
Decision Trees



Motivation
• Kaggle. A competition platform for ML and data science 

• People upload data and put bounty to it 
• You solve it



Kaggle Survey (2021)



Historical Bits



Historical bits
• Use in modern ML traces back to Morgan & Sonquist (1963) 

• Analyzing survey data on income & savings 
• Data included many demographic subgroups 

• Turned out that the trend was highly nonlinear



Historical bits
• Case 1. Multi-collinearity 

• Correlation between income & education, but no interaction



Historical bits
• Case 2. Interaction between features 

• No correlation between income & self-employment



Historical bits
• Case 3. Both



Historical bits
• In each of these examples, having a single linear model doesn’t work well 

• Idea. Take a sequential approach 
• Divide. Partition the data into many subgroups 
• Conquer. Have a simple model for each subgroup (e.g., linear) 

• Example. High asset? 

• Yes  use curve 1 

• No   use curve 2

→
→





Key question
• How do we know if a subgroup needs division? 

• If we know, exactly how do we divide?



Decision Trees



Overview
• Basically a nested if-else statement 
• A binary tree which recursively partitions and refines the input space 

• Leaf. Associated with some 
          label  
• If discrete, classification 
• If continuous, regression 

• Tree. Associated with some 
           splitting rule 

̂y

g : 𝒳 → {0,1}



Inference
• Given , recurse down the tree until a leaf is reached 

• Then, output the label of the leaf
x

while(true): 
if(node == leaf): output label(node) 
else: 

if(condition == true): node = right_child(node) 
else: node = left_child(node)



Inference
• When , it is typical to consider 

only the axis-aligned splits 

 

• Computationally efficient 
• Single index lookup 

• Human-interpretable decisions

𝒳 = ℝd

g(x) = 1[xi ≥ t]



Training
• Constructing a decision tree requires specifying three elements 

• Prediction rule 
• Stopping rule 
• Splitting rule

until all leaf node is stopped: 

visit a leaf node 

if(stopping_rule(node) = True): 

apply prediction rule to label the node 
stop the node 

else: 

split the node, using the splitting rule



Example: Iris Classification
• For example, consider an iris classification task 

• Input features  

• : length-width ratio of sepal 

• : length-width ratio of petal 

• Output labels 

𝒳 = ℝ2

x1
x2

𝒴 = {1, 2, 3}



Example: Iris Classification
• First, construct a single leaf node, 

using a prediction rule that applies to 
the whole set



Example: Iris Classification
• See if the stopping rule is met 

• Very unhomogeneous; continue



Example: Iris Classification
• According to the splitting rule, split 

the leaf to partition the input 
space for the node



Example: Iris Classification
• According to the prediction rule, 

determine the prediction of new 
leaf nodes



Example: Iris Classification
• Continue until some stopping rule 

is satisfied for all leaf nodes



Elements



Training: Prediction Rule
• Generating a label for a partitioned set 

• Typically very simple 
• Classification. Majority voting 
• Regression. Average, Median, …



Training: Splitting Rule
• Generating how to partition a set 

• Which axis? 
• Which line?



Training: Splitting Rule
• Idea. Minimize some notion of uncertainty (a.k.a. impurities) 

          after partitioning the set 

• In other words, by dividing some set  into , we want to solve: 

 

• Here,  is some measure of uncertainty

S S1, S2

min
S1,S2: S1∪S2=S,S1∩S2=ϕ (|S1 | ⋅ u(S1) + |S2 | ⋅ u(S2))

u( ⋅ )



Training: Splitting Rule
Example (Binary Classification) 

• Suppose that we are given a set , with  samples labeled as  
• Classification Error 

 
• Gini Index 

 
• Entropy 

 

(G, E are concave upper bounds on C)

S p |S | +1

u(S) = min{p,1 − p}

u(S) = 2p(1 − p)

u(S) = p log
1
p

+ (1 − p)log
1

1 − p



Training: Splitting Rule
Example (Regression) 
• We can simply use variance 

•  the minimum mean squared error 

• i.e., the  error of the mean 

• Similarly, we can use the minimum mean absolute error, …

ℓ2



Training: Stopping Rule
• Determining when to stop growing a tree 

• Many criteria: 
• If splitting does not reduce 

the uncertainty 
• Reaches some pre-specified 

size of the tree 
• Every leaf is “pure” 

• Very prone to overfitting



Pruning
• It is typical to prune the tree after growing 

• i.e., remove unnecessary split after training



Pruning
• Algorithm.  

• Pick a bottom-level split 
• Remove it 

• If the validation error is improved, leave it pruned 
• Else, restore the subtree 

• Repeat



Pruning
• Note that the iterative algorithm is a “greedy” way to minimize the total 

uncertainty 

 

• Prone to falling in local minima: 
• Fails on XOR (indifferent to splits) 

• Solution. 
• Do “random” splits occasionally 
• Then, prune the unnecessary splits

u(𝒯) :=
1
n ∑

leaf S∈𝒯

|S | ⋅ u(S)



Properties
• Advantages. 

• Easy to interpret 
• Fast to execute 

• Limitations. 
• Difficult to scale up 

• Easy to overfit, if the tree is big



Properties
• Nonparametric 
• Based on local regularity 

• Simple locally, complicated globally 

• In these senses, similar with nearest neighbors



Forests



Forests
• Scaling up decision trees can be done by growing multiple trees



Bagging
• Stands for “Bootstrapped Aggregating” 

• Idea. Split the data to multiple subsets 
• Generate a tree for each subset 
• Predictions of the trees are 

aggregate via 
• Majority voting 
• Averaging



Random Forest
• Problem. Bagging leads to highly correlated trees 

• That is, resulting trees look similar to each other 

• Idea. Decorrelate the trees by using only a subset of features 
• To grow each node, randomly select a subset of features and choose 

the best one among this subset



Boosting
• Idea. Decorrelate by sequentially generating the trees 

• Assign higher weights to samples that other trees got wrong



</lecture 10>


