Decision Trees

Motivation

» Kaggle. A competition platform for ML and data science
» People upload data and put bounty to it
* You solve it

= kaggle Q = Filters

-]

= Create All competitions Featured Getting Started Research Community Playground Simulations Analytics

© Active Competitions Hotness ~ H

® Home

@ Competitions

[Datasets

& Models

<> Code Open Problems - Single-Cell Stanford Ribonanza RNA : Optiver - Trading at the Close CommonLit - Evaluate

I=]| Discussions . . . : : :
Predict how small molecules change gene... Create a model that predicts the structur... Featured - Code Competition Automatically assess summaries written b...

9 Learn Featured Research 1008 Teams Featured - Code Competition
431 Teams 262 Teams 2044 Teams

v More

$100,000 2 months to go $100,000 2 months to go $100,000 2 months to go $60,000 4 days to go

Kaggle Survey (2021)

Linear or Logistic Regression 80.3

Decision Trees or Random Forests

Gradient Boosting Machines
(xgboost, lightgbm, etc)

Convolutional Neural Networks

Bayesian Approaches

Dense Neural Networks (MLPs, etc)

Recurrent Neural Networks

Transformer Networks (BERT, gpt-3,
etc)

Generative Adversarial Networks

Evolutionary Approaches

Other

None

Historical Bits

Historical bits

e Usein modern ML traces back to Morgan & Sonquist (1963)
* Analyzing survey data on income & savings
 Data included many demographic subgroups
 Turned out that the trend was highly nonlinear

TABLE 1. SPENDING UNIT INCOME AND THE NUMBER IN THE
UNIT WITHIN VARIOUS SUBGROUPS

Spending unit | Number Number

Group average (1958) in of
income unit cases

Nonwhite, did not finish high school $ 2489 3.3 191
Nonwhite, did finish high school 5005 3.4 67
White, retired, did not finish high school 2217 1.7 272
White, retired, did finish high school 4520 1.7 72

White, nonretired farmers, did not finish

high school 3950 3.6 87
White nonretired farmers, did finish high

school 6750 3.6 24

Historical bits

e Case 1. Multi-collinearity
e (Correlation between income & education, but no interaction

SAVING Education
,/ High Education

Low Education

—=—=——=—=Regression with pooled dafta
Seéparate regressions

"> Concentration of data

INCOME

Historical bits

 Case 2. Interaction between features
* No correlation between income & self-employment

SAVING Self -Employed

—=—=——=—=Regression with pooled dafta
Seéparate regressions

> Concentration of data

INCOME

Historical bits
e Case 3. Both

High Assels
SAVING

/

————=—=FRegression with pooled dafa
Separate regressions

> Concentration of data , :

/

Low Assels

INCOME

Historical bits

* |n each of these examples, having a single linear model doesn't work well

* |dea. Take a sequential approach
e Divide. Partition the data into many subgroups
e Conquer. Have a simple model for each subgroup (e.g., linear)

High Assels
. SAVING
 Example. High asset? .
e Yes — use curve T /
Low Assels
e No — use curve 2 5
O J

e

INCOME

High school

grad $5000
Negro
Xy =3000 Not high
ALL school grad $2500
X =$5000
_ High school
o= 1,000,000 grad $4500
95 or older
Xl Not high
Not Negro school grad $2200
X, =5500\ |
2 Farmer 34500
45 or
| 2‘?;;?)_(_0' oldef —— _ $9000
é2 College
graduate
Not 45 or
Not a older — - $7000
farmer High school
grad — $ 6500
f Not a
college
graduate
Not a high
Y school grad $5000
split split
| 2
search search

Group 2 Group 22

CuARrT I1. Annual Earnings.

Key question

* How do we know if a subgroup needs division?
 |f we know, exactly how do we divide?

High Assels
SAVING

”

Low Assels

=7

INCOME

Decision Trees

Overview

» Basically a nested if-else statement
* A binary tree which recursively partitions and refines the input space

o Leaf. Associated with some

label y petallen
< 2.45

e |f discrete, classification
* |f continuous, regression

* Tree. Associated with some Setosa

splittingrule g : & — {0,1} 58
0
Versicolour

petalwid
< 1.75

Virginica

Inference

 Given X, recurse down the tree until a leaf is reached
* Then, output the label of the leaf

while(true):
if(node == leaf): output label(node)
else:
if(condition == true): node = right_child(node)
else: node = left_child(node)

+ When 2 = R% itis typical to consider

only the axis-aligned splits

g(x) = l[xi > 1]

» Computationally efficient

* Single index lookup

Human-interpretable decisions

Inference

Petal length

<

OO O

O (VOO
O O
O OHGEK

OO0 M
4D

<

Q0 O
<

O

< K<< <

<

<<EL

<

<<
<

TR <

<

<<
R <<<

<

< <

< K

0.5

1.0 1.5
Petal width

2.0

2.5

Training

» Constructing a decision tree requires specifying three elements
* Prediction rule
» Stopping rule
» Splitting rule

until all leaf node is stopped:
visit a leaf node
if(stopping_rule(node) = True):

apply prediction rule to label the node
stop the node

else:

split the node, using the splitting rule

Example: Iris Classification

* For example, consider an iris classification task
+ Input features 2" = R?
» X;:length-width ratio of sepal
* X,: length-width ratio of petal
» OQutputlabels % = {1,2,3}

the whole set

Example: Iris Classification

 First, construct a single leaf node,
using a prediction rule that applies to

petal length/width

6

5.5

&)

-~
o

N

&0
o

L

)
o

N

1.5

2 2.5
sepal length/width

3

Example: Iris Classification

» See if the stopping rule is met
* Very unhomogeneous; continue

petal length/width

-~
o

L

o

)
o

&)

N

L

N

X
X
X X
X X
X
O
X
0
o o 0% o
X o O
X O©Q Z§Et’6’ O
o "o el Lo
00, OO0 o
O o _
X o P
| | |
1.5 2 2.5 3

sepal length/width

Example: Iris Classification
» According to the splitting rule, split

the leaf to partition the input

space for the node

6

9.0

Ol

P
o

petal length/width
N w
o0 W o A

N

1.5

2 2.5
sepal length/width

determine the prediction of new

leaf nodes

6

9.0

Ol

P
o

petal length/width
N w
o0 W o A

N

Example: Iris Classification

» According to the prediction rule,

1.5

O O
0 o 099 ¢
o
0@0%&8 O
o T o” of
00, G0 T4
O Qo
o o
l |
2 2.9

sepal length/width

Example: Iris Classification

* Continue until some stopping rule

. . 6 XX
s satisfied for all leaf nodes]
5.5}
B E x x

P
o

petal length/width
LW
o A
O
O ’ o ©
08 O
O
O

W
O
O
)
. Q
C
O
O
O

N
o
X
5
°d
g
<
|
|
|
i
I
|
|
|
|
|
|

N

1.5 2 2.5 3
sepal length/width

Elements

Training: Prediction Rule

* Generating a label for a partitioned set

» Typically very simple
» (Classification. Majority voting

on
o

)
X

» Regression. Average, Median, ...

P~
o

L
o

petal length/width
AN

w

N
o

|
|
|
|
|
|
|
|
|
|
|
|
|
X I O)
X : o S/ OO% O
|
-
|
|
|
|

N

1.5 2 2.5
sepal length/width

Training: Splitting Rule
* Generating how to partition a set
* Which axis?
* Which line?

o P~ on
o o o w;
X

petal length/width
AN

L

o
o

4
-
o

N

1.5 2 2.5 3
sepal length/width

Training: Splitting Rule

* |dea. Minimize some notion of uncertainty (a.k.a. impurities)
after partitioning the set

» In other words, by dividing some set § into §;, S,, we want to solve:

min (\Sl\ -u(S)+ 15, M(Sz))
51,90 S1US,=8,5,NS,=¢

» Here, u(-) is some measure of uncertainty

Training: Splitting Rule
Example (Binary Classification)

» Suppose that we are given a set S, with p | S| samples labeled as + 1
» Classification Error

0.5

u(S) = min{p,1 — p} ol
e Gini Index 035
u(S) = 2p(1 - p) o)
e Entropy 0.15|

0.1F
0.05

1
u(S) = plog—+ (1 — p)log o
p 1 _p 0 0.2 0.4 p 0.6 0.8 1

Training: Splitting Rule

Example (Regression)
* We can simply use variance
e the minimum mean squared error

. i.e. the Z? error of the mean

» Similarly, we can use the minimum mean absolute error, ...

Training: Stopping Rule

* Determining when to stop growing a tree

* Many criteria: A

* |f splitting does not reduce
the uncertainty

» Reaches some pre-specified
size of the tree

* Every leaf is “pure”
* Very prone to overfitting

Pruning

* |tistypical to prune the tree after growing

* j.e., remove unnecessary split after training

An Unpruned
Decision Tree

(Income7

=30k 30K

Other loan from
same bank7

Crimlnal
Record?

yes no

A Pruned
Decision Tree

(Incomeﬂ

>=30K <30K

Other loan from
same bank? %

yes

equlred
docs?

Pruning

» Algorithm.
* Pick a bottom-level split
* Remove it
* |f the validation error is improved, leave it pruned
 Else, restore the subtree

[Incorne?w
' Repeat >=30K — ~_ <30K
‘_Other lo?m from " Criminal l
\ same bank? | Record?

Ves

Required | (Loan) [Required
__docs? Vil o __docgs?
/\&k

Pruning

* Note that the iterative algorithm is a “greedy” way to minimize the total
uncertainty

1
wW(T) = — Z S| - u(S)

n

leat SeT

» Prone to falling in local minima: N
» Fails on XOR (indifferent to splits) TEES WESN
- EAENE EEBN
- EAENE EEBE

e Solution. T
* Do “random” splits occasionally THER WES
| T EEE EEN
* Then, prune the unnecessary splits 'l mE e EHHEHB

Properties

 Advantages.
* Easy to interpret
* Fastto execute

 Limitations.
» Difficult to scale up
» Easy to overflt, if the tree is big

Properties

* Nonparametric
» Based on local regularity
» Simple locally, complicated globally

* |nthese senses, similar with nearest neighbors

Forests

» Scaling up decision trees can be done by growing multiple trees

Bagging

» Stands for “Bootstrapped Aggregating”

* |dea. Split the data to multiple subsets

 Generate a tree for each subset K‘
* Predictions of the trees are

aggregate via secison Tace -1
» Majority voting 1
+ Averaging | e

FINAL RESULT

Random Forest

* Problem. Bagging leads to highly correlated trees
* Thatis, resulting trees look similar to each other

» |dea. Decorrelate the trees by using only a subset of features

* To grow each node, randomly select a subset of features and choose
the best one among this subset

RANDOMFOREST(D; B, m,n)

1 forb=1,...,B

2 Draw a bootstrap sample Dy, of size n from D

Grow a tree Ty, on data Dy, by recursively:
Select m variables at random from the d variables
Pick the best variable and split point among the m variables
Split the node

7 return tree Ty

N U1 & O

Boosting

* |dea. Decorrelate by sequentially generating the trees
» Assign higher weights to samples that other trees got wrong

“:“‘
“.‘Q‘
o
Original Data Weighted Data
Ensemble
Classifer
vV eee vV eee
00 000
X 0000 X 0000 X 0000
000 O Q00O | — Q000 O
LN XN 90000 0000

</lecture 10>

