset of features
• To grow each node, randomly select a subset of features and choose

the best one among this subset

Boosting
• Idea. Decorrelate by sequentially generating the trees

• Assign higher weights to samples that other trees got wrong

</lecture 10>

