25F - Intro to ML

EECE454: Intro to ML Systems (Fall 2025) #

Team #

  • Instructor. Jaeho Lee 이재호 ✉️
  • TA 1. Minseok Kim 김민석 ✉️
  • TA 2. Taesun Yeom 염태선 ✉️

Location & Time #

  • Class. Mondays/Wednesdays, 09:30–11:00 @ LG Hall, #105
  • Office Hr. Wednesdays, 17:00–18:00 @ GoAround Coffee (or by request)

Schedule (tentative) #

  • W1. Introduction / Basics of ML
    (9/1, 9/3)
  • W2. Linear Regression / Simple Classifiers
    (9/8, 9/10)
  • W3. Support Vector Machines / Kernel SVM
    (9/15, 9/17)
  • W4. K-Means Clustering / Gaussian Mixture Models
    (9/22, 9/24)
  • W5. Dimensionality Reduction / Decision Trees
    (9/29, 10/1)
  • W6. Chuseok Holidays
    (10/6, 10/8)
  • W7. Deep Learning Basics / Backprop
    (10/13, 10/15)
  • W8. Mid-Term
    (10/20, 10/22)
  • W9. Training Neural Networks
    (10/27, 10/29)
  • W10. Bits of Vision: Tasks, Architectures, Representation Learning
    (11/3, 11/5)
  • W11. Visual Generative Models: VAE, GAN, Diffusion
    (11/10, 11/12)
  • W12. Bits of Language: Tasks, Architectures, Representation Learning
    (11/17, 11/19)
  • W13. Large Language Models and Multimodal LLMs
    (11/24, 11/26)
  • W14. Application to Robotics and Reinforcement Learning
    (12/1, 12/3)
  • W15. ML Efficiency / Societal Issues
    (12/8, 12/10)
  • W16. Final Project Presentation
    (12/15, 12/17)